
Welcome

Welcome to the filePro Full Reference Manual. This resource has been developed to satisfy a wide range of audiences ranging from new filePro users to our
loyal filePro programming experts. The How Do I ? and filePro Menu Options topics serve as guides to get you started if you are a beginner and contains
links to Advanced Concepts and Expert topics. By focusing on practical usage of the language, these guides are intended to familiarize you with filePro at
each level. It is up to you to learn more of the syntax later as you find the need for it. By merely being creative and trying out your ideas with these guides, you
will undoubtedly propel yourself into areas that will force you to learn more. It is at these points that you should stop and more thoroughly investigate the
reference topics and other sections of the fPmanual.

Disclaimer

This documentation is distributed by fP Technologies Inc of Ohio for your use with licensed copies of filePro and may not be distributed except as covered by
the filePro license agreements. In using this documentation, you assume all risks arising from the use of this documentation. fP Technologies Inc or its
suppliers are not liable for any damages (including, without limitation, damages for loss of business profits, business interruption, loss of business information,
or other loss) arising out of the use of or the inability to use the documentation.

The How Do I ? topic guides you through the design of a typical relational database application. This section is highly recommended if you are new to filePro
or if you have a need to refresh your memory on some advanced concepts. Depending on your level of filePro programming experience, you may want to skip
some of the sub-topics, but at least give each topic a cursory review to get an idea of what information is presented. The topic order is meant to indicate a
structured path of increasing familiarity with the program and not meant to categorize your ability or that of the package at any level of understanding. The most
expert filePro programmers may not use or even know about some simple technique that a beginner uses quite productively.

Getting from point A to point B - There are as many different ways to solving a business problem as there are programmers. The wonderful thing about filePro
is that it can always start as a blank screen, a blank output format, and a blank processing table. There are some standards, conventions, and ways of thinking
that will help you program more quickly and more universally.

The filePro Menu Items topic contains a section for each of the filePro menu items. If you are new to filePro, review the beginning of each section within this
topic to become acquainted with the filePro environment and each of the filePro menu options. At the beginning of each section, you will see links to Advanced
Concepts, and Expert sections within the section. You can click on these links to quickly move to the more advanced areas within each section.

The fileProODBC topic provides information relative to using ODBC related commands and functions. The feature was separately licensed up until version 5.7
when it was added to the base product as a standard feature.

The Glossary topic provides common computer and filePro terminology.

You will probably use the References topic more than any other once you start designing in filePro. It provides references to all filePro commands, system
maintained fields, environment variables, etc. with code examples.

The Revision History topic has been added to provide a complete historical record of things that have been changed in filePro. If you are not running a current
release, make sure to check this topic before reporting bugs since you may find that your bug has already been addressed in a later release.

The Technical Notes topic provides information that is important to filePro users depending on platform or the specific version you are using.

This Terminal Guide contains key usage for common terminal types, key label codes and other information related to filePro's termcap for the Unix based
operating systems.

The Utilities section describes commonly used filePro Utilities.



Acknowledgements

For the most part, these writings and guides are new. However, some pieces in this work have been gathered from issues of Smalltalk, written by Ken Brody. Other pieces were
taken from issues of The Guru , or The filePro CookBook, written by John Esak. Most of the documentation associated with the HTML topics tools were written by Lee Machan.

The article in the reference filePro and Laserjet Printing was written by Jim Asman.

A special thank you to John Esak and Ray Hoover for the many hours of contributions they have made through the years.

fP Technologies Inc. of Ohio

Revision Date: October 2020



BUG Reporting
Writing clearly is essential in a bug report. If the technical support person can't tell what you meant, you might as well not have said anything.

·   Be specific. If you can do the same thing two different ways, state which one you used. "I selected Load" might mean "I clicked on Load" or "I pressed Alt-L".
Say which you did. Sometimes it matters.

·   Be verbose. Give more information rather than less. If you say too much, the programmer can ignore some of it. If you say too little, they have to come back and
ask more questions. One bug report received was a single sentence; every time the customer had to be asked for more information, the reporter would reply
with another single sentence. It took several weeks to get a useful amount of information, because it turned up one short sentence at a time.

·   Be careful of pronouns. Don't use words like "it", or references like "the window", when it's unclear what they mean. Consider this: "I started FooApp. It put up a
warning window. I tried to close it and it crashed." It isn't clear what the user tried to close. Did they try to close the warning window, or the whole of FooApp? It
makes a difference. Instead, you could say "I started FooApp, which put up a warning window. I tried to close the warning window, and FooApp crashed." This
is longer and more repetitive, but also clearer and less easy to misunderstand.

·   Read what you wrote. Read the report back to yourself, and see if you think it's clear. If you have listed a sequence of actions that should produce the failure, try
following them yourself, to see if you missed a step.

Summary
·   The first aim of a bug report is to let the support person see the failure with their own eyes. If you can't be with them to make it fail in front of them, give them

detailed instructions so that they can make it fail for themselves.
·   In case the first aim doesn't succeed, and the programmer can't see it failing themselves, the second aim of a bug report is to describe what went wrong.

Describe everything in detail. State what you saw, and also state what you expected to see. Write down the error messages, especially if they have numbers in
those messages.

·   When your computer does something unexpected, freeze. Do nothing until you're calm, and don't do anything that you think might be dangerous.
·   By all means try to diagnose the fault yourself if you think you can, but if you do, you should still report the symptoms as well.
·   Be ready to provide extra information if the programmer needs it. If they didn't need it, they wouldn't be asking for it. They aren't being deliberately awkward. Have

version numbers at your fingertips, because they will probably be needed.
·   Write clearly. Say what you mean, and make sure it can't be misinterpreted.
·   Above all, be precise. Programmers like precision.



Using Help

There are many hyperlinks in the filePro Full Reference Manual. They will stay on your screen until you press ESCAPE, press ENTER, or click the left mouse
button. There are also many hyperlink jumps . These are secondary HELP screens that will appear on top of your primary window (depends on the Help version
you are using). They have scroll bars and look very much like your primary HELP window. Read them and then close the jump window as you normally would
close any secondary window. Do not lose your place on the primary topic by maximizing one of these secondary windows. It is also important to understand
that these jumps are usually extra reference material and may be much more advanced in content than what you are studying. If this is true, just close the
window and keep reading where you are. You can always find these resources later.

To go to the next sub-topic within a topic, use the >> button in the Help Menu bar. To go to previous topics, use the << button. If one of the buttons is not lit
up, you are at one end or the other within that topic and should probably press Help Topics to choose the next (or previous)  topic.

Viewing Problems:

The text quality and size is dependent on your system video configuration and various other factors such as viewer/browser preferences. For the Windows
version, you can change the font size by selecting "Options" and then "Font" to change to a larger or smaller font. For the HTML versions, check your
viewer/browser settings and adjust settings to see what gives you the best results.

Plain HTML versions of fPManual - This version uses a style sheet "styles.css" and is the primary manual release.



filePro Plus Capacities

 
Number of Files limited only by disk space

Number of Records per file  1 Billion

Number of Fields per Record 999

Number of Characters per Record 65,400

Number of Reports Forms, Labels limited only by disk space

Length of Output Formats 255 lines per record

Width of Output Formats 255 characters

Number of Report Levels 9 levels: 8 subtotal and 1 grand total

Number of Labels Across Page 1 to 9

Number of Screens limited only by disk space

Number of Fields per Screen 200

Number of Print Codes for Each Printer 9999

Number of Processing Elements per Table 9999

Number of Automatic Indexes 26

Number of Demand Indexes 10

Dummy Fields 32767

Number of Fields to Sort On Per Report /Index 8

Number of Criteria for Record Selection unlimited

Associated Field Instances 32

Processing Line Length 120 characters

Selection Sets Called in Processing unlimited

Token Table Size Available Memory

Number of Global Edits 100

Number of File-specific edits 100

Number of Built-in Field Edits 38

Mathematical Precision 16 Places to left. 8 places to right of decimal point.

Number of User-defined Menus Limited only by disk space

Number of Choices on Each Menu 24

Maximum line length within a help file. Version 5.0 - Increased from 132 to 512 characters.



Disclaimer
 

This documentation is distributed by fP Technologies Inc for your use with licensed copies of filePro and may not be distributed except as covered by the filePro
license agreements. In using this documentation, you assume all risks arising from the use of this documentation. fP Technologies Inc or its suppliers are not liable
for any damages (including, without limitation, damages for loss of business profits, business interruption, loss of business information, or other loss) arising out of
the use of or inability to use the documentation.



Disclaimer Encryption
IMPORTANT: If the key is lost the data is lost - there is no way fP or anyone else can recover the data. fP therefore
disclaims any responsibility for loss of data that results from use of the encryption routines.
 
Caution: Be careful when integrating encryption for stored data fields with edits and for fields that you have a need to scan for values or using indexes.
 
Carefully think through the process of encrypting your data before applying encryption to your stored data fields since you can destroy your data or at least make it
difficult to properly access your data.
 

Don't apply edits other than "*" to stored data fields you encrypt.
Avoid encrypting fields you need to build indexes on.
Always make a backup before applying encryption.



System Requirements

filePro

Windows Network
Windows XP or later.

RAM: 48 MB

Disk Space: 70 MB

If you are running Windows XP or later, the minimum RAM requirements for Windows will usually allow you to run filePro applications satisfactorily. Additional RAM may
be required for Peer-to-Peer Network Servers to achieve acceptable performance for filePro if the machine designated as the filePro file Server is also used as a workstation
and/or provides other services such as printing, FAX services, etc.

LINUX/UNIX/UNIXWARE
RAM: 64 MB

Disk Space: 50 MB

Note: RAM requirements will depend on how many simultaneous connections are expected, other server tasks and the demands placed on the server for your application. If
you experience performance problems, additional memory may help.

 

GIServer
RAM: 96 MB

Disk Space: 10 MB

Note: RAM requirements will depend on how many simultaneous connections are expected, other server tasks and the demands placed on the server for your application. If
you experience performance problems, additional memory may help.

 

fileProGI Client
Windows XP or later

RAM: 64MB

Video: SVGA capable of at least 800x600 pixels.

Disk Space: 50 MB



fPSQL
 
This is a separate purchase which allows the user to use standard SQL query language to search and report filePro data.
fPSQL comes with its own PDF manual.
 
This will open your browser to download or display the PDF manual
 
Click Here
 
 



Standard filePro Terms
Databases, Fields, Records, Files
An example of a simple database is an address book. In this book, it is possible to keep track of contacts, usually arranged by last name. The information typically
collected in an address book includes first and last names, home and work phone numbers, street address, city, state, zip code, email address, and possibly
personal notes. filePro is a program that helps users to organize and use this type of information. The usage can range from a simple mailing list (which can be
organized and sorted at incredible speeds) all the way to a complex registration program, which keeps track of students, teachers, fees, courses, and materials.
 
Within filepro, each type of information stored, such as city or a phone number, is called a field. Each full collection of fields is called a record. In the address book, a
completed entry may include the persons name, contact information and personal notes. The specific information in a field is called data and is saved when each
record is saved. The records are collected to create a database file.
 
filePro uses what is called a map to define the fields. This map is created by the Define Files option of the filePro Plus Main Menu.
 
Within the map, fields are referred to as "real fields", and are defined by:
 

Number (and name, although name is optional)
            Length : number of characters (up to 999)

Type of data: alphanumeric, numeric, date, time
 
There can be up to 999 fields per record.
 
You can build many different named filePro databases (limited only by disk space), and they can all share and use data from each other.
 
The filePro programs are reached through the filePro Plus Main Menu.
 
§ To open the filePro Plus Main Menu in UNIX/LINUX/AIX, simply press p at any shell prompt (since the filePro Plus program 'p' is found in the /usr/bin directory and
this directory is listed in the PATH variable for all users under these systems).
Note: The path environment variables must be set in a file fppath, fpplus.bat or other batch file in order to properly run filePro. Refer to the path variables for more
information.
 
§ To open the filePro Plus Main Menu in Windows, click on the ICON created by the install shield. This will call a batch file e.g. fpplus.bat or fpws.bat which sets the
filePro environment and executes "p". If the filePro Plus Main Menu is not properly displayed, check the last line of the batch file to see if it has been modified to call a
user menu name. If so, create a copy of the batch file and modify the last line to drop the user menu after \p.exe.
 
You can create and run filePro files from this filePro Plus Main Menu. It is divided into two sides: Creation Programs (left side) and Runtime Programs (right side).
 
In most instances, end users will be provided with custom "user" menus. For our purposes , we will use the filePro Plus Main Menu. This menu is used to develop the
applications. It is divided into two sections. You will use this menu to do virtually all design work within filePro. It is structured in this way so that you can also use it to
test your work before packaging it up for the end - users. (Some filePro users do use this menu to access their programs; however, there are preferred ways of
accessing user programs and pre-built applications. You will learn about them later.)
 
This primer will give you an overview of how to use the Inquire, Update & Add (IUA) menu option. This is provided to familiarize you with the "look and feel" of filePro.
After we have something to work with, the "Beginner" guide will go through things in more detail.
 
By the way, case (upper or lower) is not important to Windows-based versions of filePro, but VERY important to Linux/Unix based systems. Throughout these guides,
lower case will be used in most instances, and occasionally filePro will turn them into UPPER case as needed. You may use whichever suits you best, but you must
be consistent. If you name files in lowercase letters, you must refer to them in lowercase as well.
 
All menu choices throughout filePro are "hot-keyed". This means you can just press the letter or number of the desired choice. Alternatively, you can move the
highlighted bar to the desired choice and then press ENTER. Move the highlighted bar with the Arrow keys. The SPACE bar acts just like the Down Arrow.



The filePro Plus Main Menu

Inquire, Update, Add (IUA)
 

 
NOTE: Depending on your version of filePro, the menu examples may not look exactly the same as those pictured.
From the filePro Plus Main Menu, Select BInquire, Update, Add.
filePro will then prompt you for a filename. In our example, we will be using the "rolodex" file.
 
NOTE : You may see a different set of filenames on your screen, or only the filename "rolodex". It is unimportant how many files exist when you are choosing a
particular file; you need only to choose the one you will be working with.
 

 
You can choose a file in a variety of ways. You may use the arrow keys to move the highlighted bar to the desired selection and press ENTER . Or, you can type in a part of the
desired choice until the cursor "automatically" moves to it, then press ENTER . Choose rolodex.
At this point, filePro will ask you which screen number you wish to access.
 

 
For "Enter Screen Number", Select 1.
 
The following is the primary menu for locating and updating filePro files. It is called the INQUIRE, UPDATE, ADD menu.
 



 
Select 3 to add records.
 
We will enter several records. When you are done with each full screen, press ESC to save your work. filePro will automatically present you with a new blank record. This is because
you chose 3 (Add Records Mode). filePro thinks you want to keep adding records until you tell it that you want to stop. You do this by pressing BREAK instead of ESC.
 
§ The BREAK key on Windows systems is Control-C. (Hold down Ctrl and while holding it down, press C).
 
§ On a Unix system, the BREAK key is usually listed as DELETE, and the keyboard key so designated performs the BREAK function filePro needs. The BREAK key on Linux
usually defaults to Ctrl-C the same as Windows.
It is important that you do not prematurely press BREAK since your records will not be saved until pressing ESC. Do NOT confuse the DELETE key with "deleting" records from
your file. These are two completely different functions.
 

 
When you add the following sample records, your entries may go onto different record numbers than those shown in the pictures. This might happen if you press ESC too many
times, or make a mistake and start over. Not to worry, as this will not affect your work. (Record number is an internally assigned number that filePro uses in certain instances. Users
do not often need to use this number.)
 
Enter the following data, using the enter key to change between fields.
Robin Hakan
Penthouse
777 Lucky Way
Penthouse, NJ 07436-0777
Home: (201) 422-3333
Work: (201) 422-4444
Fax: (201) 422-5555
Company: The Valor Group
Email home: rhakan@home.com
Email work: rhakan@work.com
Notes: Good looking, filePro programmer likes brownies
 
If you need to return to a field, use the arrow keys. When done, it should resemble this:
 



 
Press ESC to record, and continue to add the next 2 records.
Remember, when you press ESC after entering your data, filePro will automatically bring you to the next blank record. This is normal. You did not lose anything. filePro merely stored
the previous record and is presenting you with a chance to add another record.
 
Fill in the next few records, pressing ESC when you complete each.
 
Mark Farmer
200 Willow Drive
Paterson NJ 07555
Home: 427-2928
Notes: carpenter, has truck, fathers name is Al
 
Sally Smith
44 Jones Blvd
Washington DC 22722-4444
Home: (800) 444 4444
Work: (800) 444 1234
Company: Rand Corporation
Email Home: sally@aol.com
Email Work: sallysmith@work.com
Notes: WIN95 wizard, filePro expert, likes brownies
 
After you fill in the final record, press ESC .
You should now be on a blank record.
 

 
Press CTRL-C (BREAK) to exit from Add Records Mode.
The prompts at the bottom of the screen will change to look like the following screen.
 

 



You can press X to return to the IUA, or "clerk", menu. From there we can look for the records we just added.



Index Selection
Often, when working with a database, you need to find a record quickly. Just as we keep our address books in alphabetical order, so that we can quickly look up an individual, if we
have filePro sort the records within a file, it can help us to find the needed file almost instantaneously. Moreover, filePro can sort all the records based on any fieldnot just names.
 
In many cases, you will not have to enter the complete data you are searching for with an index. Often, just filling in a few starting characters will get you very close to the desired
record. Keep in mind that this will not work with certain types of data, like dates. Dates must be entered exactly and there must be an exact match in the file for the search to be
successful and land you on a record.
From the IUA menu, Select 4 - Index Selection
 

 
 
Select "A - Last Name, First Name ".

 
Enter the letters Hak in the name_last field, and press ENTER twice (Do not put anything in name_first).
Pressing the F7 key in any blank field will take you to the last record of the index.

 
 
filePro finds the record immediately, and you are now also inside the file in Index Mode. This means you are viewing the first file that filePro found that your search. At this point,
you can use the arrow keys to move up and down through the records. You will notice that they are in alphabetical order.
 
To see the alphabetical nature of an index graphically, while standing on the Hakan record you just found, press the B key to "browse" the other records in the file. You will see the
"Hakan" record at the top of the screen and many records following your selection of "Hak".
 



 
Press either the Page Up key or the up arrow at this point to see records that come before "Hak" (alphabetically).
 

 
This functionality is maintained throughout all indexes. Those indexes built on character type data, like names and companies, will always organize the file alphabetically. Indexes
built on numerical data will organize the file in ascending order from lowest to highest numbers. Indexes built on date data will organize the file chronologically from lowest to
highest dates.
 
Try the Company index, by pressing X to get back to the "clerk" menu. Then select 4 (Index Selection) and then:
 
Select B - Company.

 
Try just one letter. How about r?
 

 
You can see that you have come to the first "r" record in the file. This time the file is being searched by the Company index, not the Last Name index.
 



 
In the screen above, note the label Index Mode.  If this label is not desired when in Index Selection mode, use the -DM to suppress this label.  Version 6.0.02
If you press B for Browse at this point, you will see that you are in the file alphabetically by Company. Note that the record with NO company comes before the "r" in Rand
Corporation. Blanks come before any characters in an index. In fact, to get to the first record in any index, enter a blank as the search criteria. This guarantees that you will see the
first record in the index. If there are no blank records, you will see the first non-blank record, and progress from there .
 



Defining Browse Formats
Often times, when looking in the browse format, the information you need is not shown. For example, currently, our rolodex file does not show us the individuals  phone numbers.
While on a browse view of records, you can change the "format" of what you are seeing in order to view any fields contained in each record. To change the browse fields, use the
(F) ormat key.
 
While in browse mode, Press F.
 

The prompts change, and you can now adjust the format by (U) pdating it.
 
Press U.
You are now in update mode, and can move throughout the screen using the arrow keys or the Tab key. filePro update screens all function in overtype mode, meaning that if you try
to add a space in front of a word by pressing the space bar, you will not insert a space, but instead wipe out what information was in the space in front of the cursor. You can use
the insert key to add spaces, and the delete key to remove them.
 

 
Add the field for phone number in the same manner the other fields were done. Use * and the field number you want to see on the browse screen. In this case, we will use field 9
(phone_business)
 

 
To see the fields the new format will show, press ESC to save your work, and then press X to redisplay the records. The phone number is now showing for each record.

 



 
Go back to the format screen by pressing F .
 
You can also add a "heading" for the fields displayed.
Do this by pressing U and adding the following. While you are at it, you can make browses easier to read by pushing certain fields together (like first and last names). To do this,
use the < operator instead of the * operator on the desired fields. This pushes the specified field one space away from the field to its left. (The < is called the "push left" operator.)
 
Enter the following and press ESC to save the screen.
 

 
Press X to see the records again. Your work will look like this:
 

 
If this is a browse format you will be using often, you can SAVE it for future use. You will not have to design it all over again. Do this by pressing F to return to the format screen.
 
Press S

 
Press ENTER at the [NEW] prompt, and give your browse format a name.
 
To retrieve a previously saved browse format, press L (for Load) and select the one you want. You may have an unlimited number of browse formats. (Limited by your disk space
that is.)
After you save this format, if you press L at this point, you will only see one name displayed. This is because there have been no other browse formats for this file yet saved. If you
want a particular browse format to come up as soon as you enter a file, give it the name "default". The format named "default" is the format first chosen by filePro to display when
you enter IUA (Inquire, Update & Add). It will remain the browse format until you change it.
 



 
Leave the browse format section and return to the clerk menu.
 
NOTE: ver. 5.8.03
Password protection of .sel and .brw formats 
By setting the environment variable PFBRWFORMPWD to ON, one can then select certain .brw formats and assign a password to protect against unauthorized changing and saving of the .brw format.
Without knowing the password assigned to the .brw format and PFBRWFORMPWD set to OFF (default if not set) you will not be able to modify and save.



Scanning For Records
Scanning, an alternative method of finding records, matches each record to entered criteria. This method for finding records is called "scanning", because each record is tested (or
scanned) to see if the values in its fields match those criteria designated by the user. The selection criteria is entered as a "query" in either short or extended format.
If a record matches your criteria, it is brought to the screen. Successive matches can be seen from that point by pressing ENTER to go to the next matching record, or by pressing B
to browse the next 18 records which match your criteria (if there are that many).
 
Note:  In version 6.0.00 additional comparisons were added for associated fields.   The full list of comparisons are:
 
  LT - Less than
  LE - Less than or equal
  EQ - Equal to
  NE - Not equal to
  GE - Greater than or equal
  GT - Greater than
  CO - Contains
  LTF - Less than field
  LEF - Less than or equal field
  EQF - Equal to field
  NEF - Not equal to field
  GEF - Greater than or equal field
  GTF - Greater than field
  COF - Contains field
  AEQ - Associated field, all equal
  ANE - Associated field, all not equal
  ACO - Associated field, all contain
 

Short Selection
Select 2 - Scan For Records.

 
 
Select 1 - Short Selection.

 
 
filePro tests matching criteria using the de-facto standards, "equal to", "not equal to", "greater than or equal to", "greater than", "less than or equal to", "less than". It also has a
valuable addition to these in "contains". Besides these criteria matching operators, it also adds a unique tool to speed building queries "range". All of these operators are spelled as
closely as possible to what they mean, i.e., EQ means "equal to", GE means "greater than or equal to", CO means "contains" and RG means "range". The following screens show
how to use these operators.
 
Enter the following query and press ENTER at the "Enter Connective (and/or)" prompt.
 



This query will search the city field of every record for the word pat.
The first record that matches the scan criteria is displayed.
 

 
To see all records that match your criteria, press B for browse.
 

 
Without moving the highlighted bar, press ENTER to take you back to the full screen view of the record on which you are standing (Mark Farmer). You will notice a new sign in the
bottom right corner of the screen. It says, "ENTER for Next Match" (The little left-pointing arrow means ENTER). This is very important! It means that you must press ENTER, not
the Down Arrow to go to the next matching record in your scan. Once you press ENTER to move to the next matching record, you can NOT press the Up Arrow to go back to the
record on which you were standing. Scanning, unlike indexing, does not move the records around to organize them. It would be as if you had an address book in which you
randomly wrote names and numbers. If at some point, you went through the book and highlighted all of the local phone numbers, you could flip through and find them quickly, but
the records themselves would not be ordered. That is what filePro does when it performs a scan - it shows you the highlighted records in a list, but if you use the arrows to navigate,
it moves you through the other records. This will be shown more clearly later in this section.
 

Note the sign on the bottom right of the screen.
 
Press ENTER now, and you will be brought to the next matching record in full screen view.
 



 
Press ENTER again to see the next match. Since there are no more matching records, you will see the following screen:
 

 
Try another scan by pressing 1 - Short Selection.
 
Enter this query.

 
The criteria GE means that records must contain data that is "greater than OR equal to" the data designated in the query. If the data in the field being used is all numbers, then this
means a match on numbers that are higher than or equal to the supplied number. Even though field 7 is a ZIP code made up of 5 characters, they will all be numbers and filePro will
compare the first three characters of each record's field 7 against our test criteria... in ascending order through all 5 characters of the field. In other words, 07900 and 08000 and 09999
and 99999 will all be "greater than or equal to" the "079" we have entered. Zip codes of "07899" and lower will be excluded.
 

 
If you perform the query above by pressing ENTER , you will be brought to the first record that matches.
 
Press B to browse the results, and you will see the following screen. However, no matter which browse format you are using, there is no ZIP code on it! But, you do know how to
add a field to the browse format. Do that before looking at any of these records.
 
Press F and update the screen to add field 7 to the browse format line. Put the Zip code field to the right of the other fields on your screen and enter the header "Zip Code".
 



When you are done adjusting the browse to include the Zip code field, press X again to view the records found by your scan. The screen should look something like this.
 

 
IMPORTANT : Notice that the correct records have been retrieved. They are all greater than or equal to 079, but they are not in sorted order! The records may not be in any special
order. As stated earlier, scan normally does not use indexes to do its work. Scan merely stops at every record (in record number order) and tests to see if the criteria for the query is
met. If so, it selects the record, if not it goes to the next record and tests it. You will see only records that match your query, but they are not necessarily in any particular order. Since
scan stops on every record in the file to do its testing, it is VERY slow compared to using an index to find a particular match. Using an index to find the first 079 in a large file of
records causes filePro to jump over all the records lower than 079 (as this indexed field data is in ascending numerical order) and stop immediately at the first one that is equal to or
greater than the criteria (079). All you need to remember now is how scanning and indexing are different. It will help you in future use of filePro.
 
One of the additions to de-facto queries implemented by filePro is the RG (range) function. This operator will automatically prompt you for the lowest match that you are looking for,
and then prompt you for the highest match you want. It speeds up the query entry considerably.
 
Enter the following query. When you choose RG, it will automatically ask you for the lowest and highest limits for the zip code.
 

 
After filePro brings you to the first matching record, press B to see the full browsed list of matches shown below.
 

 
Sometimes a query will bring up more than one screen full of records. In these cases, you can continue to use browse and the Page Up , Page Down keys to view the records that
match the query. While on the browse screen you can also use the Up and Down arrows to view the retrieved records, but remember, if you are on a full screen, you can only go
"forward" in the scan by pressing ENTER . If you DO press an UP or DOWN arrow during a scan selection from a full screen, you may see a record that DOES NOT match your
criteria. To see this VERY IMPORTANT concept about scanning graphically, do the following:
 
Enter a query selecting by Cities that are not equal to Pat. It should look like this:
 



 
When the first matching record is retrieved, press B to browse the records. You can move the highlighted bar with the arrow keys to any record in the selection and you will never
come to a record that does not match the criteria. However, put your highlighted bar on the following record (Hakan), then press ENTER to go to the full screen view of this record.
 

 
Full Screen View:

Press ENTER to see the next record of Smith.
 
While on the full screen view of Smith(record #2), press ENTER and you will be brought to the next match, Hoben (record #6).
 

 
Everything is still working as you would expect, you are only seeing records within the desired selection set.
 
However, now press the Up arrow and you will see that you are brought to Hall (record #5) and this record does NOT match the criteria. The city is EQUAL TO Paterson and we
asked for city NOT EQUAL TO Paterson.
 



So remember to use the ENTER key to find the next match when on a full screen view.
 
CO Operator
The CO operator asks whether the specified field contains the supplied criteria anywhere within it. For example, does an address field contain the word "Avenue"? An address of
"23 First Avenue" would match this criteria. Imagine that you have forgotten someone's phone number. All you can remember is that it had "4444" in it.
Enter this query, using the CO "contains" operator.
 

 
You should see two records for this selection as follows.
 

 
You may have noticed that certain fields on the rolodex screen have a p) in front of them. This marks them as associated files. Associated fields are unique to filePro and they are a
very powerful feature of the program. They allow you to perform a query on a group of fields at one time without having to specify each field individually. If the desired criteria is
found in any of the fields within the associated field group, the record will be selected for inclusion in the selection set.
 
To put an associated field group in a query, use its associated field "name". Since the "rolodex" file has an associated field group defined as p), this is what you use on the selection
set screen.
 
Enter the following criteria:

 
The following records match the criteria.



 

 
NOTE: We changed the browse format to reflect two phone numbers.
 
Testing for one piece of criteria is fine, but not very powerful. How can we limit or expand the criteria searching capability? This is where the "Connective..." prompt we have been
skipping comes in. With this, you can test two different criteria at once. We can use this connective to specify that both criteria have to be true (the first AND the second), or that
only one OR the other has to be true in order for a record to be retrieved.
 
Assume you have made brownies and want to deliver them by hand to only your local friends who like them. By performing the following search, only records for people in town
will come up.
 
Enter a query that selects records containing the word brownie in either of the note fields. At the "Connective..." prompt, type the word "and". Now enter a query that selects
records containing the word wash in the city field. It should look like this:
 

 
The only records to match will be the ones that "contain" the word brownies in either field 12 or 13 "AND" the city is "EQUAL" to Washington .
 
To see the connective feature on Short Selection work as an "OR", lets try the following criteria.
Enter a query that selects records in which the company name is not empty OR the email is not empty. In other words you want filePro to pick out the records that contain any
company name or any email information.
 
While this may seem difficult at first, try to think of how you can represent blank fields. As you can see below, it is still just simple criteria.
 

 
The above selection will bring up all records where the company field OR the email field has something in it. (Not equal to "blank" means there is "something... anything besides
space" in the field.
 



 

Extended Selection
 
The "Connective..." prompt on Short Selection is sometimes not enough for complicated queries. Besides, you may want to save a query for later use (so you don't have to type it all
in again). Extended Selection addresses both needs. Queries can be made up of many, many connectives ( and , or and even not ). In fact, if one screen full of connectives is not
enough, you can attach up to five screens together!
 

Enter the Extended Selection screen.
 
From the Scan for Records menu, Select 2 - Extended Selection.
 

 
The same query we did on Short Selection for locals who like brownies would be done as follows using the extended format screen:
 

 
The extended selection screen has a set of rules for how lines work with each other. The most important rule is that each line automatically defaults to the and connective. In other
words, each line of the screen has to be true for a record to be considered a match. This is always true, until you learn how to override this default.
 
There are several ways to make the lines become OR conditions instead of the usual ANDs. The simplest of these is to "group" the lines you want to be OR conditions in the same
group. A group can be any "name", i.e., "a", "abc", "fred", "group1", etc.
 
By naming the two lines from the previous selection set as "a", they will not both have to be true in order for a record to match this query. Now, either one OR the other being true
means the record matches, and we want to select it.
 



 
If you try the selection set above, it will select two records. Each record has at least one of the criteria met.



IUA Hints

Some Hints For Using IUA
 
The Duplicate Key
While you are entering data into the fields of a record in IUA there is a shortcut to save you lots of time. It is called the "duplicate" key. In Windows systems, this key is F5 . It
operates as follows. F5 will fill the field your cursor is standing in with the contents of the same field from the last "SAVED" record. Therefore, if you are entering many records with
similar data (for example the city is the same on many records), press [F5] when you reach the city field on each record, and filePro will keep filling in this field for you automatically.
 
Insert Mode - Toggle
In version 5.0 and later, you can toggle between "Insert" and "Overwrite" modes by pressing [ Alt ] [ F9 ] or the equivalent keys in *NIX which is typically [ Ctrl ] [ Z ]. Refer to the
terminal guide for your specific terminal if the aforementioned keys do not work.
 
Last Record
If you want to quickly get to the last record, while using in the Index Selection in "Inquire/Update/Add", press F7 when prompted for the index value. This will take you to the last
record for the selected index.
 
Today's Date
If your cursor is in a date field and you want to enter today's date, all you have to do is put a forward slash ( / ) as the first character in the field and press ENTER . Today's date will
fill in automatically. The same is true for time fields, except that to insert the current time into a time field, you must put a colon ( : ) as the first character.
 
Key Table & User Count
On *NIX systems, try pressing [ ESC ] [ ? ] to display the "Key Table" for your system. [ Alt ] [ F10 ] will display the "Key Table" on Windows systems.  The registered License #
and session count for the product you are in will display at the bottom.  The session count may be different depending on the program and how many sessions you license that
program for..



Creating A File
Select 1 - Define Files.

NOTE : You may see a different set of filenames on your screen, or only one filename "rolodex" (used in the Primer Guide). It is unimportant how many files already exist when you
are creating a new filePro file. You may ignore any other names you see and choose [NEW] .

 
Enter vidcust as shown below.

Please keep the name "vidcust". (Do not change names in these steps, as they will be used throughout all of the examples.) Press ENTER to save this screen entry.
You will see the following screen:

Select 1 - filePro.
You will see a prompt for entering a creation password for this file. Do NOT do this. Press ENTER to continue without creating a password.
 



 
You will see the following screen:

Enter the following information:

When you are done press ESC to save your work.
The following prompts will appear . Press X to finish the file design.

A popup "options" screen will appear. Put a Y in the designated field. (Create a screen 0)



The file "vidcust" is now created and would be ready for use, except that there is an edit type we designated which does not exist. This "user edit" was called "custype" and we
must define it now.



Defining a User Edit
At the main menu, select 4 - Define Edits.

 
Choose the file "vidcust".

Answer Y to the prompt "Is this a new edit dictionary?" It is new, because we haven't designed any user edits for the file "vidcust" yet.
The following screen appears:

We are going to design a special edit or "filter" for data entry. Any field that uses this edit type will only allow the operator to enter an "R", "S" or "F" in the field. These are
abbreviations for "Regular", "Senior Citizen" and "Family". We can keep control over the types of accounts we have in the video store using this edit to make sure we have no Z or
Q accounts, or anything other than R, S or F accounts.

Edits work by following a series of rules. The rules we need for our customer type edit are simple. We only want to allow R, S or F in the field. While we are at it, the edit builder
allows us to specify a "prompt" that will come up on the bottom of the screen each time the user's cursor goes into the customer account type field. This is also shown above.
Prompts are put in apostrophes before the edit rules.
To see the rules for designing edits press the HELP key F10 while entering this data.



You will see in the help screen that the "~" tilde causes the edit to make all entries UPPER CASE, and the pipe "|" character separates "allowable" entries. Users can only enter the
three designated characters e.g. "R", "S", "F" or leave the field blank.
Note: A BLANK is always acceptable in any edit as a default. If you do not want to allow a blank, you must program this in a processing table.
Once you are done entering the edit name and its rules, press ESC to save your work.
You can test the "custype" edit by pressing T at the edit design screen. This will popup the following screen.

You must enter the name of the edit to test and the length for which you will be testing. Once this is done, you will enter sample answers that a user might enter in the field. The edit
checker will tell you which entries are valid and which entries will fail the edit. Experiment with some different letters and numbers to see how this works.
Finally, type "S" for "Senior Citizen" to see that it passes the edit test.

When you are done experimenting, press Ctrl & C then press X to return to the main menu.
Again, we could immediately go and enter data into this file, but let's not. Instead, let's look at the default screen that filePro built for us.



Defining a Screen
Select 2 - Define Screens.

Choose "vidcust".

Earlier in this section when we defined our file, a "default" screen 0 was created. We can use this screen as it is, or modify it to suit our tastes. (We could also ignore it, or delete it
and build any number of other screens.)
Choose screen 0.

You will see the following screen:

Press U to update this screen and modify it to look like the following screen:



Notice that we have omitted fields 10 and 13. The fields with asterisks ( * ) will be available to the user. In other words, they can put their cursor "into" these fields. The fields with
exclamation points ( ! ) are called "protected" fields and they will not allow the user to put his cursor in them. These are fields that will be calculated or displayed by your program.
The ( ! ) protects the field from being changed by the user. Another symbol you may want to use is the percent sign ( % ) . This symbol designates that the corresponding field
MUST be filled. If the field does not contain data and the user tries to SAVE the record, a warning will be given and the cursor will be returned to this field automatically.
filePro builds our default screen:0 by filling in as many of the fields as it can fit onto the screen. It does this sequentially starting from field 1. It will continue putting fields on the
screen in multiple columns until it runs out of space on the screen. It will stop at the first field that causes it to reach the right side of the screen or wrap around it. When it built the
"vidcust" default screen, it put the two fields we named "r" on this screen. These fields wont be used at this time. The "r" just stands for "reserved". This is not a filePro term, just a
convention. Some programmers label these fields as "spare". Reserved fields are sometimes used just to separate different sections of a file's layout as we did here. They have no
place on any screen so we removed them.
When your screen looks like the one shown above, press F5 to see how it will look when it is used in Inquire, Update and Add. This is called "resolving the fields". The markers are
called the "end of field markers" and they show graphically where the data for each field will end.

Press ENTER to stop the "resolve fields" display and then press ESC to save your work. Return to the main menu by pressing X.
 
New in Version 5.8.02 and higher
To implement a scrolling field, place a field as you normally do, but then place a backslash ("\") at the location you want to truncate the visible part of the field.  Then, in *clerk, the
field will only display as wide as the place you specified with the "\".  However, when you are in the field, you can scroll horizontally.  The EOF (end of field) designator will now
also show a > indicating additional characters for a field when viewing a record.  DO NOT attempt to scroll any field less than 3 characters.
 
New in Version 5.8.03 and higher
In dscreen, pressing the F8 – Extended Functions and the C – Change cusor path you can now press F5 to view the screen, then press ENTER to return to the Cusor path setup.

 
New in Version 6.0.00 and higher
In dscreen on NEW screens, pressing the F8, and C - Change cursor path, you now have the option to select an automatic cursor path.

Vertical selection
Horizontal selection
Natural Order

Note: Both horizontal and vertical will pick up dummy vars. "Natural order" will not.



Defining an Index
Select C - Index Maintenance.

We need to build some indexes to use with the "vidcust" file. Indexes will allow us to rapidly find any record in our "vidcust" file based on sort definition.
Choose "vidcust".

We will be using Automatic Indexes in the Video Store application. This means that they "automatically" update themselves every time you add, delete or modify a record. If an
automatic index is changed by one of these actions, it will rebuild itself accordingly. (The opposite of this, Demand Indexes, will be discussed later.)
Select 1 - Automatic Index.

Choose A.

The following screen will appear:



Enter the following fields and comment for this index:

Press ESC to record. Return to the main menu.



Setting the File Name
We have been doing a bit of design work with the "vidcust" file and we will be doing a lot more. Since it is time consuming and cumbersome to keep typing in the filename first for
each operation, we can specify the "vidcust" name with the Set/Change File Name feature. This tells filePro that we want to skip the file name prompt for every operation on the main
menu and use our designated choice as the default file name. It will save a good deal of time so lets do that now.
Select E - Set/Change File Name.

Enter the name "vidcust" and press ENTER.

Notice that the file name "vidcust" now appears at the top of the main menu as the Current file name. We will not be bothered by this prompt again, until we set/change the filename
to something else or clear it.



Defining an Output Format
We will now design an output format for this file. This will let us send the contents of this file to the printer.
Select 3 - Define Output.

(See, the pesky "file name" prompt did NOT show up! It knows we are working in the "vidcust" file.)
Choose [NEW].

Enter the following.

filePro allows you to define several different kinds of output. We will be building a simple "report" type output. The records will be shown several per page. Reports can carry totals
and subtotals of records on the report. (Other kinds of output are "forms" and "labels". The "form" type usually shows one record per page and does not provide for subtotaling
and totaling of the records. The "label" type prints records in label format, in multiple columns if desired.)
Select 1 - A report.

The following screen appears:



Change the default settings as follows: (You can press F6 to see a list of printers and printer types.)
 
NOTE:  version 5.8.03  When browsing printers in Options for output formats, filePro now shows only valid printers. Pressing F6

again will display the complete printer and printer type list as it did in previous version. F6 will toggle
between the two lists.
 
Form filtering version 5.8.02

Press ESC to save your work.
The following screen appears blank. Fill it in as shown:

Press ESC to save your work on this screen.
The following screen appears:

Enter the following text and fields:



We do not have enough room on this default report format to put the things we want, so it is necessary to change the shape of the format somewhat. We will "grow" it a little.
Press the F8 key.

From this options popup screen, choose G.
This will turn ON the "grow mode". Note this fact is displayed by the word GROW in reverse video at the bottom right corner of the screen.

While in grow mode, the F3 and F4 keys work to add lines to, or remove lines from the form. We can literally gain lines of space in any section.
Make sure your cursor is in the Heading/Title Lines section and press F3 key two times. This will add two lines. The screen should look as follows:

Turn Off grow mode by pressing F8 and choosing G again. This option is a toggle. It is either ON or OFF.
Be careful, when not in grow mode, the F3 and F4 keys will add and remove BLANK lines. Any text or fields on the lines will move down or up accordingly. You can easily push
whole lines of text and fields off the bottom of the format.
While you are in update mode on an output format, you can view the file layout by pressing F6.
Press F6.



Use this map layout listing frequently to refresh your memory as to field names, numbers and lengths. (Press F5 while on this view to see lengths.)
Press Return and enter the following text and fields as shown:

Draw a line on this format by using the "box" functions. Put your cursor at position 6,2 (note the cursor position is shown on the bottom left corner of the screen.) This will initiate
the box functions and show you a cross-bar symbol where your cursor was placed.
The screen should look like this.

To draw the line, position your cursor at 6,77 (the cross-bar will not move, but the cursor will) and press D to draw the line.
The screen will look like this:

Just as in Define Screens, filePro lets you "resolve the fields" to see how they will actually fit on the format. Use the F8 options popup to select this function.
Press F8 for the options screen, and then press R to resolve the fields on this output format.



The screen should look like this:

Remember that you can use the F6 key to see the fields and from there the F5 key to see the lengths and edits of the fields. Use a combination of F6/F5 and F8/R to line up any
output format exactly the way you want it.
Press X to exit to resume editing, and when done editing, press ESC to save your report.
Press X to exit back to the filePro Main Menu.



Defining A Processing Table
Let's put some simple processing into this application. Processing is where filePro allows you to manipulate the fields, records and files of your databases. This work is done on
"processing tables".
Select 5 - Define Processing.

We will add some processing that will happen when the user is "inputting" data, or modifying it. The processing table usually associated with the Inquire, Update, & Add section of
filePro is called the "input" table.
Select 2 - Input Processing.

The following blank processing table appears.

filePro bases its entire processing table strategy on the simplest computing structure. If something is true, then do this. That's it, that is all of it. Believe it or not, just about anything
you can imagine doing in a computer can be done using this logic. Each tiny instruction is either true or not, and if it is, the action gets done. If it isn't true, it doesn't get done. By
stringing these small " if-then" operations together, highly complex programs can be built.
There are several types of processing in filePro, two are shown below and used on this table. The first is INPUT processing. This is the code from line 1 to line 3 in the table below.
This INPUT processing gets executed when the user stores or SAVES the data on records that are being added or modified. The user will be asked if the screen being displayed
looks correct, if it does, the process is over. If the user indicates that he sees something wrong, the process puts him back on the screen and lets him make adjustments. When next
he SAVES the screen, the question is asked again. Presumably, sooner or later, he will answer that it looks fine and the process will end.
The second kind of processing on this table (and much more useful) is "trigger" processing. This type of processing only happens when the indicated trigger is activated. On the
following table the triggers are whenever the user's cursor leaves field 14 and field 15. At this point, filePro will make the Balance_Due field equal to the Charges field minus the
Payments field. It does this by executing a subroutine called "totals" and then returning to display the fact that it did this and is ending. These little trigger processes can become
much more elaborate, but the essentials of what can be done are shown here. When you actually try the program in a few minutes, you will see more graphically how this processing
table actually works.
Later, the actual syntax on this table will be discussed and explained. For now, just type it in.
Enter the following:



When you are done, press ESC to save your work.
The following screen will appear. Enter Y to check the accuracy of your work. If it passes the syntax check, it is likely that you entered everything correctly.

A hardcopy prompt appears. It would be a good idea to hardcopy this table, so you can review it later when you try the application. The hardcopy prompt shows (Y/S/N). The S
stands for short. A table will be produced that does not have all the dashed lines that separate processing elements. It is your choice which to print.
A prompt appears asking if you want a Cross Reference Hardcopy. Do not print this now, we will discuss it later.
 
Version 6.0.00 enhancements
Saving a section of code under F8 options will now prompt for confirmation if prc already exists.
An alternate auto process can now be attached to a process.  This process is used when creating the .tok files and syntax checking.
*clerk and *report will use this alternate process if there is no -y flag on command line.
 



Using IUA To Test File Design
It's time to try all this hard work out!
Select B - Inquire, Update, Add.

Select 0.

Select 3 - Add Records.

You will see a blank data entry screen as follows:

Enter the following data:



When you are done, press ESC to save the screen.
You will be prompted with the following question. If you answer (N) , your cursor will be put back on the screen so you can fix whatever is wrong. Then press ESC again to save
your work. Eventually, you should be able to answer Y .

At each new blank screen, enter the next three records in the same manner as the first.
Enter the following data:

Press ESC to save the screen.
Enter the following data:

Press ESC to save the screen.
Enter the following data:



Press ESC to save the screen.
At the next blank record, press Control-C to stop entering records. Press X twice to back out of IUA to the main menu.



Requesting an Output Format
Select D - Request Output.

Choose BALDUE.

Press ENTER at the index prompt (for No Index).

Press ESC at the Sort screen.

Enter N at the Select All Records prompt.



The following blank Extended Selection screen comes up. Press U to update it.

Enter the following criteria:

Press ESC to save this screen.
Since we will be using this selection set again, let's save it now and give it a name we can call upon later.
Press S and then choose [NEW]:

Enter the name "baldue".



Once this selection set is saved, press ENTER to actually select the records for this output.
NOTE :  As of Version 6.0 and higher, if an extended selection is set, all functions of dclerk will honor the selection criteria until the extended selection is manually cleared. (Option 3)
The following screen appears: (Your machine may be too fast to allow you to see this screen.)

The following report should print on your printer. (The default printer for this guide has been specified as PRN. This is most likely the printer attached to LPT1. If this conventional
setup is not so on your system, you will have to arrange things so that this tutorial will work. Later on, redirecting output and printer redirection is discussed.)



Defining a User Menu
Select 6 - Define User Menus.

Choose [NEW ]:

Enter the name "video".

Enter the following data:

Press ESC to save this screen.
The following blank menu will appear:



This menu will allow you to run various items in the tutorial. We will update it periodically.
On filePro menus, filePro can call its own programs with a shortened PATH. Do this by placing /fp/ in front of the filePro program you want to run, i.e., /fp/dclerk or /fp/dreport. After
this put the rest of the action line that you want to execute should this choice on the menu be selected.
For choice 1, we will run IUA (dclerk) on the file "vidcust" using screen 0 (-s0) and when the action runs we want to display a heading of "Customer File" (-h "Customer File").
When the user chooses 1, this is exactly what will be run just as if they had typed it at the command line.
For choice 2, we will run Request Output (dreport) on the file "vidcust" using the output format "baldue" (-f baldue), against the records in selection set "baldue" (-s baldue), using
the Unlock option (-u). Unlock is applicable on multi-user systems only (Unix & Network versions). It tells filePro to run this report even if there are other people using this filePro
file. In other words, people can be using IUA on this file and the report will still run. If on the other hand, the -u is neglected, the report can only run when no one else is accessing
this file. IMPORTANT : The -u option does not bypass "record locking". If someone is in Update Mode on any of the records selected for this report, or has one of these records
locked with another process of any kind, our report will stop and wait for the record to be unlocked when it hits that record.
Enter the following data:

Press ESC to save this screen.
You will see a "Change Menu Password" prompt . Enter N . Do not do this at this time.
You will see a "Hardcopy Menu" prompt. This is your choice. Enter a Y or N , as you like.



Running a User Menu
Select G - Run A User Menu.

Choose "video".

Try the choices to make sure they work.

Congratulations! You have successfully completed this section.



Obtaining a Unique Number

System Generated Numbers

Up until now, we have been adding the account number for each new record ourselves. And, just as our customers are unique, so must their account numbers be. As you
might imagine, having two or more customers with the same account number would make things pretty complicated. When we manually enter the account number, we greatly
increase the chances of this happening. So then, what we need is a way to automatically assign a unique number to each record. (This is often a basic database requirement
for many types of records.) "filePro" can provide this function in a number of ways. The following procedures show a most reliable and flexible method.

First, the field on the screen has to be "protected". This way, the user can not modify an account number by accident. The computer will generate the next highest unique
number and once generated, it will stay with this customer record forever.

From the main menu, go into Define Screens. (Incidentally, from this point forward, it will be assumed that you will execute all filePro design operations from the main menu. It
will not be mentioned again in the instructions.)

Update and modify Screen 0 to look like this:

Once the account code has been protected with an "!" , you can return to the main menu.

The next step in obtaining a unique number is defining a file that will hold this number. Such a control file can hold many unique numbers and other important information
about the application we are designing. This will be a file that currently has only one field in it. Also, this file will only have one record, specifically record #1. The last
assigned account number will be stored on record #1 of this file in field #1. Then, each time we add a new account, the program will do a lookup to this particular file and
record and retrieve the number found there. It will increment this number by 1, thereby giving our new account its own unique number. This system will work until there are
more than 999,999 account code's required. Not likely for our first Video Store. (Maybe once we're a nationwide chain, we can think about raising this field to a 7 digit
number!)

Go into Define Files and create the following regular filePro file. It is called "vidctrl" because it will hold our control numbers and information.

Enter the following data:

When you are done, press ESC to save your work.

Press X to finish the file design. The options screen will appear.

Enter the following:

Next, go into Define Processing for the file "vidcust".



Select INPUT processing.

Make sure your cursor is somewhere in the first element and press F3 to push down all the current processing. This leaves you with a new blank element number 1.

We are only going to be getting a new account code for records that do not have one yet. If the account code field is already filled, the subroutine which gets the next
unique number will not be run. The "if" condition on line 1 of this code assures this.

Enter the following:

We will now add the subroutine that does the actual work. It is based on doing a lookup to the control file and retrieving the next number.

Enter the following and leave your cursor in element 9:

To define the lookup, press F5 while your cursor is on line 9. The lookup editor will popup. Enter the name of the file we will be looking up, "vidctrl".

Enter an "r" for a record number lookup. (We are going to be looking up to record number 1.)

Enter "aa" as the field in "vidcust" that contains the record number. (We will fill the dummy field "aa" with a 1 so that we can lookup to this particular record.

It is also VERY IMPORTANT to put a "Y" in the "Protect Record in Lookup File?" prompt. This is only necessary on multi-user systems, but it is VERY necessary. It tells
filePro not to let anyone else retrieve a unique number out of this record at the same time we are doing so. It will prevent duplicate account codes from being issued.
Protecting the record means "locking the record" so no other process can read it while we have it locked.



Enter the data as shown:

If Lookup Fails: In other words if record number 1 in the "vidctrl" file can not be opened, what should filePro do? We will choose to have filePro do nothing in this case. If
the lookup fails, we will take our own action to explain the situation to the user. (If we had chosen "E" - Report an Error, filePro would put up a standard "lookup failed"
message. If we had chosen "B" - Blank the Field, filePro would have blanked our lookup retrieval field. Neither are very valuable options, and quite generally, you should
always handle lookup errors yourself.)

To complete the lookup, answer N to the "Create Browse Lookup" prompt.

When you are automatically returned to the processing table, you will see that filePro has created a lookup line for you that looks like this.

Finish the code for this subroutine by adding the final three lines.

Line 10 handles the error if the record can not be found. Line 11 retrieves the value of field 1 in the "vidctrl" file and assigns it to the Account_code field in our current file
("vidcust"). Then, line 11 increments the value of field 1 in the "vidctrl" file. The WRITE command on this line ensures that the file will be updated on the disk as soon as the
O/S can do it. Line 12 returns the processing back to the place it was called from on Line 1 (gosub getnum)..

Press ESC to save your work on this processing table.

You will see a prompt for "Check Syntax? (Y/N)". Enter Y , and fix any problems found by the syntax check.

Hardcopy the processing if you like when prompted. (Still, cross reference hardcopy is optional as well.)



Now we must go into the "vidctrl" file through IUA and tell our program which unique number (Account_code) we want to start with.
Go into Inquire, Update, Add (IUA).

Choose "vidctrl"

Choose Screen.0

Select 3 - Add Records.

We have manually assigned 4 account numbers already, the highest of which was 104. We can start the next account number at 105.

Enter the following data:

Press ESC to save this record.

Since you selected Add Records Mode, filePro will present you with another blank record and wait for you to fill it. Do not enter anything on this record. Press Control-C to
stop adding records.



Press X twice to return to the main menu.

We are ready to try the new process. We can use the menu we designed earlier to do this.
Select G - Run A User Menu.

Choose "video".

The "Video Store Main Menu" will appear.
 
Select 1 - Inquire, Update, Add - Customer.

Select 3 - Add Records.



Add the following data:

Press ESC to save your work.

 

When the "blank" screen comes up, BREAK out with Control-C . Then go back to record #5 (pressing the UP Arrow should work to do this.)

You will see that the next Account_code of 105 has been properly added automatically by the "getnum" subroutine.

Leave this record and bring up record number 3.

Press U to update this record, but don't change anything.

Press ESC after you enter the Update Mode. You will see that the Account_code does NOT get changed. This is exactly the operation we want. New accounts (those with
no Account_code) get new numbers, old accounts (those already having a code) stay as they are.



Tracking Receipts By Customer Account#

We are now going to define another file for the application. We need a file to track video rentals and the receipt of money for those rentals.

Go into Define Files , choose [NEW ].

Enter the following name "vidrec".

Press Enter to continue. Do not give this file a Creation Password.

Enter the following data:

When you are done entering this data, press the NxtPage key and put your cursor on field 17.

We are going to build 4 lines of detail for each record in this file. Since these lines are comprised of the same fields duplicated 4 times, the following procedure shows how to
use the Block Function inside Define Files to quickly create duplicate fields.

Enter the following data, then return your cursor to line 17.

Press F8 to bring up the Block Functions dialog box. There is currently only 1 block function, it is duplicate fields.

Enter the following data:



Press ESC to record your work.

The system will build the desired duplicate fields as shown.

We will build the other parts of these 4 lines in the same manner.

Enter the following data on line 21. Put your cursor back on line 21 when you are done.

Press F8 to bring up the Duplicate Fields dialog box again.

The box should be ready to go as is. Make sure it looks like the following.

Press ESC when you are done.

filePro adds the requested fields.

Follow this same procedure to make 4 fields for "Charges". Enter the first field on line 25 and then duplicate it 3 times.

Your screen should look like this when you are done:



Press ESC to save your work.

Press X to finish the design of this file.

Enter the data as shown below:

Note that filePro will warn you that only the first 20 fields could fit on the default screen. This is okay, we are going to discuss this next.

Go to Define Screens for the file "vidrec".

 

Choose Screen.0

Press C to copy this screen to a different name.



Choose [NEW]

 
Enter the name 1.

 

Note that you will now be looking at, or standing "on", Screen 1.

There is no need to keep Screen 0 around anymore. We will delete it so it will not be accidentally chosen by our users.

To do this, press D . Select Screen 0 , and press ENTER to mark it with a star. Pressing ENTER will unmark it also, this is a toggle. Once you have marked it, press ESC to
actually delete it. You will be prompted for acknowledgment before the delete occurs.

We need to modify the screen to fit our needs. There are many functions inside filePro to help do this.

Press "U" for Update, put your cursor on line 1 of the screen and press F4 twice . This will pull up the lines of the screen to cover the default title and title graphic line.

Your screen should now look like this:



Here is how to access the Box Functions which aid in screen design.

Put your cursor on position 11,4 . (Position of cursor is shown at bottom left corner of the screen.), and press F7 .

A cross hair cursor will appear where your normal cursor used to be.

Now move your cursor to position 16,24 (the cross hair will not move). When your cursor is at 16,24 press M .

A box of "corner graphics" will be outlined from your starting position to your ending position. You can now move this area of the screen anywhere it will fit and press
ENTER . This will literally move this section of the screen to the new position.

Use the Arrow keys to move this section of the screen to position 14,51 . (That is, put the top left corner of the box on position 14,51.)

When you're there, press ENTER .

The move operation will leave your screen looking like this.



There are several options for the Box Functions. A useful one is "blanking an area". To do this, select box functions by putting your cursor on position 1,33 , then pressing
F7 . The cross hair will appear.

While the cross hair is visible, put your cursor at 5,51 and then press B .

That area of the screen will be blanked (cleared).

Using these box functions and any other trick at your command, make your Screen 1 look like the screen shown below. You will need to use Reverse Video for the line item
headings and for the protected field indicator of field 15. Do this with Alt-F1 (to turn it on) and Alt-F8 to turn it off. ( HINT : The straight line is nothing but a very skinny
box! Use the D option to draw this line.)

When you are done, press ESC to save your work.

Since we have modified the screen from the way it looked when we first copied it, we must rebuild the cursor path. This is the roadmap that indicates how we want the cursor
to move through these fields on the users screen while they are in IUA.

Press F8 to bring up the Extended Functions dialog box.



Press C for Cursor Path and the following screen will appear:

Correct the cursor path as follows. Use the F3 and F4 keys to push fields up and down on this screen. Wherever there is a TAB indicated, press the TAB key , and filePro
will insert the word TAB for you.

Press ESC to save your work on the cursor path. Press ESC on the main screen to save the entire screen.

To access this file, we will need to build some automatic indexes for it.

Select C - Index Maintenance.

Choose "vidcust".



Select 1 - Automatic Index.

 
Select B.

Enter the following data:

It's time to build some processing for the new file we've created, "vidrec". This file will hold receipts that will be "attached" to the customer file via the unique Account_code
field. This means each time a new invoice is added, the Account_code (Account#) of the customer will be placed on the receipt record. Also, the customer's name and
address can be pulled up automatically from the receipts file by using a lookup based on either the Account# or sometimes the Account Name.

There will be several types of processing in the "vidrec" file; Automatic, Input, Trigger, and Output. We will start with Automatic. Go into Define Processing on the
"vidrec" file.



Select 1- Automatic Processing.

 

First, enter line 1 as shown. Then, put your cursor on line 2 so we can build a lookup using the lookup wizard.

Press F5 to start the wizard.

Fill in the following data. This time we are going to give the lookup file name a short alias. In other words, we want to be able to refer to this file as a different name, but it still
means this file. The alias we will use is "addr".

Here is the complete lookup. It is a Key field lookup. In other words we will find records in the lookup file based on a key field in this file (either a real field or a dummy field.)
In this case, a real field, 1, is being used as the key.

Enter the data as shown on the next three screens. They show the lookup being built step-by-step.



The final lookup line as constructed by the lookup wizard is as follows. As you can see, it is fairly simple and straightforward. As you get more comfortable with how
lookups work, you may choose to simply type lookup lines in without using the lookup wizard.

Once the lookup is performed, we can assign the values from the looked-up record to fields in this record. We will assign the values for address and phone number to
"dummy fields". These dummy fields can be displayed on the screen without the need of storing them in the file. After all, the customer's address and phone are stored
permanently in the "vidcust" file. Since we can look them up and use them any time we want, why store them in the computer on every single receipt record? It would be a
waste of space. We will store the customer name in this file, since it will be valuable to be able to search the receipts file by name and to do this, the name must be stored on
each record. But, we will never search this receipt file by address, or other even less important criteria.

The "not addr" on line 3 tells filePro what to do if the Account_code being looked for is not found in the "vidcust" file.

Make sure your table looks like this.



Press ESC to save your work.

Next, we will enter some simple INPUT processing for the receipts file. Later on, we will elaborate on this processing, but for now all it needs to do is lookup the
Account_code and address of specified customers. This INPUT table will be almost an exact duplicate of the AUTO table. The lookup is required on both tables for the
following reason. The AUTO table will perform the lookup for any record that is already on file. If the user is looking at full screen views of the receipt file, as each record
comes up on the screen, the AUTO table will lookup the address and phone number that is associated with the Account # on the receipt and display it in dummy fields on
the screen. The INPUT table will do the very same thing for new receipts as they are being entered. In fact, the lookup to retrieve address and phone# will be done when the
user enters a valid Account #.

Select 2

 

Since the INPUT and AUTO table have very similar code to perform the lookup we are writing, we can grab the code from the AUTO table in one fell swoop and then just
modify it slightly, rather than typing in all that code over again. Here is how to use the Block Functions to do this.

 

First, enter this much data on the screen.

Put you cursor somewhere in element 3 and press F8 to call up the Block Functions. The screen will look like this.



Press L to Load some processing from another table into this table. Follow along with the pictures and enter rest of this operation as shown.

filePro will load a copy of the AUTO processing table starting at line 3.

The AUTO table is very similar but not exactly what needs to be done on the INPUT table. Match your table to the screens following.

When you are done, press ESC to save your work.

Do a syntax check and fix any problems.

Note that besides assigning the address and phone from the "vidcust" file to the dummy variables which will be displayed on the screen, this processing also assigns some
of the customer file data to "real" fields in this file.

Before we try any of this programming, let's add the new file we created, the receipts file, to our existing user menu.
 
Select 6.



Choose "video". (Note that pressing "V" will jump you to the name as well, then when you press ENTER the rest of the name will be filled in automatically. All the filePro
point-and-pick menus work like this.)

The following screen will appear:

Press ESC on this screen without making any changes.

Add the following (line 3) to this menu:

Press ESC to save your work.

It's finally time to test out all of this programming!

Run the user menu "video" by pressing "G" at the main menu and choosing it.

The menu now looks like this.
 
Select 3.



At the "clerk" menu, Select 3 to add records.

The screen will look like the following.

Enter the following, (Account# 103) and press ENTER .

The name, address, type of customer and phone will pop in.

The screen will look as follows:

Note that this information popped in immediately after you entered the Account# 103 and pressed ENTER. This is exactly what we programmed it to do. The code on the
INPUT table says that when the cursor leaves field 1 the lookup should be performed. By pressing ENTER after putting in the 103 your cursor was "leaving" field 1 on its
way to the next field in the cursor path. This is the specific "trigger" that caused the lookup processing code to activate. Because there was a "DISPLAY" command just
before the "END" of this code, the screen fields are all refreshed to their most current values. We see all the assignments that were just made by this lookup.



Calculating Sales Tax and Totals

We are going to add some enhancements to this receipt file now. We need to make it automatically calculate the subtotal, the tax and the totals each record generates. First
we will work with the tax field.

We'll use the control file we built earlier to hold system generated unique numbers to help us with the tax calculation. This time, we will add a field to that file which will hold
a static (or relatively static) piece of information. In this case, we want to store the tax rate for our state. When a charge is made for these rental videos, we can calculate the
appropriate tax amount and add it to the total charge.

Go into Define Files on the "vidctrl" file.

Add the following field (#2).

Press ESC to save your work.

Press X to finish the file design and enter a Y to "Create a screen" prompt. If you forget to do this, the old Screen 0 does not have this newly added field on it, and you will
not be able to enter the tax rate.

When you are done adding the field and creating the default screen, go into IUA on the "vidctrl" file. Choose Screen 0 and go to record #1 and update it as follows.

Press ESC to save your work. Return to the main menu.

Let's add the processing to calculate tax. We will do this calculation when adding or modifying the charges on any receipt. The calculation will be done on the INPUT
processing table, however, we can grab the tax rate from the control file on the automatic table. We will arrange the code to do this lookup only one time for each IUA
session and store the tax rate in a global dummy field that will be available throughout the whole session. First, the AUTO part of this processing combination.

Go into Define Processing on the "vidrec" file. Choose AUT0 processing.

Enter the following code. Hint: Push down line 1 first using F3 and enter the new line 1. Then add the subroutine "gettax" starting on line 8 shown on the next screen.



Press NxtPage and finish the AUTO code.

Enter the following processing. (Lines 8-11)

Press ESC to save your work.

Choose INPUT processing.

We will build another subroutine to do the "totals" calculation for each record. It will add up the charges for each line item and put that value into the "Subtotal" field. It will
also calculate the tax. The subtotal and tax will be added together to show the total charges. Payments will be subtracted from total charges to calculate the Balance_Due.

This could all be easily done on one processing line, but it will be shown here spread out across several lines so that each part of the routine can be easily understood.
There will be a mix-and-match of field names and field numbers to aid in showing these calculations as clearly as possible.

Enter the following code as shown.

This will take care of the actual calculations for all the totaling to be done on each record.

Now, we will write the code which tells the program "when" to do these calculations.

Incidentally, filePro will "close up" blank lines on a processing table when you save it. This does not hurt anything, assuming that you know the blank line was there and are
aware that it will go away. Programmers often use blank lines to separate subroutines graphically while they are coding them and then let filePro close them up as the table is
being stored. You can do this too, just be sure that the code from the routine on top will never fall "accidentally" to the routine below. In this case, there is a RETURN on line
14, there is no fear of this subroutine running into one below it. But if it is easier for you to enter code in separate clearly distinct pieces, do so. For example, you can enter
the next "when-to-do-it" code starting on line 16. FilePro will close up the blank space when you save your work.

Enter the following code.



Press ESC to save your work. (Remember, next time you look, line 15 will be "sucked up" and line 16 will be living there.)

Once again, it is time to try out the program. Incidentally, this is not an abnormal way of building a filePro (or any) application program. You design a little bit and then test it
out. Design a little more and test it out. As you go, various modules of the program become solidified and need less work or enhancement. It would be difficult to write a
completely functional program without testing at various points along the way... not unless you are Mozart reborn and think it all up in your head first, then just write it all
down.

We will enter a known account code, and then enter in some fake catalog numbers and charges. Notice that the charges and tax are correctly calculated at each appropriate
"trigger".

Enter the account code 103 and press ENTER.

When you are done experimenting, leave IUA. It does not matter whether you save the record or not.

Did you notice that when you entered the Account# and the fields popped in, your cursor was left in the Last Name field instead of in the first Catalog# field? This is not
very elegant. It would be better to have the cursor go directly into that field upon retrieving the account information.

To do this, Enter the following "fix" at line 9 of the INPUT table for "vidrec".

This simple change tells filePro to put your cursor into field 17 on the current screen instead of letting it go into the next field on the cursor path (which is what happened
when this was an END command.) You will see this new better behavior later when we do some more testing.



Simple Browse Lookup

Meanwhile, we have only been able to call up customers by their Account#'s. How often do your customers remember their account number? Not often. In a Video Rental
Store, probably never! However, the computer and this program needs these unique numbers to bring up the proper records and attach receipts to the proper accounts.
There is a way to let the user find the Account#'s by supplying the "name" of the customer. (They don't usually forget this.)

The browse lookup function of filePro is ideal for doing this task. It will let you put in a few characters of someone's last name and then show you all the closest matches in
alphabetical order. Besides the name, other information about the customer can be displayed so that you can further identify the correct account. Once you are sure you
have the right account selected, you call that information into the receipt record and move on to enter the items being rented.

Here is another important aspect of filePro (and programming in general). If you write your code in a well-considered style, you won't have to write as much of it. You will be
able to make certain pieces of code do double and triple duty, even if they are not actually subroutines. We can do this very thing in this instance. The code to fill in the
address and other customer info is already written. These assignments are found on line 6. All we have to do is give this line a "label" and we can direct another part of the
program here.

Add the label "filscr" at line 6, while you are at it, make sure all the rest of your code matches this screen.

When you are done, go to line 22 and add the rest of the code to call up customer accounts by name.

First, enter some controlling code as follows.

When you are done, put your cursor on line 25 and press F5 to design a browse lookup using the lookup wizard.

Enter the data shown on the following screen.

Because you have put a Y in the "Create Browse Lookup" prompt, the wizard will give you a new screen to finish the design.

Complete the browse section of this lookup by filling in the prompts on the next screen.

Note that the fields from the file being looked into are displayed for reference. (You can even see their lengths and edits by pressing F5.)



Enter the following data as shown. (Prompts will appear sequentially. You may move backward and forward through them. You may even return to the first browse screen by
pressing the UP Arrow while in the Browse Header field.)

When you are finished, filePro creates the browse lookup code for you. It is important to note that this usually takes up two lines and extends beyond the screen to the right.
You may use your cursor to scroll either line so as to view all the code. However, do NOT make changes to a browse lookup line from this processing table screen. Always
use the lookup wizard which will create the lines properly. A misplaced space or punctuation mark will really mess things up.

Your screen should look like this:

The first thing we want to do is put a label on the browse lookup line itself. This will be useful later.

Put the label "brwNAME" on line 25.

Now finish the browse lookup by adding the following code.

This code below the browse lookup pair of lines (lines 27-30) tests what the user does while the browse is on the screen. The way this browse is written, there are three keys
which are important. That is there are only three keys a user can press while the browse is up that give control back to the processing table. They are ESCAPE, BREAK and
ENTER. The system maintained field @sk (special key) is filled with labels at various trigger points within filePro. This is one of those trigger points. If the user presses ESC,
@sk will contain "SAVE". If the user presses BREAK, @sk will contain "BRKY" and if the user presses ENTER, @sk will be filled with "ENTR". As soon as any one of these
keys is pressed the processing falls through to the line immediately below the browse lookup pair. Here we can act on whichever key was pressed and do appropriate things.



If the user pressed Control-C (BREAK), the browse is cleared (CLEARB) and the cursor is put back into a cleared field 3.

If ESC was pressed, we want nothing to happen. The best way to accomplish this is to send the processing directly back to the browse line. Remember, we labeled this
"brwNAME".

If there are no records found that match the key of this browse lookup, the "if" condition on line 29 will be TRUE. A message will be shown to the user, the browse window
is cleared, and the cursor is returned to a cleared field 3. This will all happen without user interaction, except for the acknowledgement of the SHOW warning message. (It is
important to note that filePro will also put up a message about there being no records found for this browse lookup... that is part of the browse lookup function itself. This
built-in warning message can be eliminated with the -s switch.)

If the user pressed ENTER while looking at the browse display, the processing will fall through to line 30 and the data from whichever record the highlighted bar was resting
on will be loaded into the current record. This is done by simply doing a GOTO the "filscr" label we just added to the regular lookup used by the Account# search routine.

Once again, we get to try some of this code out.

Use the menu "video" and enter the receipts file.

Go into Add Records mode. Skip past the Account# field by pressing ENTER and put a "j" in the Last Name field.

The following browse window will appear.

A very nice built-in feature of a simple browse lookup is the View function.

By pressing V, the record under the highlighted bar is pulled up in full screen view as shown below. This view function can help you isolate a desired record since more
information is available than will fit on a browse line.

When the user presses ENTER from the full view screen, the popup is brought down and the user is returned to the browse window.

When the desired record is highlighted and the user presses ENTER, the browse is cleared and that record's data is brought into the current record and assigned just as if it
were done with a regular lookup. It is important to note that the Account# which was not known, is now assigned to field 1 just as if we knew it all along.



When you are done experimenting with this browse lookup, exit IUA and return to the main menu. It is not important whether you save any records or not.

Just about everything needed to add a receipt is done now except a final touch. The date and status fields must be filled in by processing.

Go into Define Processing on the "vidrec" file. Choose INPUT processing.

Put your cursor on line 15 and press F3 3 times to open up some blank lines. Add the code shown below.

This code fills the date field 6 with today's date, and fills the due date with today's date plus 3 days. (This should be enough time to watch any video.)

Because of the "if" condition on line 15, the date assignment and calculation will only be done if the date field is empty. Any new receipt will have a blank date and the
process will happen. Subsequent updates of this record will not cause the date(s) to be changed.

The status field is also set during this totals subroutine since it is dependant on the Balance_Due which is calculated and assigned here. This is a nifty and very useful
snippet of processing. It is clever because, it first sets the Balance_Due field to "O" (for OPEN) no matter what. Then, on the next line, if the Balance_Due is exactly equal to
"0" (zero) it is flipped to a C (for CLOSED). Two of the simplest lines you will ever see, but absolutely foolproof for setting such a status flag. (This field is sometimes called a
flag because it quickly flags a record's status without having to test a field (in this case the Balance_Due). You can sort and select records based on this field as well.)

Enter the "vidrec" file and try out this newly added code.

Enter the following data and you will see the resulting date/status calculations immediately upon moving through one of the money fields.

Feel free to experiment with this program as it stands now. When you are done, return to the main menu.

To make the receipts file "vidrec" much more usable, we will add some automatic indexes to it.

Go into Index Maintenance on the "vidrec" file.

Build Automatic Indexes on the Account_code field, the Last_Name and First Name fields, and the status field.

The Automatic Indexes screen should look like this when you are done.





The @key Trigger

There is another small enhancement we can make to the receipts file which will help users enter data quickly.

More importantly, it will disclose the usefulness of another filePro "trigger", @key processing . (pronounced "at key") It is processing that occurs whenever the user
presses a designated key while the cursor is at the Enter Selection prompt. This is exactly the same as the keys filePro displays at the bottom of each record in IUA. H-
Hardcopy, B-Browse, U-Update, etc. You can design keys like this of your own. If you pick one of the keys already used internally by filePro like the H key (Hardcopy), the
filePro function will be disabled and the processing you write for this key will be done instead.

We will design an @key that lets the user take a payment quickly. Normally, the user would press U to update an existing receipt, then they would have to press many
ENTERS or TABS to get to the Payment field where they would enter the amount. The following single line of code makes this much easier. It will put the user directly into
the Payment field. When the amount is entered, the user presses ESC as normal and the process ends. No need to push the cursor all through the other fields on the screen
just to take a payment.

Go to the INPUT processing table of "vidrec".

Enter the following code as shown.

Press ESC to save your work.

Try this out by entering IUA in the "vidrec" file.

Stand on any existing filled record and while your cursor is blinking at the Enter Selection prompt, press P. You will see the following.

When you are done entering an amount, press ESC to store the payment.

This is a nice addition, but how can we inform the user that it's available?

Simple, we can use yet another type of "trigger" processing, @entsel. This is processing that happens just before the cursor is put at the Enter Selection prompt. It is very
useful for many things, but especially good for putting up prompts, since that is when the regular filePro prompts appear!

Go to the INPUT processing table on the "vidrec" file.

Adjust the @keyP line and add the other code shown below. Besides the @entsel code, another @key process, @keyU is defined. The idea here, is to put the prompt P in
reverse video on the screen just as if it were a regular filePro prompt, and take it away whenever the user enters Update Mode. Update Mode can now be reached by either
pressing U (the usual filePro key) or P our newly added @key. If either of these is pressed, the prompt is taken off the screen, since it would do no good to press a P while in
the Payment field or any other field for that matter. For the @keyU, we must also duplicate the standard filePro action of putting the user into Update Mode. This is done by
executing the RESTART command. It does exactly that, puts the cursor in the first field on the cursor path and resets the processing pointer to the top of the INPUT table.



Press ESC to save your work.

Test this code by going into IUA on the "vidrec" file. Go to any existing and filled record. You will see the new P prompt along with all the others, like this.

When you press either P to take a payment, or U to update the record, the prompt will be removed from sight along with all the others that filePro removes for you.

This is a good start on a useful application, but there is far more to do, and learn. See you in the Finish Design!



Add New Customers While In The Receipts File

If most of the work is being done in the receipts file, i.e., entering charges, taking payments, etc, it is a waste of time to force the user to back out of this file and enter the
customer file just to add a new account. This becomes even more of a problem when such a program is used at the Point Of Sale where time and speed of operation are the
critical measurement of how good a program works.

There is no need to leave one filePro file simply to add a record in another one. The whole operation, including getting the next unique account number, can be done from
just about anywhere inside filePro.

From this point on, since this is the Advanced Guide, it will be assumed that you know how to enter Define Processing on whichever file is listed. Do the work on whichever
file is specified. These names can be found on the bottom left and right of each processing screen. These basic instructions will be left out of this section of the tutorial
guides.

Add the following lines of code (25 through 56) to the "vidrec/input" table. Modify any lines that already exist to match the following four screens.

 

 

 

The code above will activate when the user's cursor leaves field 3 (Last Name) while there is a period in it. This is a user-defined trigger if you will that makes use of the



when-leaving field trigger to do its work. If the field contains a period, the program looks up a free record in the customer file "vidcust" and pops up Screen.0 from that file.
After the user is finished entering the new account information, this data is stored on the free record in the customer file and the next available (and unique) Account# is
assigned to it.

Except for the POPUP UPDATE command on line 44, we have seen all this code in one variation or another before. The POPUP UPDATE puts the user on the screen
designated from the lookup file. When the user is finished entering data and presses ESC, filePro writes all the fields on this screen to the looked up record automatically.
The only thing left for us to do before we give control back to the user is obtain the next unique Account# and assign it to this record's field 1. At this point, the new
customer account becomes available for use by the file the user is actually standing in, "vidrec" (the receipts file).

It is necessary to put the same user edit that resides in the "vidcust" file into the "vidrec" file. This way, when the user enters the account type for the new customer, the
field will only allow the same codes that are allowed in the customer file.

Go to Define Edits for the "vidrec" file and add the following.

Go into the "vidrec" file and try out this new feature.

While standing on a new record, enter a period in the Last Name field and press ENTER .

A blank customer info screen will appear.

Enter the following data.

Press ESC to save the new customer record.

The following will appear on your screen. The newly added customer data and its specific Account# have popped into place. You could immediately add Catalog#'s to this
receipt. We will not do this now.



If you were to search for this customer in the "vidcust" file, you would find that is has been correctly added in that file.



Posting

The next enhancement to be added is a posting routine. We have a customer file "vidcust", and we want to store all the sales made to this customer in this file, as well as
payments. An added benefit of doing this is that we can immediately see, by going to this file what the customer's current Balance_Due is.

For this posting routine to be robust and work under all situations, adding new receipts, modifying old receipts, deleting receipts, we need to make use of a small trick. We
are going to take a "snapshot" of every record before the user does anything to it. This way, we can compare the snapshot of the "before" image with the way the record is
left "after" the user is done updating it, and post any and all changes to the customer file.

The best place to take the "before" picture is the AUTO processing table, since this table always runs just after the record is retrieved from the disk and just before the user
sees it on his screen.

We only need to snap a picture of two fields, the charges and the payments. If either or both of these change, we will send (post) those changes over to the customer file.

Enter the following code on line 2. This will save the "before" values of the charges and payments into "oc" and "op".

We will put the guts of the posting routine on the INPUT table for "vidrec".

First, add the following code on line 1.

Add the actual "post" subroutine as shown below.

An explanation of this code in English is fairly simple. When the user presses ESC to store the receipt record, the first thing to run is the "post" subroutine. It simply goes
out to the appropriate customer record (using the unique account number for the lookup) and adds the difference between what is in the Charges field now (13) and what
used to be in the Charges field ("oc") to the Charges field on the customer record. The same is true for the payments field. The difference between what is in the Payments
field now (14) and what used to be in the Payments field ("op") is added to the Payments field in the customer record. Then the Balance_Due field of the customer record is
recalculated.

This code will work whether the receipt is new or old. If the receipt is new, the snapshot value of charges and payments will be "0". The amount posted to the customer file
will be the new value minus "0", which is the new value. If the receipt is old and the values are just being modified, only the difference will post. It always works under all
possible situations.

Remember that each time the AUTO table runs, all regular dummy fields are cleared. The code we put on the AUTO table will reassign these dummies each time a new record
is brought to the screen.
 
Try out this code in the receipts file.



Enter the following data.

When you are done, store this receipt.

Go to the customer file "vidcust" and see if the posting worked. You should see the following.

To finish the "post" routine, we must add a routine that will "back out" a receipt's previous postings if the entire receipt is deleted with the (D)elete key. This is an even
simpler operation. Add the following code as an @key routine that does a lookup to the customer file and subtracts the charges on the receipt from the charges on the
customer record, and subtracts the payments on the receipt from the payments on the customer record, then recalculates the Balance_Due on the customer record. Once the
postings have been "reversed" or "backed out", the routine actually deletes the receipt record itself.

Enter the code from the following two screens into "vidrec/input" .

Try this code by deleting the receipt you just added. When you press D on this record, you will see:



Answer Y to this prompt and then exit out of the receipts file.

Go to the customer file and you should see that the record has been correctly updated.



Adding A Catalog File

We have been operating our Video Store at a severe disadvantage. Each time a tape is rented, we have to put in its description and price. Obviously, this would never do in a
POS (Point of Sale) situation. We need to add some processing that will let us keep our inventory in a file and call up its information (description/price for each item) as
needed and instantly.

We'll call this file "vidcat" and refer to it as the Catalog file. It does not have to be a complicated file. In fact, it will probably be the simplest filePro file you ever define.

Go into Define Files and choose [NEW ]. Enter the name "vidcat" and do not give it any password.

Enter the following data.

Press ESC to store your work.

Press X to finish designing the file.

Enter the following in the options dialog popup.

To make things really easy to code and work very smoothly, we must adjust the "vidrec" file a little.

Go into Define Files for "vidrec" and modify the following fields to look like this. (We are making them into associated field groups.)

Press ESC to store your work.

Press X to finish the design of this file.

IMPORTANT : Do not put a Y in any option on this popup.



The screen in the receipts file must now be changed. The charge and description for each item will now be automatically "popped in" by a lookup to the Catalog file. These
fields must be changed to protected fields. The application will fill them now.

Make the receipts screen look like this.

There are changes needed in the processing table for the Receipts file as well.

Remove the @wlf labels for fields 25 through 28 . The cursor will no longer pass through these fields, as they are now protected.

Continue adding the new code for the Catalog file lookup at line 70 . Add the processing from the following two screens.



In order for the code to work, an index is needed on the catalog# field in the "vidcat" file. Go to Index Maintenance and add the following.

Add the Catalog file to the "video" menu as shown.

Use this menu choice to enter the Catalog file through IUA.

Choose Add Records mode . Add the following item.

Press ESC to store your work.

While you are in Add Records mode, add the following Catalog items as well. We will need them for testing purposes.



Finally, we are ready to try this out.

Add the following receipt and enter the following in the first Catalog# field.

You should see the following information pop in.

Note that the calculations for subtotal, tax and total still happen correctly.

This is all part and parcel of the special when-leaving code we put in to do the lookup into the Catalog file and retrieve the description and charge. It is special because it
uses "associated fields" and "arrays". However, it is not difficult to explain or understand how these features work. The @When Entering and @When Leaving Trigger a0)
on lines 70 and 71 happen when the cursor leaves "any" of the fields in the a0) group. When this happens, filePro knows "which" instance of the associated field group was
actually left, this is a0). FilePro also assigns the number of this instance to the system maintained field @af. If the cursor just left the second a0) field, @af will be filled with a
"2". If the cursor left the last a0) field, @af would be filled with a "4". Because we know this number, we can act upon the same numbered Description and Charge fields
along the same line item in their turn.

To help do this, an "array" is built on each of these associated field groups. Arrays can be "overlaid" onto real fields starting at any field number. When you build an array,
you use the DIM command . (You DIMension the array to have so many elements.) In our case, we are building three arrays, each with 4 elements. These arrays are overlaid
or "aliased" to the real fields that represent Catalog#'s, Descriptions and Charges. The arrays are given names that help identify them to us. If we refer (on the processing
table) to chg["2"], we mean the second element in that array, or the second field from the one on which it was overlaid. If we change chg["2"], it is the same as changing the
real field just as if we had done it using the field number itself. They both are the same field. In other words, using field 26 or chg["2"] is exactly the same thing.

The power of arrays lies in the fact that we can use an expression for the element number in the array. In other words, we can use chg[aa], where field aa is equal to "3", and
be referring to chg["3"] or field 27. This is exactly what is being done in the Catalog# lookup. We know which associated field instance the cursor left (1 through 4) because
filePro fills @af with this number for us automatically. We can then manipulate the other fields across this line item by referring to them as des[@af] and chg[@af]. These
fields will be the same distance down in their respective arrays as the field the cursor left in the Catalog array.

The combination of arrays and associated fields let us write the code once, and use it on four different lines, all because we can say @wlfa0) (associated field) and because
we can alias a named array to real fields.

However, even with all this elegant coding, there is a small fly in the ointment. How often would you think the Catalog# of any particular video gets "rubbed off" or
"scribbled over". Probably, more often than not! It is important that we be able to lookup these Catalog items by their name (description) as well as their number. This will
require some more code, but not much, just a browse lookup.

It will also require a new index in the Catalog file built on Description.

Go into Index Maintenance on the "vidcat" file and add the following.



To look into the Catalog file based on description, we only need to add a simple browse lookup.

Modify the "vidrec/input" processing table to include the following two screens.

Try out this code now.
 
Enter the following in Add Records mode in the "vidrec" file.

Call up Account# 106 , and then enter an "f" in the first Catalog# field as follows.

You will see the following. The display starts from the first "f" on file and extends alphabetically from there in both directions.



Move your highlighted bar down to this record and press ENTER .

You will see the following pop into place.

Feel free to experiment with this lookup. Note that if you do enter a valid Catalog#, the browse lookup is bypassed and the correct data is simply retrieved onto the line item.



The Sort/Select Processing Table (-v processing)

The sort/selection processing provided by filePro is one of its most powerful features. This function allows you to make one pass at the file before running the actual output
format. During this first pass, you can select only those records desired based on virtually any criteria or processing. You can also override the default sorting order of the
specified output format from within this table. Sorting can be performed on dummy fields, expressions as well. This can not be done in output processing.

 

Probably the main benefit of Sort/Select tables are their ability to provide users with an ad-hoc look and feel. You can prompt the user for values, and use these values to
control all aspects of how the output is completed. This is much different than running an output format with a simple (or even complex) selection set.

 

Because you are making a first complete pass of the records, you can accumulate values on the sort/selection table and use these "totals" during the actual report pass. For
example, you can accumulate the total of a particular field during the sort/select phase and show the percentage of each record against this total on the output phase. This
would be impossible (well, difficult at best) using only output processing as you do not know the total of all the records as you are stepping down through the records to
produce your output.

 

Some people call sort/selection tables V tables or -V tables, because this is how you implement these tables. On the command line or menu action line, you would do
something like this:

 

 .../dreport filename -f outputformat -v sortselecttable -a -u

 

This tells filePro to run the -v table first against all records and hand the selected records over to the output phase.

 

The SELECT command is the single unique most important function on any sort/select table. If you want to include any record in the group handed to the output phase, you
must SELECT this record on the -v table. This means the process must actually move through a processing element where the "if" condition is TRUE and there is a SELECT
on the "then" line. Records not so SELECTED do not show up in the output.

 

Here is a simple sort/selection table. Enter the code from the following two screens in the "vidrec" file on a new output processing table called "seldates".

 



In order to use any dummy fields assigned on a sort/selection table on your output processing table, they must be global dummy fields, and they must be placed on the
AUTO table as well. The AUTO table makes them available to, or passes them through to the output processing table.

 

Build a new output table in "vidrec" called "autorep1". Enter the following data on it.

We are going to use the BALDUE report we built earlier in the "vidcust" file. We are going to use it, however, in the "vidrec" file. Here is how to copy that format out of
"vidcust" into "vidrec". Just mimic the steps on the next several screens.

 

First, bring up "vidcust/baldue" in Define Output .

While it is on the screen, press F to change files and choose "vidrec". Press ENTER .



You will be brought into the "vidrec" file carrying this format, but it will have no name.

Press C and [NEW] to Copy this format to a new name in this file.

Give it the name "receipts" and press ENTER . You will see the following. The format is now named and ready for use.



 

The fields in this file, "vidrec" are different from those in "vidcust" where this format came from, so you will have to modify the sort of this format to be applicable here. Do
this, by pressing U to update the format, then F8 for the options dialog, then S for Sort criteria. Enter the following data.

Modify the output format to look like this.

Put this new report on the "video" menu.

Enter the following data.



Use this menu to try the new report.

Choose a date range that will find some of the receipts you've been entering. First, the starting date.

Then, the ending date.

The report should look something like this.



In many cases, there is a powerful way to enhance sort/selection processing. You can speed up the selection of records from large files GREATLY by using the "lookup -"
(lookup dash) feature of filePro.

 

Change the processing for "vidrec/vdates" to look like the following 4 screens.

 

 



 

Change the menu item for this report to read as follows.

Try this code out, however, you will not see ANY speed difference with only a handful of records. When you run such a "lookup dash" table against a file with many
thousands of records, you will be astonished at the speed increase in selecting records over conventional methods.



A brief description of how lookup dash works on the sort/select table is this. Lookup dash "moves" you to the record indicated by the lookup key. The first test tells filePro
to move you to the first record that meets the criteria or the next highest match. Since we are using an index to run this output, each record will come in order and the process
will continue SELECTING records that fall within the criteria. As soon as the first record that does not match the criteria is reached, filePro is told to do a lookup dash to the
very end of the index. It does this by using a key that is the highest possible value for the index and then finding an equal or next lowest match to this. By doing this, you are
guaranteed to find the very last record in any index. Since this record will NOT match the original criteria, the process just ends and there are no more records to process. By
cutting out only the records that match the criteria from an entire index, vast savings in time are obtained.

Let's build another sort/selection table. On this one, we will accumulate a total of the Balance_Due fields selected so it can be used on the output processing table. We will
also query the user as to the status of records for which the report is to be pulled, (O)pen or (C)losed.

Enter the code from the next 3 screens onto an output table in "vidrec" called "vstatus".

 



 

Add the following to the "vidrec/autorep1" table, so that the variable "st" can be passed to the output processing table.

Put the following on the "video" menu, so we can test this report.

 

Before running this output, we must modify the format "vidrec/receipts" and its processing table to calculate and display the percentage each record's Balance_Due is of the
total.

 

First, add the following to "vidrec/receipts".



 

 

Now modify the report format itself to show the percentage.

 

Use the menu item we added previously, to try the report.

 

It should look something like this.





A Virtual Work File - A Place To Stand

Aristotle once said, "Give me a place to stand and a lever big enough, and I could move the Earth." The concept is possibly true and whether or not it is, there is meaning
here for filePro application developers. The lever is filePro, big enough to do almost any task, and the knowing "place to stand" is the key to making it work. Up until this
point in the tutorials, we have been standing in one real file or another and adding, modifying and deleting records from that file or others. There are drawbacks to this
scenario, but there are also things you can do about them.

 

The most fundamental concern for application developers is data integrity. Add to this, efficiency and usability and the problems of design are big enough to start with; but
bring in the aspects and needs of a "multi-user" system, and the problems begin to really mount up. The simplest fact that two users can not be allowed to update the same
record at the same time can cause everything from little hassles to wide spread calamity. In the case of our little Video Store system, multi-user problems could arise at many
stages. To virtually eliminate this, we can use "virtual" files. What are these? Simple, they are nothing more than an Aristotelian "place to stand". A dummy file, from which,
the application user can reach out and access all other real filePro files in the most non-invasive way. In other words, working from this "virtual" or "dummy" file one can
have the most access while benefiting from the least impact caused by mandatory "record locking". All this to say, we are going to build a fake filePro file and stand in it to
add customers, receipts (and catalog items) to the system from there. By doing this, we won't be tying up the real records with various filePro functions and commands that
would otherwise give us serious problems.

Consider these three situations.

1) Our Video Store app works from within the customer file "vidcust". A customer brings some videos up to a register for rental. The store clerk begins updating the
customer's account record, adding receipts, taking payments, etc. While he is doing this, the customer's wife goes up to a register on the other side of the store and wants to
buy a DVD. The second register operator can not update the family account record, because it is already in use by the first register operator. Not a good situation.

2) Our Video Store app works from within the receipts file "vidrec". This is a little better, since multiple receipts can be added simultaneously to the same customer account.
Assuming, that is, the customer record is only locked just long enough to do critical postings. The problem is solved, right? No. What if during the day, the store manager
needs to run a report showing all receipts up to the minute. If any receipt record is being updated, the report will freeze on that record and wait for it to be unlocked. Not a
good situation.

3) After using the "How Do I" section of this manual, you start adding some of the great features you've learned about, like the MENU function, to your programs. You don't
realize that the MENU command is being run from within the INPUT processing table and therefore has the record open and locked! Nobody else can access this record for
updating, or even read past it with a report, while the record is in this state. The MENU created through processing, looks so much like a regular filePro menu that one of
your users thinks nothing of leaving this menu on the screen while he goes to lunch. Not a good situation, and all you were trying to do was make use of some of the
powerful tools within filePro.

All these types of multi-user problems can be avoided by building a "work" file. This just means making a filePro file that you can use to "stand on" while you operate an
application. We will do this by copying the "vidcust" file to a new file called "vidwork" and rewriting the application we have written so far to work from within that file. The
actual procedure will be to enter this work file in Add Records mode, thereby landing on a free record. While on this free record ,we can do all the operations necessary to
run our program, add customers, receipts, etc. When we are done running the application, we delete the record we were standing on and back out of the file. No record in any
real filePro file is locked for more than the time it takes to post to it (microseconds) and still our application works just fine.

Here is how to turn this application into a better program by using a "virtual" work file.

First, we will need to use "fpcopy" to duplicate the "vidcust" file.

 

Select F

 

 

 

Select B



Enter the following data.

 

Select 1

 

Select 3

 

 
Go into Define Screens on the file "vidwork".

Copy Screen.0 to Screen.1 and delete Screen.0.

Modify the new Screen.1 to look like this.



 

 

 

 

We can modify a screen from the "vidrec" file for use in the new "vidwork" file.

Remain in Define Screens. Change to the "vidrec" file by pressing F and choosing "vidrec" .

Press S to select screens and choose Screen.1 .

Change back to the "vidwork" file by pressing F and choosing "vidrec" .

Select C for Copy and then choose [NEW] . Give this currently "unamed" screen the name "rec" .

 

Your screen should look like this.

 



Modify this screen to look as follows.

We will add the processing for the "vidwork" file in two stages for testing purposes.

Add the 49 lines of code from the following 9 screens to the "vidwork/input" processing table.

 

 

 



 

(The full lookup wizard screens for lines 25-26 are shown after this screen. Then, the processing screens continue.

 

 

 



 

 

Put this Work File on the menu "video" .

 

Enter the following data.



Notice that the command line includes -xa and -d. These switches tell filePro to go immediately into Add Records mode (-xa) and to clear the standard filePro prompts (H-
Hardcopy, B-Browse, U-Update... etc.) from the bottom of the screen.

The processing code we put in "vidwork/input" does essentially the same thing as was first done in the receipts file. It lets us lookup up a specific customer's Account# and
pull in the customer info. It lets us browse the customer file by name and pull in the customer info and Account#. It lets us add a new customer. This table also brings the
"tax rate" lookup from the automatic processing onto this table, since this program has no need to run any automatic processing.

The only unique and new concept on this table is line 1. Since we are in Add Records mode when running this application, we will be sitting on the first available free record.
When the user presses ESC, this line will DELETE the record we are standing on and END. The Add Records mode will put us on the next available free record again, which
is the one we just deleted! We can stay in one place "treading water" in this file as long as need be. So can any number of other users on their own individual "place to
stand" temporary record. This is because while we are standing on our record, it is locked and can not be given to anyone else. Other users coming into this file in Add
Records mode get their own record on which to "tread water". Once you become familiar with this idea, it will become a valuable and useful mechanism in your filePro toolkit.

It's time to try this code.

Use the menu selection to go into the virtual file "vidwork".

First try the Account# lookup. Enter Account# 103, you should see something like the following pop into place.

 

Now try the name lookup. Enter the first few letters of Hakan.

7

You will see the following browse window.



 

Press ENTER and the customer information is popped into place.

We have not lost the "add new customer" feature. Even though we are standing on a virtual file, the code still works properly from here.

 

Put a period in the Last_Name field to activate the "add new customer" routine. Enter the following data.

The next unique Account# is added automatically, and the account is ready to have receipts added to it.



A quick check of the real customer file shows that the record has been stored here permanently.

We will add all the rest of the processing for the virtual "vidwork" file now.

Much of this table is the same as the processing we wrote for "vidrec/input", except that lookup assignments are made to screens made up of dummy fields. At the
appropriate times, these dummy fields are written to whichever real file they represent. By using dummy fields on screens defined in this file, "vidwork", we gain the ability to
popup these screens and then perform @when (leaving and entering) processing on these fields. This is not possible when popping up a screen from "another" file. @when
processing can only be done on fields in the current file (the file on which you are standing). If we were not able to do such @when processing, we could not popup a
receipt screen and then do a lookup for either Account#'s or Catalog#'s while on that screen. There would be no "trigger" processing available.

The technique of doing POPUP UPDATE on a screen full of dummy fields, (assigning them from a lookup done just before the POPUP), and then rewriting any changes in
these fields to their counterpart real fields in the looked up record, is cumbersome to say the least. But, since it gives us back the @when trigger capability, the extra work
(normally done automatically by a regular "real" field POPUP UPDATE) is well worth it.

Enter the code from the following (umpteen) screens into "vidwork/input". Many of the lines are duplicated from what was there before, but some have changed slightly, so
the whole "new" table is shown here. Be sure your table matches this one on all lines and do not just add in the new lines to your old table. (In other words, check line by
line for discrepancies between our old code and this new table..)



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

There are several enhancements to the Video Store app in this table.

A new trigger has been used, @wuk processing (at when user key). This means, do some processing when the user is sitting in a particular field and presses one of 4 special
"user-keys". These user-keys are F8, F9, F3 and F4. We are implementing @wuk3 and showing the prompt F8 as the key which can be pressed while in this field. Pressing
this key brings up all the receipts on file for the Account# we have on our screen. This browse lookup has several "exit keys" attached to it which means the user can press
any of these keys while the browse window is up, and the designated action will occur. They are called "exit keys" because, by their nature they suggest exiting the browse
window to accomplish some task. We have defined exit keys to Delete the receipt record under the highlighted bar, to Add a new receipt directly from the browse screen, and
defined that X will clear the browse window and return the user to the first screen.

The new browse into the receipts file (label brwRCT) is also built a little differently than normal browse lookups. It is built by filling some variables with the different parts of
the browse lookup and then using these variables on the browse line itself. This is a very valuable trick to use when the browse data lines you want to show are too long to
be built using the browse lookup wizard.

The brwRCT browse also makes use of "browse processing". This is a special kind of processing that happens just before each looked up record is put in the browse
window. In our case, we are using this processing stub to test whether the record about to be put on the screen has a Balance_Due equal to "0", if it does, the DROP
command causes it to be left out of the display. We only see records on which money is owed.

The "delit" subroutine calls another subroutine "postd" which uses arrays to delete a receipt record and also save a copy of the receipt in a "safe" file. This prevents users
from deleting records and leaving no trace. By overlaying an array on the receipt and overlaying an array on a free lookup into the "safe" file (an exact duplicate of the
receipt file), the processing can copy the record from one file to the other with one command, rather than a series of many field assignments.



New Features In An Old Application

Try it all out now! But before you do, go to the filePro Directory (? on the main menu) and delete the records in the receipts file "vidrec". This may leave some unsupported
charges, payments and balances in the customer file, but that's okay for our purposes.

Once you have cleared the "vidrec" file. Use the menu "video" to enter the virtual "work" file.

Load the following customer Account#. Use either method (Account# or Name).

You should see the following.

 Press F8 to see the receipts on file for this customer.

Since there are no receipts on file (we just cleared them all), you should see the following.

 Press A to add a new receipt.

You will see the following.

 



Enter the Catalog#'s shown. You should see the descriptions and charges popping in appropriately.

Now try finding a Catalog item by the first few letters of its description. Enter an f on line 3 .

You should see a browse of the Catalog file. The highlighted bar will be on the first record starting with f.

 

Move the highlighted bar down to the next item, which is what you were looking for and press ENTER . You should see the following pop in.



 Press ESC to save your work.

 

You will be prompted as to whether you want to print the receipt or not. The default is Yes. (Just pressing ENTER will print the receipt.)

 You will be returned to the receipts browse window for this
customer. You should see the data for this receipt across the line.

 Press X to exit this screen.

 

You are returned to the main customer record. The newly added receipt was added to the Charges, Payments and Balance_Due fields as it should have been.



 Press F8 again to go back to the receipts browse for this
customer. Let's try modifying a receipt.

 

Choose the receipt from the browse screen by pressing ENTER .

 

The receipt will appear in full screen view. Modify it, by removing the 2nd line item. (space over it).

 When done, press ESC to save your work.

 

You will be brought back to the receipts browse. The receipt will appear updated.

 

Press X to return to the customer screen.

 

You will see that the customer record has been updated as to the modification you just made. The system is working perfectly.



 Press ESC to clear this customer and obtain a blank starting
screen. (This is where the program simply deleted the virtual record you are standing on, and gave it right back to you again.)

 

Your screen should look like this.

 

The last feature we need to try is the "delete a whole receipt" routine. To test this we need a few receipts on file for a customer. Go add 3 quick receipts for Account# 106.
Choose any Catalog item(s) you wish. Don't waste time on this. We are just going to delete them!

Once you have added the receipts, choose one of them from the receipts browse window by putting your highlighted bar on the want deleted and press D .

The receipt will be brought to the screen in full screen view and you will be prompted for acknowledgment.

Your screen should look something like this.



 Enter a Y to delete the receipt.

 

When you are returned to the receipts browse window, the one you deleted will no longer be there.

Your screen should look something like this.

You will remember from the code you entered that we are not actually deleting this receipt. We are copying it first to a "safe" file called "vidrecd" and then deleting it from
the real receipts file. The user will want to view these deleted records from time to time, so to finish this application, this file should be put on the user menu "video".

 

So that there will be a screen in "vidrecd" that resembles the receipts screen in "vidwork" or "vidrec", copy "vidrec/screen.1" to "vidrecd/screen.1". Use the (C)opy function
in Design Screens to do this.



 This application is obviously just a shell. There are many places
where it can be tricked, broken, fooled, etc. However, it is still a good starting point for designing a real application. Remember, though, it was only designed to demonstrate
various filePro functions and processing.



Arrays
An array is a name that is given to a set of elements. In filePro, we can match an array to a list of real fields, dummy fields or lookup fields. We say that an array can be "overlaid" or
"aliased" or "mapped to" the group of fields.
Arrays are used for repetitive operations to increase speed and to decrease the size of your processing table.
Arrays are created with the DIM command. They are given a specified number of elements (fields) and attributes (lengths and edit types) if required.
Arrays are mapped to a specific set of fields. Those fields must be contiguous.
The element number of an array is called a subscript, and fields within the array are referred to as array sub1, written array["1"], or array sub2, written array["2"].
The subscripts are a pointer to that fields place in the array. They are numeric and can be manipulated with math formulas. By adding or subtracting to the subscript you can move
around inside the array. By using an integer type dummy field as the subscript for arrays you can manipulate the subscript very easily with simple math.
Remember not to use array["1"] and array[1] interchangeably. The first is correct, the second means array sub(contents of field 1), which may or may not make sense. If the contents
of field 1is within the limits of the number of elements in the array it will work, otherwise it wont.
Dimensioning Arrays (defining them)
Version 6.0.00    dim array(); ' 0 size arrays are now allowed by filePro

Example 1
dim array[20] no alias

The elements in the array will take on attributes of whatever is put into them according to normal filePro rules.
 

Example 2
dim array[20]:13 alias begins at field 13
array[ " 1 " ] is equal to field 13
array[ " 2 " ] is equal to field 14
array[ " 20 " ] is equal to field 32

 

Example 3
dim array[30]:aa alias begins at dummy field AA
array["1"] is equal to field AA
array["2"] is equal to field AB
array["26"] is equal to field AZ
array["27"] is equal to field BA
array["30"] is equal to field BD

 

Example 4
dim array[20]:filename(13) alias begins at lookup field 13
array["1"] is equal to looked-up filename(13)
array["2"] is equal to looked-up filename(14)
array["20"] is equal to looked-up file(32)

 

Example 5
dim array[20](8,.2):13
array["1"] is equal to field 13

 
You can define the length and edit type for all members of the array

 

Example 6
dim array[5](8,.2)(10,*)(2,state)(1,yesno)(5,allup):13
array[ " 1 " ] is equal to field 13
 
You can define the length and type for each specific member

 
Example 7 - Performing Repetitive Calculations
If you have 12 sets of data to perform an identical operation upon, instead of handling each set individually, you can overlay an array and perform the calculation repeatedly until
the program reaches the end of the array.

Then: n[2,.0]="1"
Then: dim price[12]:2; dim quant[12]:14; dim total[12]:26

Loop If: quant[n] ne ""
Then: total[n]=price[n]*quant[n]
If: n lt "12"
Then: n=n+ " 1 " ; goto loop
Then: end

 
Example 8 - Moving Data
Arrays can be used to move large amounts of data from one record to another. This is done by overlaying an array on the lookup file and overlaying an array on the record you are
standing on, then running a loop which copies one array to the other field by field.

 



Then: dim here[20]:12
Then: lookup cust=mscust k=1 i=a -ex
Then: dim there[20]:cust(12)
Then: I(2,.0)="1"

Again
Then: here[i]=there[i]
If: i eq " 20 "
Then: end
Then: i=i+"1";goto again

 
Example 9 - Arrays and Columns
By overlaying an ARRAY over columns of fields, you can operate on related line items. Imagine an invoice with 10 quantity fields, 10 catalog items fields, 10 price fields and 10
extension fields. Lets say you wanted to find out the total amount of money collected for one particular catalog item even though it may have been sold on any one or all of the line
items. You could overlay a 10 element array over the catalog item fields, and a 10 element array over the 10 extensions fields. Then you could test the catalog array to see if the
catalog item you are looking for is on the invoice, if it is found, take the corresponding extension (from its array) and add it to your count.

Example:

If: s = ""
Then: input s(5,.0,g)"What stock number are you searching for?"
If:
Then: i(2,.0)="1" ; dim cat[10]:5 ; dim ext[10]:45
Again If: i gt "10"
Then: end
If: cat[i]=s
Then: ct(10,.2,g) = ct + ext[i];i=i+"1";goto again

If:

Then: end

 
  SCREEN
Catalog #   Extended Price
*5    *45
*6    *46
*14    *54

Arrays and Associated Fields
If you overlay an ARRAY over a group of associated fields you can do better magic. This is because of a system maintained field called @AF. It holds a number corresponding to
the occurrence of the associated field within its group.
If you have 32 associated fields and you do a search of that group and find a match, the @AF field will contain the occurrence number. If it was the fifth one in the associated
group, then @AF will be "5".
The applications are endless. Take the above example of finding total number of a particular catalog item sold. If your columnar fields are associated fields, then the arrays overlaid
on top of them can be scanned with one command. Rather than testing each element of the catalog array you can just say if the associated field group holds the catalog number,
then the extension you want is ext[@AF].
Example

Assume field 5 starts associated field A2
if: s=""
then: input s(6,.0,g) "Enter Stock Number: "
if:
then: dim cat[10]:5;dim ext[10]:45
if: A2 co s
then: ct(10,.2,g) = ct + ext[@AF]

 
 Catalog #   Extended Price
 *5 A2)   *45
 *6 A2)   *46
 *14 A2)   *54
This code is not very robust, what if you have more than one occurrence? However, it demonstrates the idea. @when leaving field is a good place to make use of arrays and @af
combinations. Take a look at the following for concise easy code? It handles all ten lines of an invoice.
@wlfe0 if: unit[@af] ne ""
 then: chg[@af]=qty[@af] * unit[@af]
if:
 then: gosub scr1tot;display;end
 

Note: (Parenthesis are usually optional when referring to associated fields. e0 = e0)
IMPORTANT: Use brackets [ ] on arrays instead of parenthesis (), always! It is easier to tell them apart from lookups.
Totaling Months with Arrays
Often people have devised accounting systems in filePro that do the job at hand, but dont lend themselves to future expansion and needs. One such situation is where a record



holds a series of payment fields and another series of fields to hold the dates of the individual payments. People usually pick a number of payments that they dont think will be
exceeded. Lets talk about a system that has had 10 payment fields (and 10 dates) allocated per record. A typical screen might look like the following:
Account Code: *1
Company Name: !2

PAYMENT HISTORY
 Date  Amount
 Payment 1: *78 *35
 Payment 2: *79 *36
 Payment 3: *80 *37
 Payment 4: *81 *38
 Payment 5: *82 *39
 Payment 6: *83 *40
 Payment 7: *84 *41
 Payment 8: *85 *42
 Payment 9: *86 *43
 Payment 10: *87 *44
   ====

Total Receipts: 160
Payments and their receipt date are put into the next available pair of fields. Everything is fine and you can easily get a total of payments made by adding all the payment fields
together. But what if YOU want to know how much money you received during the month of May, or how much was received on a particular day? It is possible that the specified
range of payments fall into any of the 10 allotted fields...
You will need to build a processing table for a report that tests every single date field to see if it contains a date within the desired range, and if it does add its partner amount into
the total. To do this conventionally with field numbers would require many lines of programming! This kind of hard coded programming is also inelegant. (As if you care! Its the
massive amount of typing we all hate.)
The report can be built quickly (and elegantly) with arrays. We can overlay arrays over the fields and refer to the array name and an element number instead of the actual field
numbers. It requires that the 10 (or however many payment fields you need) are contiguous in the Define Files Map, and the 10 date fields for these payments must also be
contiguous.
You build an output report that says something in the Total Lines Area like:

THE TOTAL RECEIPTS FOR
*bd to *ed were *aa
Thats all. Then you build processing attached to this report which does the following. First it asks the operator for the date range required, (for May the beginning and ending dates
of May are entered, for any particular day both the beginning date and ending date can be the same. The processing dimensions an array called date with 10 elements and overlays
it on top of the 10 date fields. It does the same with an array called amount and overlays it on top of the 10 payment fields. In the example these fields start at 78 and 35 respectively.
The syntax shown in line 6 makes the first element of these arrays start on the specified field and every subsequent element of the array is equal to every subsequent field, net
date["2"] is equal to field 70 date["3"] is equal to field 80 amount[t1"] Is equal to filed 35, cat["5"] Is equal to field 39 and so forth.
The processing starts at the first element in the date array (because "i", the array index, starts out being set equal to "1") and if the first date falls within the requested date range,
the associated payment, (also using a index of "i" or "1">is added into the total, field "aa". Then "i" is incremented tested to see if it exceeds 10 (the maximum number of elements in
our arrays) and if it isnt, everything happens again, if it is greater than 10, the process Is done on this record and the report moves on to the next record and its data. Because the
totaling field "aa" is global it will hold its value from record to record. At the end the report will print the total of all payments received within the specified date range.
To use this table on your own records that are structured like the above example, be sure to set the array sizes to the number of fields you have set aside for payments and dates.
Overlay the arrays on top of the starting field in each group (line 67. Then be sure to set the boundary check on line 8 to the number of elements you have defined for the arrays.
You will find that if you understand the nature of how arrays are working in this example, you will be able to use their power and efficiency in many other applications. (HINT: Make
me 10 date fields an associated Held group and the amount field another associated field group. Thus will here in many instances. As an example, if the dates are associated fields,
you could scan for all payments in a particular date range. This would be a very complicated group of selection sets to write otherwise and selecting on a particular date would be
extremely difficult to do.).

If: ad ne ""
Then: goto doit
sdate If:
Then: input sd(8,mdy/,g) "Enter beginning date?"
If: sd=""
Then: goto sdate
edate If:
Then: input ed(8,mdy/,g) "Enter ending date?"
If: ed = ""
Then: goto edate
doit If:
Then: dim date[10]:78 ; dim amount[10]:35
If:
Then: I(2,.0)="1"
Loop If: I gt "10"
Then: end
If: date[i] ge sd and date[i] le ed
Then: aa(7,.2,g)=aa+amount[i]
if:
Then: i=i+"1";goto loop



AutoIndexSelection - Version 5.8.01
 
See IXSEL and -SX flag - (Version 5.8.03)
 
Automatic indexes now have the advanced feature of being able to attach a selection
set to the index.  This enables you to have only certain records that meet the selection
criteria to be included in the index.
 
In index maintenance. when you press F8 for Options...

... you will now see an option for adding a selection set.

Enter Y to set the selection set for this index.  The selection screen looks the same as the Extended Selection
of IUA (dclerk) however it cannot be saved since it is part of the index.  It will remain part of the index and it
will be used to determine rather other filePro programs need to delete or add records to this index.
 
IMPORTANT NOTE:  If you update the key field and that action removes the record from the selection index, then pressing B for browse or using a getnext will continue from that record's location
which means it has fallen OUT of the index.  It is best when this happens to re-execute the index scan or lookup to get back into the desired selection set index.



Clone Files
Big Hint: Making a clone file can save your act. Keep an audit trail of everything that happens to a particular data set. If you have ever had a user tell you "I didnt do that" and you
can see that they were the last person to update the file, it makes for a difficult session. You "think" they might have been the one, but you cant say for sure. Here is the solution.
On the files where you have this kind of trouble, or on any file for which you want to keep accurate track of every change, do the following: store exactly what happens to each field
of the record from the time it is created; every single change along with date/time/user stamp. You will never have to guess again.
The idea is simple and it can be carried out in a variety of ways. Here is how I do it.
1. Build a "logging file" to capture the log information. This file should have fields for containing the filename, the process name, the field #, the unique ref # for the record, the
original data, the changed data and the date/time/who for any file you wish to track. The original data field and changed data field should be 79 characters long. Call this file
something like "myprefixlog".
2. First, I copy the file I wish to track with "fpcopy". Only the file structure is necessary, nothing else. Give the new file the name "oldfilename.l" for "log".
3. Next, build an array in the "input" table of the file to be tracked that contains every record in the file.

Dim clone[#]:1
Where # is the number of fields in the file.
4. Whenever there is a possibility that fields may change, do a lookup free to filename.1 and build a similar array over that file and immediately copy the original file/record to the
clone file/record.
5. When the record is finally stored, compare the two arrays element by element. If any field has changed, write the original value, the changed value and the date/time/who into
your actual log file (myprefixlog).
6. By indexing "myprefixlog" correctly, you can instantly see every change in chronological order for any file.
Here is an example of this code. Your values would have to change to suit one of your own files.
This snippet has to be "atomically" close to the real END statement of your processing table.
 
 
If: clone

Then: gosub changed
If:
Then: end

As soon as there is a chance that some fields may change, you must get the free record in the clone file. This is a simple gosub.
@keyU if:
then: gosub clonit

The actual cloning code looks like this:
If:
Then: lookup clone=npio r=free -e
If:
Then: copy clone
If:
Then: dim before[566]:clone(1) ; write clone
If:
Then: c(8,.0)=clone(@rn) ; return



Debugger
This Section Contains

Description
Turning the Debugger On
Turning the Debugger Off
Using the Debugger
Debugger Options
Running Operations
Finding Values
Isolating Errors
Testing New Statements
5.0 Enhancements

Description
Once engaged, the debugger allows you to step you through your processing tables one step or one-half step at a time.
A step for debugger purposes is considered to be one if-then element of a processing table. However, it is very important that you realize where the debugger is pausing to allow you to examine the
process. It stops after testing the "If" condition of each element and allows you to enter debugger commands until you press RETURN and cause it to execute the "Then" line.
Turning the Debugger On - Three ways:
While on line in dclerk by pressing "!b" at the Enter Selection prompt. Nothing will appear to happen, but the next time you press U for Update the debugger will be engaged.
From within processing, by putting the DEBUG command on the appropriate line in the processing table.

Syntax:
Then: DEBUG ON
Example:

If:
Then: input q(1,yesno) "Turn debugger on? (Y/N):"
If: q="Y"
Then: debug on

3. From the operating system command line (or menu action line) by using the flag -db.
Example:

/appl/fp/program filename -db
Turning the Debugger Off - Two ways:
1. While on line in dclerk or dreport by pressing a "q" at the Enter command prompt.
2. From within processing, by putting the DEBUG command on the appropriate line in the processing table.

Using the Debugger
Steps
1. From the Inquire, Update, Add option line, press "!B".
2. Press "U" to update.
3.Debugger appears at bottom of screen.

Layout
True--------------------------------------Prc. Name: automatic
If:
Then:
Enter Command >

Prompts
 Prc.Name:      the current table

 True/False     shows the result of testing the current "If" line
If:            the current element
Then:

Enter Command >     your debugger command

 

Debugger Options
Looking
 

L = Look Lists the processing one line at a time without executing any of the actions.

ARROWS Moves you up or down in the table

F = Find label Enter a label name. Program goes to that label and returns to the "look" options. Use arrows or press RETURN to go back to start.

N = Line Number Enter an element number.

P = Print Prints the selected lines.

RETURN Returns you to the line from which you started.

DELETE Returns you to the line from which you started.

 

Running Operations
 

RETURN Executes the element shown and shows the next element and the value of its condition. Redraws the screen and displays changed data.

S = Single Step Executes the element shown and shows the next element and the value of its condition.

D = Display Displays results, on the screen, of the processing up to that point.

H = Half Step Like "S" except that the next condition is not executed.



 

Finding Values
 

F = Field Enter a field number, a dummy field letter, or a system maintained field and the value will be returned.

E = Expression Evaluate expressions and show the result. It can be used to see the contents of fields just like the "E" command.

It can also show you the value of any expression containing fields. (3 * 4) Any valid expression can be tested.
Another useful expression is a lookup field. Type filename(n) on the command line and the value is returned.
Literals can also be part of a valid expression so you could test values such as this: (3 + 4/"2.2").
Date math can also be done using the e command.
 

Isolating Errors
 

B = Break Stops the processing at the point indicated. You may stop and start the debugger, testing along the way. There are three ways to set break
points:

N = Number Stop at the designated line number. Maximum of eight.

C = Condition Stop when the designated condition is met.

F = Field Stop when the designated field changes value.

C = Continue Runs the processing table through until it reaches a break point. Changing from one table to another (automatic to input) constitutes a logical
break point.

I = Ignore Ignores any break points for the remainder of the current record.

R = Remove Removes line number break points.

 

Testing New Statements
 

A = Action Write and test new actions. The "A" command is very useful for testing situations that dont exist on the record you are examining. The best use
is for "what-if" testing. You can for instance set a date to a certain day to test particular date processes and so on.

Q = Quit Turns off the debugger and returns you to normal program control.
DELETE (Break) Use to break out of specific operations.
F10 Help Displays the debugger help screen.
5.0 Enhancements F8 (Extended functions) provides additional debugging options as follows:
5.8 Enhancements Break points will now accept long variables  (The scope of a longvar is different from a normal dummy field. Technically, longvar is not at a true

global scope, and isn't available in the automatic processing table.  Declaring it 'g' only will work       across records, but not tables, declaring it
GLOBAL will fix that, but it has to be matched with an  EXTERN in the other prc table.

L Displays all lookups within the processing table, along with their status e.g. closed, failed, or open.
F Displays all open files.
"*" An asterisk marks which is the current lookup for a given alias.



DROP ALL
DROP ALL is the enhancement added in 4.5 that makes browse lookups function as flexibly as regular lookups. It is now possible to stop the browse lookup from searching the
entire file in either direction (forward or backward) based on any criteria. Without DROP ALL, each individual record in an entire file had to be DROPPED individually even after all
the desired records were in the browse window.
Example:

58 ------ - - - - - - - - - - - - - - - - -
@keyV If: @cd=""

Then: end
59 ------ - - - - - - - - - - - - - - - - -
If:
Then: td="What beginning date? (yy/mm/dd)\n(RETURN=earliest on file)==>"
60 ------ - - - - - - - - - - - - - - - - -
If:
Then: input popup d(8,ymd/) td
61 ------ - - - - - - - - - - - - - - - - -
If: d=""
Then: d="01/01/01"
62 ------ - - - - - - - - - - - - - - - - -
If:
Then: ba="(brw=18 show=pkeep pop=2 prc=prcV fill=asc,top)"
63 ------ - - - - - - - - - - - - - - - - -
If:
Then: bb="[ChkDate Check# Gross FIT FICA SIT Ded
s Net]"
64 ------ - - - - - - - - - - - - - - - - -
If:
Then: bc="*2 *3 *15 *17 *18 *20 *75
*16"
65 ------ - - - - - - - - - - - - - - - - -
If:
Then: ky=1&d
66 ------ - - - - - - - - - - - - - - - - -
brw1 If:
Then: lookup ref = nexprhst k=ky i=a -ng b=(ba&bb&bc)
67 ------ - - - - - - - - - - - - - - - - -
If: @sk="SAVE"
Then: clearb;end
68 ------ - - - - - - - - - - - - - - - - -
If: @sk="BRKY"
Then: clearb;end
69 ------ - - - - - - - - - - - - - - - - -
If: not ref
Then: clearb;end
70 ------ - - - - - - - - - - - - - - - - -
If: Enter will close down browse
Then: clearb;end
71 ------ - - - - - - - - - - - - - - - - -
prcV If: *prcV
Then:
72 ------ - - - - - - - - - - - - - - - - -
If: ref(1) ne 1
Then: drop all ; end
73 ------ - - - - - - - - - - - - - - - - -
If: ref(2) lt d
Then: drop all ; end
74 ------ - - - - - - - - - - - - - - - - -
If: ref(2) gt d in some cases DROP ALL does it all!
Then: drop all after ; end
75 ------ - - - - - - - - - - - - - - - - -
If: ref(2) lt d and BEFORE and AFTER become superfluous
Then: drop all before ; end
76 ------ - - - - - - - - - - - - - - - - -
If:



Then: end

DROP ALL
Allows all remaining records in a file to be quickly dropped from a browse window.
Syntax
DROP ALL BEFORE
DROP ALL AFTER
DROP ALL

Notes
When using BEFORE and AFTER. the record you are on is also dropped.

Examples
You want to do a lookup browse to see all the invoices for a particular month. Field one of the file is the customer number, field two is the date.
Then: Input dt(2,.0) "what month do you want to see enter 01-12" <dt
If: dt gt " "
Then: lookup inv k=1 i=a -exm b=("brw=8 prc=date file=asc, top)*1 *2
Then: end
date if:
Then: zz=mid(inv(2),"1","2")
If: zz lt dt
Then: drop all before
If: zz gt dt
Then: drop all after
Using this logic, only the records that are in the requested month show and the data processing did not have to be done on every record for that customer.



HELP Screens
The Help utility
filePro allows for the creation of extensive Help screens, specifically designed for each application you build.
More importantly, Help can be provided in several different situations.

 

Types of Help
1. Press the Help key (termcap designated, ansi=F10) while within a field and receive help information for that particular field.
2. Press the Help key while at the option line in Inquire, Update, and Add and receive help for the current screen being displayed.
3. Specific Help can also be displayed from the processing table based upon varying conditions or triggers. By using @whp### processing or by using the HELP command or any
combinations, you can provide very elaborate and/or useful Help for your applications.

Steps
1. Use a text editor or word processor to create an ASCII file named "help" in the directory of the specific "filepro file".
Unix: vi /appl/filePro/filename/help
Windows: edit C:\FILEPRO\FILENAME\HELP
2. The contents of the help file determine what help is given to the user and can also specify at what points.
Help for a field
##Fn
Helpful text ...
where "n" can be a real or dummy field
 

Help for a screen
##Sn
Helpful text ...
where "n" is a screen number or name
 

Help called from within processing
##helpname
Helpful text ...
where "helpname" can be any name of up to 16 characters. Named help screens are accessed from a processing table.
HELP for any type of entry is ended by the occurrence of another entry (##xn), or by the end of the HELP file itself.
Example - Help on field and screen triggers
##F28
Please fill this field with the name of the purchasing agent
for the customer being added. If you do not know the name,
please enter N/A.
##S3
You only need to enter information on this screen if the account has a bad credit rating. The credit rating is displayed on the bottom left of this screen in RED.
##AA
Please enter the amount of the overdue charge to be added to the customers invoice.
Example - Help Displayed From Within Processing

##helpname
Before you print this invoice, check to be sure the proper paper is in the printer. Align the print head to the exact top of the paper.
Example: From the Input processing table

@whp27 if:
then: HELP "helpname";screen ,27

or
@wlf27 if: 27 = "?"

then: HELP "helpname";screen ,27

HELP can be multiple pages.
If the HELP for any of these entries were several pages long, filePro would allow the operator to scroll backwards and forwards through the HELP until he/she presses RETURN to
re-enter the application at the point they left.
HELP can be indexed.
If you want to include indexed help, add a line to the section of the help using prefix "@@@" keyword1, keyword2, etc.
Figure AC-01 is a portion of the "Define Processing" help screen for commands ABS and ACCESS which depicts the use of @@@ ABS, ACCESS to create indexed entries for these
commands.
 



Figure AC-01 - Indexed Help
The end-result of these indexed help entries is depicted when pressing [ F9 ] after invoking help in " Define Processing ". See figure AC-02.

Figure AC-02 - Index Help Displayed
The HELP keys can be changed in the termcap entry with an entry for the sequence and the label. See the Terminal Guide section of this manual.
Finally, this is the actual testing and logging code.

If:
Then: show popup "Please wait while files are being updated."
If:
Then: dim after[566]:1
If:
Then: i(3,.0)="1" ; yy(8,ymd/,g)=@td ;ti(8,time)=@tm

chgloop If: i gt "566"
Then: delete clone;clears;return
If: before[i] eq after[i]
Then: i=i+"1";goto chgloop
If:
Then: lookup log=npilog r=free -ep
If:
Then: log(1)="npio"; log(2)=412 ; log(3)=yy ; log(4)=ti ; log(5)=@id
If:
Then: log(6)=i ; log(7)=before[i];log(8)=after[i]
If:
Then: log(10)=1 ; log(9)="npio/input"
If:
Then: write log ; i=i+"1" ; goto chgloop

 
When someone has a question about this file, you can look in the logfile based on the file you are tracking and its unique reference #. Each change will be cataloged.
You can make a screen for your logfile that tells the whole story. No one can dispute the documented truth.

Transaction Log Screen
In file: !1 Ref#: !10
Unique record#: !2
Field#: !6 was changed by !5 on !3 at !4
 
From
!7
to
!8
Note: If you have a slow machine, you could build two other arrays of only 1 element each for the total number of characters in the file you want to track. Then, before doing the
changed loop, test each array against each other. If there is no change between the one element arrays, there obviously wont be any change to any individual field and you have
nothing to write to the logfile. This first big test is not necessary on a fast machine. Checking the arrays on a 566 field record with almost 5K of data per record takes up minimal time.



Integrating Concepts
Thanks to John Esak for providing this general overview.

In [rd]clerk: When filePro retrieves a record, whether you get it by pressing the down arrow in dclerk, or going through scan or an index, ... whether you are coming off the browse screen into the full
screen mode or already in full screen mode ... _before_ you see the record on the screen, the automatic processing is run against the data in that record. Then, after the first encountered "end" on
the automatic table, the @entsel processing is run. In other words just before the cursor is put at the "Enter Selection " prompt, the @entsel processing is run.

Now, let's say you are sitting at the Enter Selection prompt and looking at this record which has just been run through those two processes and everything looks fine. You press "U" to update the
record and filePro will immediately retrieve the record again and run and run the automatic processing again before it puts your cursor into the first field on the cursor path. It does this because the
record may have been altered during the time you've been sitting there perusing it at the Enter Selection prompt. Good idea... now you have the latest copy of the data, properly adjusted and bashed
about by your automatic processing, your cursor should go into the first field on the cursor path... but no, first it has to run through any @wefxxx that exists for that field!  So, just retrieving the
record and pressing "U" to update it, you've run it through automatic twice and @entsel twice... and now @wefxxx. No problem, both AUTOMATIC and @ENTSEL processing should have NOTHING
on them that alters real fields. This will be "noted" and "ignored" by any @entsel processing that tries to alter a real field... but you must be smart enough not to do it on the AUTOMATIC yourself...
filePro _will__ actually _let_ you alter a real field on AUTOMATIC, but _don't_ do it! It is an EXTREMELY, HORRIBLY bad thing to do.

Why? Simple... the record is not "locked" by AUTOMATIC processing, so you can't be sure someone else doesn't also have a copy of that record, changing it at the same time you are....  Meanwhile,
back to the flow of processing in [dr]clerk. You will note, that after retrieving a record, pressing "U" to update it, at no time have we yet run _any_ INPUT processing. The INPUT table processing
pointer is still firmly clamped at line 1 or loosely called the TOP of the INPUT processing table. It _has_ moved some other processing pointers around, the one for the AUTOMATIC table, the one for the
@entsel processing, even the one for the @wefxxx processing have all been moved through their little processing snips, but the main INPUT processing pointer has not moved at all. It is at "the top" or
line 1. The  main INPUT processing gets run only when the program or the user say it's time to "store" the record. This situation happens 99% of the time when the user presses the key designated for
this purpose, in Unix usually
ESCAPE/ESCAPE, in Windows just ESCAPE. (This key can be changed...) The other 1% of the time, the running of the INPUT table can be forced by actually issuing the "SAVE" command.  (I do
actually use this command, but it is only in very, very, rare and usually special circumstances.) In general, the INPUT table is left waiting, never to run, until the user presses the key himself to do it.

Why explain all this? Because, in that 99% of the time, filePro is going to store the record and run the INPUT processing table for you "automatically", you don't have to engineer it with the "SAVE"
command.  Even if your
cursor is in various fields when the ESCAPE/ESCAPE is pressed... filePro will still run the @wlfxxx snip as usual, then just after the ending command of that @wlfxxx is encountered, the INPUT table
picks up from wherever its pointer is positioned... usually the "top" of the table. The times you may NOT want to run the @wlfxxx code _again_ before running the INPUT table are some of the times
you might actually want to put the "SAVE" command on the very first line of the @wlfxxx and act on it before the other stuff. Like in your example.

@wlfxxx    if: @sn eq "something"
    then: SAVE
if: 'other stuff that happens if they are
         then: 'not on this screen.
           if:
       then: end

Now, you mentioned setting them back to the beginning of the INPUT table with the "RESTART" command. Of course it will do this, but there is a not so subtle difference. The RESTART command
would put there cursor _back on the screen at the beginning of the cursor path and move the INPUT processing pointer to the "top", i.e., line 1. BUT, the ball would be back in the user's court. The
SAVE command would not give the ball back, but simply start running the INPUT table.

Why is all this important? Because, there is one more thing which must be added to the mix to get to the reason for the behavior you saw in the debugger. AFTER the user has pressed the SAVE key
(escape/escape), the INPUT table is run, yes, but immediately after it encounters its first "end" statement the AUTOMATIC table is run one more time... why? Because you may have changed some
data on the record and you want to massage it again in the same way you did when you first retrieved it but now with the newly updated data.  Hey! pretty good, so now we finally get to see
everything...nope... there's that pesky Enter Selection prompt... and what runs just before the cursor is placed there? Yup! @entsel processing.  Now, you've got the whole picture, or a lot of it. The
flow of processing is very important, because it is one thing you can count on working the same way, every time, all the time.

Now, how is it you saw the AUTOMATIC table running first. All I can guess is you had possibly forgotten that first "end" on the INPUT table. Then when the user pressed ESCAPE/ESCAPE you saw
the @wlfxxx processing label come
up and thought it was running because they were leaving that field... well, yes, it was, but it was running because filePro first ran your @wlfxxx snippet as it should, which you saw... then it ran the
INPUT table from the top because you had put an explicit "SAVE" command as the first thing to do... in which case it would now be looking just the same in the debugger... my guess is you had to
press ENTER one extra time before you saw the AUTOMATIC table running in the debugger and you just ignored this. I do this all the time while in the debugger. You press the ENTER and think you
somehow didn't really press it because you are seeing the same thing twice... in this really strange case you've bumped into, that is exactly what it would do. You're right very confusing. Putting an
"end" as the first
> line in the INPUT table would prevent this.  Unless, of course, there actually IS some INPUT processing that needs to be run... then be sure there is an "end" somewhere along the way, just so the
processing doesn't "fall" into the @wlfxxx processing snippets by accident.

Okay, all clear as mud?  good. :-)  The reason's I've gone all through this stuff (which I realize you and most people may know) is this... To reiterate, just once more, I promise... :-) The @entsel
processing and any other trigger processing (@wefxxx, @wlfxxx, etc.) in clerk have to be put on a processing table somewhere. filePro mandates that this trigger processing has to be on the INPUT
table.  So, where does it all go??? It must come after an "end" statement. The way filePro differentiates "what" is the INPUT processing part of the INPUT table and what are the other trigger parts of it
like @wlfxxx, @wefxxx, @wukxxx, @whlpxxx, etc.) is to set aside all the lines from line 1 until the first encountered "end" statement for it. (This is really a fantastic thing and sets up a very useful
symbiotic relationship between the two types of processing... even though they are NOT connected at all in any specified way, unless _you_ arrange it. More about this later.) You can badly obviate
and break all this wonderful schema by not remembering to put an "end" statement to delineate the END of INPUT processing. :-) A troubling "statement" in itself. Yes. But the simplest demonstration is
this. If you had the following as the entire INPUT table:

@keyZ   

1      then: show "@I am @keyZ processing."
         if:
2      then: end

It would only work badly, in that it would work twice... which is sort of a screw-up all around. It would work if they press Z, but it would also work when they press "U" and then ESCAPE/ESCAPE....
which you probably do NOT want.

Whereas, doing the way we all know it should be done:

1      then: end
@keyZ    if:
2      then: show "@I am @keyZ processing."
          if:
        then: end

The above is perfectly fine INPUT table (with NO input processing at all, but just some trigger processing.)  It doesn't mean there is actually no INPUT processing, because INPUT processing _still_ gets
run, it is just that the only thing INPUT processing is telling filePro to do is "end". That step actually does get executed, it just obviously does nothing. If it weren't there, filePro would run the stuff you
only wanted to be run when the keyZ was pressed. It would run because INPUT processing starts from line 1 regardless of what the label says. So pressing key Z would make it show " I am at the
@keyZ processing." and also pressing "U" and ESCAPE/ESCAPE would do the same thing... probably not what you meant by the code. filePro is often knocked for the fact that the first line of the
INPUT processing table is
often END. :-) Everyone knows that this simply means there is NOTHING to be done when the record is saved and written out.

Now, let me write some ABSOLUTELY terrible, really BAD code to demonstrate that symbiotic thing between the INPUT table processing and trigger snippets. You might actually do something like
this... but don't. It's just an example of why having all these things on the same table can be VERY confusing as you said.



       then: show "@hello, I'm in INPUT processing now."
totals   if:
       then: 14=7+8+9+10+11
         if:
       then: display
         if:
       then: end
@wlf12 if: 12 eq "Y"
       then: goto totals
         if:
       then: end

The programmer here (who shall remain nameless) is doing something that filePro will allow him/her to do, but it only works because filePro does what it does without flinching... and you are just lucky
if you write code like this and can figure out later when things get more complicated what's going on. Sure, you are ending the @wlfxxx processing with an "end" statement, one of the 5 commands
that will properly end the @wlfxxx snippet, but you've done it sort of sneakily by co-opting the end of the INPUT processing table. This would all be so much better written by doing something like this:

         if:
       then: show "@hello, I'm in INPUT processing now."
         if:
       then: gosub totals
         if:
       then: display
         if:
       then: end
totals  if:
       then: 14=7+8+9+10+11
         if:
       then: return
@wlf12 if: 12 eq "Y"
       then: gosub totals
         if:
       then: end

Now, you still get to use stuff that may be shared with the INPUT processing, but you are doing it much more clearly and explicitly... i.e., in a way that will be much easier to read as the processing
gets more and more complex.

Which brings us to the next level.

top      if: @sn eq "4"
        then: form "something";  screen 5;  goto top
          if:
        then: screen 9
          if:
        then: end
@wlf12   if: 12 eq "Y"
        then: screen 4
          if:
        then: end

Let's say the user starts out on Screen 1 and field 12 is on screen 1. Different things will happen based on whether he puts an X in this field or not. The relationship between the INPUT processing
and the trigger processing can be non-existent, or it can be very tightly integrated and interdependent as shown above. It's all in what you arrange... knowing the flow of which processing runs
when... what *ends* an @wlfxxx snippet.

There are 5 things which do this, END, SKIP, SCREEN, RESTART and, EXIT. Remember the not-so-subtle between RESTART and "goto top" being that RESTART gives control back to the user, goto top
doesn't. There are zillions of variations to all this, but here is one important one. If you are using @key processing, the flow is this... first the AUTOMATIC table is run, and _then_ the @key processing
is run until an "end" is encountered. INPUT processing is not considered at all. You could, of course, invoke INPUT processing from @key processing by using the RESTART command.

@keyT    if:
        then: do some stuff
           if:
        then: restart

This would END the @key processing snippet, and deposit the user into the first field on the cursor path. The next time they press ESCAPE/ESCAPE, the INPUT table would run from the top.
Interesting, huh? (Remember also, that after this, the AUTOMATIC table and the @entsel snip would run as well... :-)

Okay, hope all of that helped and you aren't more hopelessly confused. If I've messed something up in my description, forgive me, it is late after a long day.  Oh yeah, just one last thing... what I was
going for at first to help describe another reason why the AUTOMATIC processing appeared to be running first.  If you have already run _part_ of the INPUT processing.... that is where the INPUT
processing pointer will be, and where processing will begin again when ESCAPE/ESCAPE is pressed (or you hit that "SAVE" you had put in the @wlfxxx snip.) Consider you've done something like
this:
1      then: do a lot of stuff; do more stuff
           if: something equals something
2      then: some more stuff
          if:
3      then: screen 7
          if:
4     then: end
@wlfxxx  if: @sn eq "7"
5      then: form "blah";  SAVE

If the user has pressed ESCAPE/ESCAPE once already before ever entering field "xxx", then the INPUT processing table has "already" started running and has stopped at line 3, the screen 7
command. Assuming field "xxx" is on Screen 7 and the cursor goes there, when the user presses ESCAPE/ESCAPE this time, the INPUT processing will start up where it left off, which would be the
next command immediately after the screen 7 command in this case just
ending the INPUT processing. You would only see the end command in the debugger and then the AUTOMATIC processing would appear.
Obviously, we can't tell exactly why you saw AUTOMATIC processing running first, but I can assure you it was because you were somehow telling filePro to do this.... In other words, it actually did
run its normal flow of
things and it just appeared to not be running the INPUT table... (again, I think there might have been a doubling of the @wlfxxx because of no "end" statement above it... and things just appeared
messed up.
Good luck. Regardless of what it was. It seems you've fixed it with a RESTART, I hope this helped a little anyway.



LISTBOX Command
The LISTBOX command allows you to put up a series of choices and capture the element number of the one chosen by the user. You can use this number to GOTO or GOSUB
through routines associated with each individual choice.
Here is something useful you can do with LISTBOX and printing.
After a new invoice record is placed on file and the user presses ESC ESC to store the record, the question is asked, "Do you want to print an invoice?" If the answer to this
question is yes, the form is printed. In the past, all invoices printed on the same main printer in an outer office. This is inconvenient. If each user has access to his own printer, and
this personal printer is named after him, personalized printing can occur very easily. You may find that an adaptation of the following will work for you too.
LISTBOX puts a window up on your screen. The size and location of the window are preset by default, but can be altered to suit your needs. The contents of this box are really a
menu of choices, with the standard filePro highlighted bar cursor and selection mechanism. (You can press the first letter of any of the choices and the cursor jumps right to it.) The
choices are elements of an array, which you fill on the processing table. They can be variable and change each time you call up the LISTBOX. In this example, they are variable
based on the login name of whatever user is operating the program. (In this model, provisions are made for only four users and "hard-coded" into the table. The implementation at
Guru Headquarters is actually more elaborate, and dynamically allows for new users/printers, but this example is meant only to illustrate a good use for LISTBOX. This function is
more clearly presented in this manner, and not obscured by the other code.)
Besides the ability to print an invoice (or any form, of course) on any of three printers, the added sophistication of defaulting to the users own printer is very friendly. When Robin
is logged in at her terminal, she sees her printer as the first (default) choice and can just press RETURN under normal printing conditions. If, for some reason, she is logged in at
Karens terminal and wants to print, as always, at her own printer, she still just presses RETURN as usual. She would need to make a conscious decision to move the cursor bar or
pick a different selection by letter if she doesnt want her default. (You would be surprised how many times it Is necessary to print on anothers printer... out of paper, letterhead isnt
loaded, printer is broken, someone forgot to buy new toner, printer isnt warmed up yet... etc., etc. If you cant think of any other reasons, call Robin or Karen; theyll give you a bunch
more. -ed)
Processing: input

If:
Then: your input processing goes here
If: Build an array that holds 3 elements (printer names)
Then: dim printers[3](10)
If: @id="karen" fill array based on person.
Then: printers["1"]="karen";printers["2"]="robin";printers["3"]="john"
If: @id="robin" making sure the running user is the first element
Then: printers["1"]=-"robin";printers["2"]="karen";printers["3"]="john"
If: @id="root" or @id="john"
Then: printers["1"]="john";printers["2"]="karen";printers["3"]="robin"
If:
Then: gosub doprint
If:
Then: end

doprint If:
Then: cls("21","4")
If:
Then: input q(1,yesno) "Do you want to print this invoice? (y/n) "
If: q ne "Y"
Then: goto label
If:
Then: show "\r What printer should be used? \r"
If:
Then: pr(1)=listbox(printers,"","","20","56")
If:
Then: printer type "dumb"
If:
Then: printer "lp -s -d{printers[pr]" ; form "invoice" ; printer reset
If:
Then: cls("21","4")

label  If:
Then: input q "Do you want to print a label? (y/n)"
If: q ne "Y"
Then: return
If:
Then: printer type "dmp2100";printer "lp -dlabel -s"
If:
Then: form label;printer reset;return



Logtext
There is a simple filePro-based message saving technique that can be used with the above audit trail technique, or for a myriad of other reasons.
This is a filePro command that makes it easy to keep various audit trails. Perhaps it was designed to aid in doing something like "clone" files, but it has many other uses.

The LOGTEXT command allows you to direct messages into a logfile from within clerk or report. Your output will go into a file defined by the environment variable LOGFILE.
If you set the environment variable LOGAPPEND, the data you send to the file will be appended at each instance of the LOGTEXT command, otherwise the file is cleared and
new data overwrites the old data.

Syntax:
LOGTEXT "message"
Where "message" is any valid expression. Be careful about quotation marks.

Example:
If: 14 gt CL
Then: logtext "Credit limit was exceeded by"<@id<"on

record#"<@rn<"on"<@td<"at"<@tm ; end
The LOGFILE variable must be set before using LOGTEXT.



Lookup Dash
Usually when you do a "lookup" it is because you want to retrieve data from, or place data into that "looked-up" record. Usually you look up records from other files. Occasionally
you must look up records in the same file you are "standing in", but still, you will want to retrieve some data or write some data to the record youve looked up. Not so with "lookup -
". This special lookup doesnt give you a chance to retrieve data or place data into the lookup record, it just MOVES you there immediately. What you do at that point is up to you,
but you are no longer "standing" where you were. "Lookup -" can not move you to a record in another file only to another record in your current file.
After putting the following four lines at the end of any input table (choose any file YOU are comfortable using), then pressing the "G" key will show you exactly what "lookup -"
does. It physically (from your point of view) moves you directly to the looked-up record. Do NOT pick a record number higher than the highest record in your file. This is just an
example of programming to demonstrate a feature, and it is not completely foolproof. Try this out and then read on.

If:
Then: your processing is above here
If:
Then: end

@keyG If:
Then: input re(6,.0) "Goto what record?"
If:
Then: lookup - r=re -e
If:
Then: end

You must modify the above piece of processing to look like the following if you want to have something you can use. The GOTO record number idea is not very useful, but it helps
demonstrate graphically how "lookup -" works.
To make this piece of code very useful, modify it to read as follows:

If:
Then: your processing is above here
If:
Then: end

@keyG If:
Then: input re(6,allup) "Goto what Account Code?"
If:
Then: lookup - k=re I=a -nx
If: not -
Then: show "@sorry, not on file";end
If:

(You must have index.A built on account code). To use this processing, you could either press "G" while at the Enter Selection prompt of any record, (which would do the same
thing as backing out to the index selection for account code and entering it from there) OR, you could access this @key from within processing. Whenever you want the operator to
be able to move to another account code, just use:

If:
Then: goto @keyG

Since "lookup -" saves out the record you are standing on, using this idea would be like pressing SAVE for the operator and then backing them out to the account code index. Also,
it can be done from a @when leaving field routine which would save many keystrokes for someone who is doing a repetitive updating task amongst varying account codes.
NOTE: "Lookup -" can be used (with caution) on the automatic table. Once I used it on this table to keep people from seeing various records based on their user ID. Its beyond the
scope of this discussion, but a description of the process, which you may be able to use, is as follows: An army base had a filePro file that had varying levels of access allowed
according to the operators rank. Captains could see captain stuff, corporals could see corporal stuff, privates saw very little and so forth. We gave each user a login ID (on the *nix
system) which had a number appended to his name, john200, bill300, mary400 etc. This number represented their rank. I could then use their login ID to govern access privilege to
this filePro file. I used the @id system maintained field to match against a list of privileges in the automatic table. If the record contained a 300 (in the access privilege field) and the
operator had a 300 or higher in his login ID, we let him stop on the record. If his login ID contained less than a 300, we "lookup dashed" him to the next record in the file. By
capturing UP and DOWN arrows and testing which way they wanted to go, along with keeping track of the way we put them into the file in the first place (which index and no
browse mode allowed), we were able to offer a slightly more secure filePro than the average bill of fare. Anytime they came to a record they werent supposed to see, the operator
was gracefully moved to the next available record. They were not even aware there were records they werent seeing. The managers loved it and have made use of the idea in many
other things theyve created since then. -Ed
Ultra Fast Selection With "LOOKUP -"
There is no question that the most spectacular use for "lookup -" is in conjunction with scan/selection sets. A picture is worth a thousand words, so picture this...
You have an invoice file with 48,000 records. Each day you generate about 100 new invoices. At the end of the day you want to print just the newly added invoices. Without
"lookup -", your invoice printing report takes 6 minutes just to select the correct records for printing. With "lookup -" the same report selects the proper records in 4 seconds!
Imagine this kind of savings throughout the day in many different reporting situations. How much time do you spend watching the Records Read/Selected at the bottom right of the
screen count up to the top of your file, before you see the Generating Output message in the middle of the screen start counting down? Eliminating (or drastically reducing to near
zero] this selection time WILL change your life.
Making this magic happen involves using a scan/selection table (a -v table as we users have taken to calling them) and requires building an index on the field we are going to select
by. For future reference we will call this the "scanning index".
Example 1: (Select by one criteria, i.e. status)
First make sure an invoice (or test) file contains a one character "status" field (or flag) that tells us whether the invoice has been printed yet. (Add a 1 character, allup field in Define
files to a test Invoice file to serve as this flag.) When you create the invoice, You must be sure (on the input processing table) to fill this field with a "W" to represent that it is
waiting to be printed. On the processing for the output report that actually prints these invoices, You must chance this field to a "P" to represent that it has been printed. By
selecting all records that have a "W" in this field, we will be getting all the newly created invoices (or those waiting to be printed, whether they are new or not). Obviously once you
print these invoices the status field will Set filled with a P" and wont be selected next time... which Is just what we want to happen.
Put the following into an output processing table called "flagsel". (You can name these lines whatever makes more sense for you, we pick names only for their descriptive value to
the lessons.)
(This is not the most elegant way to write this table, but it is the clearest way to show what happens when "lookup -" is used on a sort/selection table.)

Processing Name: flagsel
If: aa ne ""



Then: goto getit
askit If:
Then: input aa(l,allup,g) "Enter Status Code"
If: aa eq ""
Then: goto askit
getit If: 1 lt aa
Then: lookup - k=aa i=h -ng
If: 1 gt aa
Then: hv(8,,g)="Z" set HV to the highest possible value index can hold
If: 1 gt aa
Then: lookup - k=hv i=h -nl Get the last indexed record on file
If: 1 ne aa
Then: end
If:
Then: select;end

To implement this processing, along with your output report that actually prints the invoices, you would use the following command line:
dreport file -f invoice -v flagsel -a -ih
An English description of what happens when you execute this type of processing is as follows. The dreport program gets the first record in the "A" index. Line 1 is NOT executed
because at this point "act" is not equal to anything. The 2nd line then asks the operator what status flag to select records by. Line 3 forces them to answer the question and not
leave it blank. Line 4 now tests the status field on the record the program is currently standing on. If it is less than the status required, it does a "lookup -" to the next greater record
in the Index (which is the index we built on the status field). "Lookup -" causes the processing to save out the current record and move to the requested record. Now the processing
table runs to the top and starts processing all over again on this record. Now, since "act" is a global variable, it holds its value across record changes. This being true, line 1 is NOW
executed and the program bypasses asking the question again. The Process tests the status field again. This "lookup -" on line 4 will be executed over and over again until the first
record in the index that is not less than the status field is obtained. At this point, line 4s "if" line fails and line 5 tests if the retrieved records status flag is now greater than the
desired status. If it isnt, the process falls to line 6 and fails there also. At line 7, the test will be true, assuming you have some records with a "W" status. If line 7 tests false, the
records status must match the one desired and line 8 "selects" the record for further processing by the output report which will actually Print the invoice once all this scan/selection
is finished. The next record is retrieved and it starts all over again.
The magic trick is hidden in lines 5 and 6. As soon as a record is retrieved from the index that is greater than the desired status, the lookup key is changed to the "highest possible
value" for this type of index, and another lookup is done. But this time with the "-l" option, which tells filePro to get either an exact match for the lookup key or the "next lowest
value" in the index. Since the highest possible value for an allup field is "Z", we try for this. If it is there, it will fail the next "if" test and the process ends having selected all the
required records. If there is no "Z" record the next lowest one is retrieved and the next "if" line fails anyway. Both cases cause us to be moved directly to the LAST RECORD IN
THE INDEX. There are no records left to process so the selection process is over. All the "selected" records are then handed to the output table for its processing, one at a time as
usual.
As you can see that "lookup -" is jumping from the first record in the index to the first one that matches your criteria, then every record that matches from that point is "selected" for
output processing. As soon as the criteria no longer matches, "lookup-" jumps you past every other remaining record in the index to the last record on file, and scan selection just
ends normally.
Example 2: (Select by a range of values, i.e. invoice printed date)
Since this idea is SO powerful and time saving, it is worth exploring the myriads of ways it can be used. The next table is very similar to the preceding one but will select a range of
dates.
It should be self-explanatory now, and hopefully you can adapt this to other search criteria besides dates.
To make the below table function correctly, use the date the invoice was printed as your scanning index. In this example as your output report prints each invoice, this field must be
filled with @td (todays date). By selecting all records that have nothing in this field we will be retrieving all the invoices newly created today. (Obviously once we print the new
invoices, this field will get filled and they wont be new anymore... which is just what we want to happen.) By using a date instead of a flag to represent the printed date, we can later
reprint all invoices printed on a particular date, or do a report totaling all invoices printed that day, etc. Moreover, we can select a range of dates and do the same things.
Put the following into an output processing table called "datesel", and be sure there is a field to hold printed date in the file. We will again use field 37 to represent this key held.
Build index H on this field and use the following line to execute the selection:

dreport file -f invoice -v datesel -a -ih -h "Select By Printed Date"
Processing Name: datesel

If: da ne ""
Then: goto getit
stdate If:
Then: input da(8,mdy/,g) "Enter starting date?"
If: da = ""
Then: goto stdate
endate If:
Then: input db(8,mdy/,g) "Enter ending date? (RETURN=starting date)
If: db = ""
Then: db=da;goto getit
If: db lt da
Then: goto endate
getit If: 37 lt da 37 is printed date field
Then: lookup - k=da i=h -ng
If: 37 gt db
Then: ky(8,mdy/,g)="12/31/99" set TV to highest value index can hold
If: 37 gt db
Then: lookup - k=ky i=h -nl get last indexed record on file
If: 37 lt da or 37 gt db



Then: end
If:
Then: select;end

Getting More Out Of It
Once youve mastered this technique and have a few basic tables to play with, try doing more than one selection on the same table. For instance, ask the operator which group of zip
codes he wants labels printed for... his response could be 33000 to 39999 and 60000 to 69999 and others. Once you have all of his request, start a loop that puts the first range into
variables and selects them. Instead of "ending" when the first range is fully selected, change the variables to the next range pair and "goto" another iteration of the select loop. Do
this as many times as the operator gave you parts for the request. You must, of course, specify a limit to how many requests you allow the operator on one table. Store his choices
in as many variables as you need or want to allow. Arrays help in managing routines like this.



MENU Command
Another factory pre-built array construction is the MENU command. It is similar to LISTBOX in a way, but much more familiar because it mimics the filePro menus that you use all
the time. It does this as a processing command. In other words, you can put up a "menu" of choices and act on the response. There is a major caveat regarding the MENU
command. If you are going to use a processing menu, you must be aware that the user does not see much difference between one of these menus and a real filePro menu. While a
processing MENU is up on the screen, the record is "locked" because the user is still actually in INPUT mode. The user is really sitting at the point in the table where you are
waiting for his response. If he decides to get up and go to lunch while this type of menu is on the screen, no one else will be able to use that record until he comes back and finishes
his processing. This is very important to understand and program around. Either that or use processing menus very sparingly.

If:
Then: gosub domenu
If:
Then: end

domenu If: * domenu
Then: BREAK OFF
If:
Then: cls
If:
Then: dim mnu[12]
If:
Then: mnu["1"]="Company Setup and Maintenance -"<1
If:
Then: mnu["2"]="A: Company Data"
If:
Then: mnu["3"]="B: Fiscal Year"
If:
Then: mnu["4"]="C: G/L Account Types"
If:
Then: mnu["5"]="D: G/L Chart Of Accounts"
If:
Then: mnu["6"]="E: Checkbooks"
If:
Then: mnu["7"]="F: Accounts Receivable"
If:
Then: mnu["8"]="G: Accounts Payable"
If:
Then: mnu["9"]="H: Payroll"
If:
Then: mnu["10"]="I: System Generated Numbers"
If:
Then: mnu["11"]="J: Miscellaneous Defaults"
If: Here is where the menu gets put on the screen
Then: menu mnu do1,do2,do3,dosys,do4,do5,do6,do7,donums,do8
If:
Then: cls
If:
Then: input q(1,yesno) "Are you sure you are done?"
If: qq ne "Y"
Then: BREAK OFF;goto domenu
If:
Then: BREAK ON;return
do1 If:
Then: screen 1;goto domenu
do2 If:
Then: x=24;screen 2;gosub suretst
If: 24 ne "" and 168 = ""
Then: 51="0";52="0";53="0";54="0";161=24;162=47;163=24;164=47
If: 24 ne "" and 168 = ""
Then: 165=24;166=47;167=24;168=47
If:
Then: goto domenu
do3 If:
Then: fl="";dim new[1](80):11;dim old[1](80)
If:
Then: dim new2[1](16):95 ;dim old2[1](16)



If:
Then: old["1"]=new["1"] ; old2["1"]=new2["1"]
If:
Then: screen 3
do3a If:
Then: write;gosub suretst
If: fl=""
Then: goto domenu
If:
Then: dim typ[1](80):11
If: typ["1"] = ""
Then: goto domenu
do4 If:
Then: gosub cash;goto domenu
do5 If:
Then: ...
do6 If:
Then: ...
do7 If:
Then: ...
do8 If:
Then: gosub get8;screen 8;goto domenu

 
NOTE: As of 5.7.04, you can now run a menu command from outside of filePro
Example:  p menuname  -Xn

This will run menu option n, and then exit.
 



Negative number in "Number of Forms" field
Picture a check stub / check. The check stub is 22 lines and the check is 22 lines, for a report length of 44. You have tractor checks. (This is also adaptable to laser by just making the page length 60) where
the check stub is the detail of the report, listing the items to be paid, and the check is the subtotals section of the output.  You always want the check part to start on a certain line for it to print on the form
correctly.

You analyze the check stub and determine how many detail lines will fit on one page (there is usually some headings and stuff printed that might reduce the lines that fit).  You must also know if you are
printing one line or two lines per detail line (record in filePro).  Now you measure the space you have for detail lines, divide by number of lines / record.

So, you may have room for 10 one-line detail lines, or 5 two-line detail lines.  So you would set it to -10 in the first case, or -5 in the second case.
Another example would be for a pre-printed invoice form, where it has at the bottom a pre-printed place to put the total of the invoice. If the invoice is designed as a report in filePro which prints more than
one charge (record) on one invoice (page), and you want the total to print at the bottom no matter if the invoice was for 1 item or 10 items, then you would use this feature.
The "Number of forms down" will allow you to indicate how many detail lines fill a form to reach the subtotal location on the paper form.
Grand totals do no apply in this situation.  Grand totals are always treated as an additional page if you do not tell it to print on the last page, or added after the subtotals when you do tell it to print on the last
page.  A check or invoice would never make it appropriate to print the grand totals with the subtotals.  That would be a summary page that might be printed to tell how much was invoiced or printed.  (In the
case of the checks, it would waste a check.)

TRY IT

Make a report output, page length 60/66 (depends on what is your standard paper size.)
Add headings, detail line (one line) , and a subtotal section.  On the output setup, put -10 for forms down.
Select 5 records that would be in the subtotal section and print. 
Try selecting and amount in that subtotal group from 1 to 10 and see what prints.

Now filePro is certainly not having any trouble printing the subtotals it is just where it is to be printed that is affected.  Other processing methods might now allow similar results with different methods.
Thanks to Nancy Palmquist for providing this great trick and example.



O/S FILE I/O FUNCTIONS()
filePro has a full set of I/O functions that allow access and manipulation of operating system files. These functions can be used on any processing table.
Note: I/O functions cannot be used to access any file with a name formatted as a filePro file. For example, you cannot access a file named screen.1, index.A or key.
Refer to the following I/O functions links.

CLOSE Close an open file

CREATE Create a file with a name and optional permissions

FILESIZE Get the size (in bytes) of a file

OPEN Open a file for reading/writing

READ Read bytes from a file

READLINE Read bytes from a file up to a new line (or end of file)

REMOVE Remove an existing file

SEEK Move to a position in an open file

TELL Get the current position of an open file

WRITE Write bytes to a file

WRITELINE Write a line to a file and append a newline character



filePro PDF printing
filePro version 5.7.03 introduces the ability to print directly to a PDF document. There are two parts to this feature – specifying the destination, and the new FPML
"filePro markup language".
 
Specifying the destination
At its most basic, PDF printing is accomplished by specifying "PDF:filename" as the output destination. This will cause the output to be sent to the specified filename
in PDF format. Note, however, that any print codes must be in FPML format, as filePro will not translate other print code languages into PDF.
There are several options for the "PDF:destination" specification:

• PDF:filename
Sends the output to the specified filename.

• PDF:>filename
Sends the output to the specified filename.

• PDF:|command
Sends the output to the standard input stream of the specified command.
On Windows platforms, there are several additional options available:

• PDF:[open]
Creates a PDF document in the user's "temp" directory, and starts the default PDF application to display it.

• PDF:[print]
Creates a PDF document in the user's "temp" directory, and sends it to the default printer.

• PDF:[printto]printer
Creates a PDF document in the user's "temp" directory, and sends it to the specified printer.

• PDF:[edit]
Creates a PDF document in the user's "temp" directory, and starts the application defined as the PDF editor.
Note that the "[print]" and "[printto]" options will work with "Windows-only" or "host-based" printers, if the printer's device driver is installed.
 
FPML – The filePro Markup Language
In order to generate anything beyond "plain text" output, you need to use an XML-like "markup language" called FPML – the "filePro Markup Language" – to control
things such as text formatting and image processing.
For many simple reports and forms, a PDF file can be generated by simply changing the print code table to "fpml", and specifying a PDF destination as described
above. For more complex print jobs, you may need to include FPML in your output.
There is a new option on dmoedef's F8/Options screen – allow embedded FPML on form – which, if set, allows you to put FPML print codes directly on the form and in
data included on the form. Note, however, that this means that data cannot contain the "<" character, as this will be interpreted as the start of an FPML tag. With this
option off, it is still possible to embed FPML on the form and in data, by prepending an ESCape character immediately before the "<". For example:

xx = chr("27") & "<font color='red'>"
Unless otherwise noted, everything is case-insensitive. For example, these are equivalent:

X="CENTER"
X="Center"
x="center"

Values can be enclosed in single- or double-quotes:
FILE="foo.jpg"
file='foo.jpg'

Unknown tags are silently ignored.
 
The "fpml" print code table
filePro includes a new "fpml" print code table. This is based on the PCL print code tables already included with filePro. Any output format which uses a filePro-supplied
PCL print code table will likely work as-is by simply specifying "fpml" as the printer type, and giving a PDF destination. (Note that PCL codes generated in processing
will not work as-is.)
Format
The basic format for FPML tags is:

<TAGNAME ATTRIBUTE="VALUE" ATTRIBUTE="VALUE" … >
Note that, unlike XML, there are no "close" tags, nor do the tags end with a slash.
For example, to use the FONT tag to set the font to 18-point bold, you would use:

<FONT SIZE="18" BOLD="ON">
Remember, case is not significant, and you can use either single or double-quotes, so the following is equivalent:

<font size='18' bold='on'>
Note that numeric attributes can include decimals. For example:

<font size="14.4">
 

Page position
When specifying a page position, the coordinates start at (0,0) as the upper-left corner, within the margins. X increases to the right, and Y increases down the page.
Coordinates are specified in "points", which is the typography measure for 1/72 of an inch.
 
<NUL>
A no-op. This does nothing, and any attribute/values that are given are ignored. This is useful in places where you build the tag at runtime, and may need to have a



placeholder when nothing needs  to be done.
 
<PAGE>
Sets the page size and orientation. Note that, if data has already been sent to the current page, this  will implicitly start a new page.
All attributes are optional.
SIZE Specifies the page size

• LETTER
• LEGAL
• A3
• A4
• A5
• B4
• B5
• EXECUTIVE
• 4x6
• 4x8
• 5x7

ORIENT or ORIENTATION Specifies the page orientation
• LANDSCAPE
• PORTRAIT
• Alternatively, an explicit height and width can be specified using HEIGHT and WIDTH.

The default is LETTER, PORTRAIT. This setting will be retained until explicitly changed.
Margins are currently fixed at 1/4 inch.  NOTE: You must specify BOTH height and width, otherwise, the PDF library interprets a single dimension as an invalid size
and sets it to standard before we can access it.
Example:

<page size="letter" orientation="landscape">
<page height="396" width="612">

Version 5.8.02

There are several MARGIN attributes you can set on the <PAGE> tag:

 Margins are set with the MARGIN* attributes 

   MARGINT|MARGINB|MARGINL|MARGINR=”margin” 

 This will set the top/bottom/left/right margins independently. 

    MARGIN=”margin”
    MARGIN=”marginTB,marginLR”
    MARGIN="marginT,marginRL,marginB"
    MARGIN=”marginT,marginR,marginB,marginL” 

(The order of the margin settings corresponds to the CSS3 order.  See <http://www.w3schools.com/css/css_margin.asp>.) 

This will set the margin in groups.  Given one number, all margins are set the same.  Given two numbers, the vertical (top and bottom) and horizontal (left and 

right) will be set, each pair equal.  Given all four numbers sets all four margins independently. 

The default is 1/4 inch (18 points) on each  side.

Example:  Set the page to letter size, with ½ inch margins, except for a 1-inch margin on top.  There are several ways to do this.  All of these should result in the above 
margins:

<page size="letter" margin="72,36,36,36">
<page size="letter" margin="72,36,36">

<page size="letter" margin="36" margint="72">
 

Set margins to 1-inch top, ½-inch bottom, and ¼ inch for left/right:



<page size="letter" margin="72,18,36,18">
<page size="letter" margin="72,18,36">

 

<IMAGE>
Places an image on the document.
All attributes, except for "FILE", are optional.
FILE Specifies the filename. (No default. Filename must be specified.)
ROTATE Rotate the image. (Default: 0.0 – no rotation.)
HEIGHT Specifies the height. (Default: image's actual height.)
WIDTH Specifies the width. (Default: image's actual width.)
X X position. (Default: current X position.)
Y Y position. (Default: current Y position.)
There is no way to explicitly set the Z-order of images. The image will be "above" any text that comes earlier on the page, and "under" any text that comes later on the
page.
If no explicit path is given to the filename, filePro will search the following, in this order:

• The main filePro file's default directory.
• PFIMAGEDIR
• PFDLDIR

The filename is case-sensitive if the underlying O/S usescase-sensitive filenames. (ie: Unix/Linux are case-sensitive, while Windows is not.)
Currently, only PNG (*.png) and JPEG (*.jpg or *.jpeg) image files are supported.
The rotation is specified in degrees, counter-clockwise.
Height and width are specified in points.
If you specify "scale", then that direction will scale proportionately, based on the size given the other direction. For example, if the image has a height of 75, then
specifying:

HEIGHT="150" WIDTH="scale"
will double the width as well. Specifying one direction and not the other will leave the other unchanged.
The position on the page (default: the current position) is done with the X/Y attributes. These can be a number, specified in points, or one of
"LEFT"/"CENTER"/"RIGHT" for "X", and

"TOP"/"CENTER"/"BOTTOM" for "Y".
Note that there is currently no resampling of the image. The image is printed at full resolution, just scaled to the specified size.
Example:

<image file="letterhead.png" x="top" y="center">
<image file="watermark.jpg" x="center" y="center" rotate="45">

<FONT>
Sets the font as specified.
All attributes are optional.
Note that font names are case-significant.
NAME The name of the font.

PDF supports 14 "base" fonts:
"Courier" (plain, bold, italic, bold-italic)
"Helvetica" (plain, bold, italic, bold-italic)
"Times" (plain, bold, italic, bold-italic)
"Symbol" (plain only)
"ZapfDingbats" (plain only)

Other fonts can be loaded via the PFFONT_* environment variables. (See below.)
SIZE Size of the font, in points.
BOLD Turns bold ON or OFF.
ITALIC Turns italics ON of OFF.
UNDERLINE Turns underlining ON or OFF.
ENCODE Specifies the character set encoding for characters 128-255.

Possible values are:
StandardEncoding It is the default encoding of PDF
MacRomanEncoding The standard encoding of Mac OS
WinAnsiEncoding The standard encoding of Windows
FontSpecific Use the built-in encoding of a font.
ISO8859-2 Latin Alphabet No.2
ISO8859-3 Latin Alphabet No.3
ISO8859-4 Latin Alphabet No.4
ISO8859-5 Latin Cyrillic Alphabet



ISO8859-6 Latin Arabic Alphabet
ISO8859-7 Latin Greek Alphabet
ISO8859-8 Latin Hebrew Alphabet
ISO8859-9 Latin Alphabet No. 5
ISO8859-10 Latin Alphabet No. 6
ISO8859-11 Thai, TIS 620-2569 character set
ISO8859-13 Latin Alphabet No. 7
ISO8859-14 Latin Alphabet No. 8
ISO8859-15 Latin Alphabet No. 9
ISO8859-16 Latin Alphabet No. 10
CP1250 Microsoft Windows Codepage 1250 (EE)
CP1251 Microsoft Windows Codepage 1251 (Cyrl)
CP1252 Microsoft Windows Codepage 1252 (ANSI)
CP1253 Microsoft Windows Codepage 1253 (Greek)
CP1254 Microsoft Windows Codepage 1254 (Turk)
CP1255 Microsoft Windows Codepage 1255 (Hebr)
CP1256 Microsoft Windows Codepage 1256 (Arab)
CP1257 Microsoft Windows Codepage 1257 (BaltRim)
CP1258 Microsoft Windows Codepage 1258 (Viet)
KOI8-R Russian Net Character Set

COLOR Color
Currently, the only way to specify colors is "#rrggbb", where "rr", "gg", and "bb" are the two-digit hex value for red, green, and blue, respectively.
The default is Courier 10, black, with "standard" encoding. If the name, size, color, or encoding is not specified, that attribute remains unchanged.
Note that specifying a font name will clear bold/italic/underline, unless explicitly set to "on" in the same code.
Note that PDF does not support underlined text. Instead, this is accomplished by drawing a line underneath the text.
Example:

<font name="Helvetica" size="14" bold="on">
<MOVETO>
Move the current text position as specified.
All attributes are optional.
X Specifies the X position.
Y Specifies the Y position.
If a coordinate is not specified, the position on that axis remains unchanged.
Units can be absolute or relative. (If the value starts with "+" or "-", it is relative to the current
position.)
Example:

<moveto y="-6">raised text<moveto y="+6">
<RECT>
Draw a rectangle.
All attributes are optional.
X Specifies the X position of one corner.
Y Specifies the Y position of one corner.
WIDTH The width of the rectangle.
HEIGHT The height of the rectangle.
STROKE The width of the line.
COLOR Color of the line.
Draw a rectangle. If (X,Y) is not specified, the current position is used.
Note that a height of 0 draws a horizontal line, and a width of 0 draws a vertical line.

<rect height="72" width="360" stroke="3.5">
PFFONT_*
Although PDF only includes the built-in "base14" fonts listed above, additional fonts can be used by defining them with the "PFFONT_*" environment variable. The
format is:

PFFONT_name=embed:base:bold:italic:bold-italic:
(Note: On Windows platforms, the semicolon is used rather than the colon as the separator.)
Where:

"name" is the name by which you will refer to the font. For example, setting the environment variable "PFFONT_Fancy" would create a font named "Fancy",
which could be referenced in any <FONT> tag. (Remember that font names are case-sensitive.) "embed" specifies whether the font is to be embedded in the
PDF document. If a font is not embedded, the document may not be displayed properly if the system on which it is viewed does not have that font installed.
However, embedding the font makes the PDF document larger, and copyright restrictions may prevent a font from being embedded. The allowed values are "0"
(do not embed) and "1" (embed).
"base" specifies the filename which contains the base font description, and is required.
"bold", "italic", and "bold-italic" specify the filenames containing the font description for bold, italic, and bold-italic, respectively. These are all optional, and if left
off will cause any reference to the font to revert to the "base" font.



If a path is not specified in the filename, filePro searches for the file in the following directories:
• PFFONTDIR
• PFDLDIR
• (Windows only) The Windows system font directory.

Currently, only TrueType (*.ttf) fonts are supported. The filename extension must be included.
Note that the built-in base14 fonts can be overridden using the PFFONT_* variable. For example, setting PFFONT_Courier=1:cour.ttf:courbd.ttf:couri.ttf:courbi.ttf would
replace the built-in "Courier" font with the specified TrueType font.
FPML output
If you set the new "allow embedded FPML on form" option in dmoedef, you can include FPML codes directly on the output format.
You can also generate "on-the-fly" FPML by putting the FPML in a field on the form, prefaced with ESC. For example:

If:
Then: color = "#000000" ' black
If: value lt "0"
Then: color = "#800000" ' red
If:
Then: xx = chr("27") & "<FONT COLOR='" { color { "'>" { value

{ chr("27") & "<FONT COLOR='#000000'>"
Finally, note that you can put FPML directly on the form, and still fill in values at runtime, by putting something like this on the form:

<FONT COLOR='*aa '>*bb <FONT COLOR='#000000'>
 

PFPCFCOMPRESSMODE (Ver. 5.8.02)
 

Sets PDF compression mode
 

 Line & Box drawing (Version 5.8.03)

We now include fpml3.prt in the lib directory. This is so we don't overwrite any changes you may have made to fpml.prt

This .prt now has different codes for 5.8.03 and higher that will properly draw lines when sending output to PDF formats.

To use the new fpml3.prt, change the printer type in printer maintenance to fpml3

Set the following in your config file on Windows.

       PFFONTDIR=/appl/fp/fonts

       PFPDFFONTSIZE=12
       PFFONT_COURIER=0;cour.ttf;courbd.ttf;couri.ttf;courbi.ttf;
 
Set the following in your config file on NIX.

       PFFONTDIR=/appl/fp/fonts

       PFPDFFONTSIZE=12

       PFFONT_COURIER=1:UbuntuMono-R.ttf:UbuntuMono-B.ttf:UbuntuMono-RI.ttf:UbuntuMono-BI.ttf: 

 
You need to add one of the above to the config file (? and then F6 to edit):

( Fonts Directory based on Default Installation - Your path may be different ) 
 
PDF:[Pop]     Version 6.0.00

popPDF,fpml,PDF:[Pop]/appl/fpoffice/fpPDF;http://172.16.2.25/fpoffice/fpPDF,PDF remote

printername,fpml,PDF:[Pop]output destination;[webserver output destination],description

This new printer type will print a report in PDF format to /appl/fpoffice/fpPDF and then properly format a message to either GI or WEBfilePro to display in the appropriate
viewer. WEBfilePro is assumed as the client if it is set.

 
Version 6.0.01



FPML commands to control the appearance of underlines.
<FONT OFFSETU="..."> and <FONT SIZEU="...">

Setting the values to zero will restore the default behavior
(default value is 0)

OFFSETU allows the user to change the Y coordinate location of
the underline, this is an offset around the font baseline. A positive
value moves it down, negative moves it up.

SIZEU changes the stroke size of the underline.
 

 
Version 6.1.01 

Added QRCODE FPML print code. 

<QRCODE TEXT="qr text" [SIZE="size"] [COLOR="color"] [FILL="bg color"] [X="x-pos"] [Y="y-pos"]>

Adds a QR code with the specified text to the PDF document.

All attributes, except for "TEXT", are optional.
TEXT is the text to add to the QR code when generating the image.
SIZE is the width and height of the QR code, must be large enough to fit the entire generated image.
COLOR is the foreground color of the QR code (in hexadecimal).
FILL is the background color of the QR code (in hexadecimal).
X X position. (Default: current X position.)
Y Y position. (Default: current Y position.)

FPML print codes can now use field names for any attribute.
Any attribute inside of an FPML print code can now reference a real field or variable inside of processing. Use "@" to reference a field.
e.g.

  <IMAGE FILE="@1">            ' reference a real field
  <IMAGE FILE="@im">           ' reference a dummy field
  <IMAGE FILE="@image_path">   ' reference a long name variable

Note: Print codes can also be stored in a print code table and do not need to be placed directly on the output to work.



SORT/SELECT Processing
(Sort/Selection processing is also called Scan/Selection. Sometimes they are referred to as -v tables.)
There are many folks out there using filePro for massive chores, doing amazing processing that would boggle the mind of a 20 year data processing veteran and forever subdue the
heart of a mainframe aficionado. But one thing I rarely see used well in the filePro world is the power of "scan/selection" processing (also known as "-v tables" to us less erudite).
These tables replace the selection set usually used to grab only the desired records for output. With a "-v" table you can customize your output selection and present a more user
friendly interface for your operators. Dumping someone on to a pre-built or blank selection screen and telling them to fill in the field number for "Invoice Date" and "eq" or "gt" for
relationship, than the desired date... is a little cumbersome and filePro just simply has a better way to do it.
Using a "-v table" to select only the records you want processed is easy if you understand the basics. Here is an explanation/tutorial.
When you make a "-v" table you will use Define Processing and design a new output processing table. Use naming conventions like "labelsel", "vinvoice" or "seldates". In other
words let the name of the processing table indicate to you somehow that this is a "selection" or "-v" table. This way you wont confuse these special tables with other actual
"output" processing tables that are connected to some kind of output format. "-v" tables stand alone and are not connected to any output format.
On a "-v" table you can ask questions and based on the answers received, select the records the operator wants. The following table demonstrates the idea:
 File Name: Invoices

Processing: vtable
         If: aa ne ""
       Then: goto sel
ques     If:
       Then: input aa(8,mdy/,g) "What invoice date do you want? "
         If: aa = ""
       Then: goto ques
sel      If: 1 eq aa
       Then: select;end
       Then: end

The "-v" table is activated as follows:
dreport Invoices -f invoice -v vtable -a -u

Lets assume "invoice" in this case is your invoice form. By executing this line you can print invoices for records containing a requested date and skip over other records in the file.
The way a "-v" table works is interesting. Before your output format and processing are run, the "-v" processing table is run against every record in the file. Dreport (the Request
Output program in filePro) uses a "-v" table by standing on the first record in the file and running it (the -v table) against one record at a time until the entire file is read. Then, the
actual output format and processing are loaded and only the records that were "selected" by the "-v" table are processed. During this "first pass" of the file the "-v" table is testing
each record to see if it fits your "selection" criteria. In the case of the example table "...does field number 1 match the date entered by the operator..."

The Big Trick on "-v" Tables
Here is the trick to this table (and virtually ALL "-v" tables). The first record of the file is gotten from the disk, the "-v" table starts on its first line by testing the variable "aa". At
this time it is equal to nothing so the "if" line tests false and the processing falls through to the next line. The operator is asked "What Date?" and when he answers with a valid
date, the processing falls through to the line labeled "sel". Here, Field 1 (well assume it holds the records invoice date) is tested against the operators chosen date as held by "aa". If
filed 1 equals "aa" the record is "selected" and the process "ends". This, (hitting the "end" statement) causes the dreport program to get the next record from the disk. This time and
for EVERY OTHER record the first "if" line will always test true since "aa" is a global variable. (This means it holds its value from record to record). Because the "if" line tests true
the processing will immediately "goto" the line labeled "sel" where the all-important "selection" test is done again. If this records field 1 matches the date held in "aa" it will be
"selected", if field 1 is not equal to "aa" the process falls through to the "end" statement standing alone on line 5 and does not perform the "select;end" on line 4. Dreport moves on
to the next record and the same thing happens over and over again until every record has been tested. When this first pass is completed only those records "selected" are formatted
by the "invoice" format/processing.
You can do more complicated selections like the following with a "-v" table. It can get as sophisticated as your imagination. The processing shown here should be self-explanatory.
See if you can figure out what it will do.
File Name: Invoices
Processing: vtable
         If: aa ne ""
       Then: goto sel
ques     If:
       Then: input aa(8,mdy/,g) "What invoice date do you want? "
         If: aa = ""
       Then: goto ques
         If:
       Then: input bb(6,.0,g) "Enter customer code? (RETURN=ALL) "
sel      If: 1 eq aa
       Then: goto chkcust
         If:
       Then: end
chkcust  If: bb = ""
       Then: select;end
         If: 2 = bb
       Then: select;end
         If:
       Then: end
This table will work just like the first "-v" table asking for the desired date and then it will ask for the desired customer code. If no customer code has been entered then only the date
match matters to the selection, but if "bb" has been filled with something, both criteria have to be true for a record to be "selected". (Assume field 2 is the customer code stored on
each record) You could choose to print invoices for client "USA2" on "02/05/89" and only those would be printed. This example is used to demonstrate the principle of asking lots
of questions on a "-v" table and then selecting records based on the response, it isnt meant to be very useful as it exits for your system designs.
These tables will work with ranges of dates, zip codes, client codes etc. In fact any criteria that can be tested on a selection table can be tested this way, with the added advantage
that other processing can be done during the "-v" pass. So that you have the ability to do things like get the percentage of one records value to an entire file, or many more
wonderful things that are difficult or impossible without this powerful filePro feature.
How It Works
Output makes two passes of the file when generating output. On the first pass, it selects records and sorts the selected records. (Messages appear: "Reading Keys", "Writing
Keys", and "Sorting Keys".) Sort/selection processing is done during the first pass for each record
On the second pass, processing works the selected records in sorted order. (Message appears: "Generating Output".) Automatic and output processing are done during the second
pass.



Advantages
Sort/selection processing make the sort and selection operations more friendly. You can put in personalized questions rather than standard screens.
The user can specify additional details to the selection criteria at runtime.
The user can define the sort criteria at runtime and override or add to the standard sort.
The user can define the sort or selection based on criteria not in the current record (as in selection sets). Records can be chosen based on lookups, dummy variables, or expressions.
Percentages and other mathematical functions that require two passes of the file can also be performed.
However, instead of selecting Request Output you must generate the output from a user menu or from the command line. The sort/selection table is specified using the -v flag.
The syntax is as follows:
       dreport filename -f formatname -v sortselectname -a
Two special commands are used on Sort/Selection processes, SORT and SELECT. These two commands only function on a -v processing table.
SORTn
Where n is the expression that designates the sort field desired.
Overrides the sort as defined in the output format (but, not subtotal or total breaks).
You can define up to eight sort fields.
SORT is used on sort/selection tables only.
Example
       Then: sortn=m
where "n" is the level (a number from 1 to 8), and "m" is the field to sort on (real, dummy, or lookup)
SELECT
SELECT command, a record is selected only if it encounters the SELECT command. If the SELECT statement does not have a true if condition or if it is bypassed (jumped around
with other redirection) that record will not be included with those sent through to the output pass.
SELECT is used only on sort/selection tables.
Example
         If: aa eq ""
       Then: input aa(2,.0,g) "Enter Doctor Code To Print:"
         If: 13 = aa
       Then: select
         If:
       Then: end
Note that a global dummy field is used since you want the question to only be asked at the very beginning of the run and not on every successive record.
Passing Data From a Sort/Selection Table to the Output Table
It is possible to pass dummy fields from the sort/selection table to the output table via the automatic table.
Example:
Suppose that on your sort/selection table you prompt the user for beginning and ending dates for invoices to be printed on a report. You use input questions with dummy fields
"bd" and "ed". Be sure that on your automatic table (or -y table) that you bring the variables into existence as "global" variables. This will ensure that the output format (and its
processing table) will see the value of these dummies. Only variables that have been defined as global on the automatic table can pass values from the sort/selection table through
to output.
Example (somewhere on the automatic table)

Then: bd(8,mdy/,g) ; ed(8,mdy/,g)
Calculating Percentages
1. Add global dummy field "rt" and local dummy field "ip" to your automatic processing table.

Then: rt(12,.2,g) ; ip(10,.2)
2. Add a totaling function to your sort/selection table.

Then: rt=tot(14)
3. Add a percentage formula to your output table.

Then: ip=(14/rt)*"100"; print
4. Execute the process from a user menu or command-line statement that includes the "-v" flag and the sort/selection processing table and you will see the "individual percentage"
each record is out of the entire "report total". If you were running a report without sort/selection processing first, you would be stopping on each record to do your calculation
without knowing what the total value of the whole file is. The sort/selection pass of the file is all important for such things.



Lockfile
The lockfile format has been changed with release 5.6. Although this does not prevent files from being accessed by earlier releases, you should avoid accessing the same files at the same time with
release 5.6 and ealier releases since this will present th following error.

*** A filePro Error Has Occurred ***

On File: W:\ccp/filepro/l_patient_market/lockfile

Old Version of filePro Function Running On This File

File not available. Somebody else is modifying the file;  try again later.

You should not get this error unless someone is still in the file with 5.0 or earlier or a program crashed thus leaving the lockfile marked "in use".

Deleting the lockfile will allow you to run release 5.6 or ealier releases without the above message as long as you do not attempt to use 5.6 and earlier releases at the same time.

Caution: Don't delete the lockfile unless you know that no one is using the file.
See FilePro Directory - Option ? for how to unlock a file.

 



Alternate Automaitc Processing
Defining processing tables now allows you to tag a specific auto processing to use with the process for tokenizing and syntax checking. This alternate auto process is
displayed at the bottom of the window. *clerk and *report will use this alternate process if there is no -y flag on command line.

*cabe, *clerk, & *report
        uses -y  process if set
        uses alternate auto process if set
        uses automatic process if no -y or alternate auto process set
 



Another Trigger - @key
There is a relatively simple command called @key, that lets you do things with processing while you are sitting at the "Enter Selection" prompt on a filePro screen. This feature lets
you execute processing when the user presses a specified key. These keys are similar to the keys you see at the bottom of the screen like H=Hardcopy, F=Form, U=Update and so
forth.
 
For demonstration purposes, Let's say you have a screen that is so full of information there is no room to put the creation date and created by system maintained fields anywhere on
it. You could use the following @key to display them. Or maybe you don't like seeing this information ALL the time. We will use @keyC for this example but just about any character
key on the keyboard would do:
 
         If:
       Then: end
@keyC    If:
       Then: show "@Created On"<@cd<"Created By"<@cb
         If:
       Then: end
 
When the operator presses the C key, this @key processing will display the creation date and created by fields filePro stores on each record.
 
Note 1) Any processing above the @key should not fall through accidentally to the @key processing. This example shows the "end" command just above this @key processing.
For now, put all your @key processing at the very end of your main input table, and before each @key you should have an "end" statement.
 
Note 2) @key processing must have a definite ending line, a place where the processing stops and the @key is over. For now, until you learn more about them, be sure there is an
"end" statement to stop the @key processing when it should stop.
 
You don't have a watch, you are deeply involved with your filePro records but are too lazy to go and look at a clock. How about showing the time when you hit @keyT, enter the
following:
 
         If:
       Then: end
@keyT    If:
       Then: show "@The time is"<@tm
         If:
       Then: end
 
You can use an @key to do fast custom updating of flags in filePro mailing lists. Let's say you have a file that you want someone to use as a "prospect calling list". You know all the
people in the file and want to select a group of them for the person to call. The selection criteria is totally subjective so you want to look at each record and make up your mind
whether to mark it for calling or not. Do the following:
 
Go into Define Files on the prospect file, add a 1 character field to the file, give it an edit type of "allup". Let's use field 22 as an example.
 
Go into Define Screens and put this field on your screen somewhere.
 
Go into Define Processing tables and add this little table to the end of your input table:
 
         If:
       Then: end
@keyY    If: 22 eq ""
       Then: 22 = "Y";display;end
         If: 22 eq "Y"
       Then: 22="";display;end
 
This now becomes a toggling switch for you to use in marking the records. If you want to mark the record, press Y. (Remember your cursor must be blinking at the Enter Selection
prompt) If you want to deselect the record, press the Y again and the field is cleared. You don't have to go into Update mode cursor down to the right field enter the right thing and
then press ESC ESC. It's a real time saver, you can arrow down through the records marking and unmarking as you go.
 
You could then build another @key like @keyC which would do the same thing but with letter C. The person doing the calling could mark everyone he called with a C so they
wouldn't be called again by accident. When the file is empty of Y's and full of C's start all over again with other letters or different classifications.
 
You can have an @key zoom you into another file temporarily with the following:
 
 
         If:
       Then: end
@keyZ    If:
       Then: system "/appl/fp/rclerk otherfile -s1"
         If:
       Then: end
 
This would put you into "otherfile" on screen 1. You can use this file as long as you want, when you exit this file, you are back on the record in the first file where you pressed the
@keyZ.
 
NOTE: The @keyX letter like this X do not have to be upper case, I do that just as a matter of style. It makes them easier to read than something like @keyy, which would work just
as well as @keyY.
 
You can also use the punctuation symbols on the keyboard, as in @key+ and @key- or @key?
 
Trigger Processing (INPUT)
 
There are several @trigger types of processing available that are coded on the INPUT processing table. The major types are @when leaving/entering, @Key, @entsel, @menu,
@whp, @wuk. There are others.



 
 
@When Leaving/Entering Field Processing
 
When-field processing is done when the cursor enters or exits a field. It is used when the processing should be done on a field-by-field basis.
 
When-field processing is performed immediately as the user is entering data and moving from field to field, rather than when the user has finished entering data and finally presses
ESC ESC.
 

Common Uses
 

Displaying messages when the user enters or exits a field.
 

Preventing the user from leaving a field blank or with unwanted data in it.
 

Filling in looked up data immediately.



Automatic Processing - Compiling
 
When compiling processing tables that rely on dummy fields defined in an automatic processing table having a name other than "automatic" (UNIX) or "auto" (DOS, Windows),
you need to specify the automatic processing table name with the "-y" flag when defining the processing table.
 
Example:
 
If you are using dummy field "aa" to keep track of a subtotal in a report1 and you are going to run rreport with a different automatic processing table named "autotot" (which defines
dummy variable "aa"), then you must compile the report processing table as follows.
rcabe filename report1 -y autotot
 
Or, put another way:

If you are using "aa" to subtotal, and are going to run rreport with an automatic processing that does not define "aa", then you must also compile with an automatic table that
doesn't define "aa". (Or vice versa.)
Of course, your best bet is to simply compile with the same automatic table.
See PFZEROLENWARN to turn off assigning to a zero length field warning
 



Browse Lookup Example
 
Browse lookups are the saving grace of filePro. They take much of the hard coding out of viewing and manipulating your data. Moreover, they allow relatively new programmers the
ability to write some very sophisticated programs.
NOTE: Keep in mind that files with creation passwords prevents fields from being displayed in a browse lookup unless the field is included on the screen. This provides a way of
protecting data from unauthorized viewing.
Here is a fairly generic application written solely based on a browse lookup. It stands users in one file and allows them to Add, Modify or Delete records in another file, while
keeping some simple totals in the current file.
 

File Name: npiwarestand
 

Number ------Field Heading------- Len --Type--
    
1 Spec# 5 .0

2 Seq# 3 .0

3 cartons 5 ,0

4 R 0  

5 pounds 8 ,0

6 descr1 28  

7 CustCode 6  

8 roll/case weight 5 .1
 
Key segment record length: 60
There is no data segment.
 
 
File Name: npiwarestand
Screen: 1
 
+- Totals for SPEC# !1    -----------------------------+
|                               Cartons     Pounds    |
|                               !ta       !tc         |
|  !6                                                 |
|  !7                                                 |
+------------------------------------------------------+
 
 
File Name: npiwarestand
Screen: add
 
+------------------------------------------------------------------------------+
|                        SEC#: !oa      Shift:  !ob                          |
+------------------------------------------------------------------------------+
|                                                                            |
|  Date       In/Out   P#       Cartons  Skids   Pounds   Comment             |
|  *ob         *oh     *od       *oe      *of    !og      *oi                |
|                                                                            |
+------------------------------------------------------------------------------+
 
 
 
 
Cursor Path:
 
    12
   TAB
     2
     1
     3
   TAB
    10
     4
     5
     8
 
 
 
File Name: npiwarestand
Screen: goto
 
+-----------------------+
|  Goto which S# or P#  |
|                       |
|     SPEC#: *s         |
|                       |
|      P#: *p           |



|                       |
|                       |
| Press  ESC ESC  to Go |
|                       |
| Press  DEL  to cancel |
+-----------------------+
 
 
File Name: npiwarestand           Printed: May 6 1997 14:04              Page 1
Output Format: list-noval  (fP 4), Dated: Mar  4 12:04:11 1997
        10        20        30        40        50       60        70       80
    :    |    :    |    :    |    :    |    :    |    :   |    :    |    :    |
                    H E A D I N G / T I T L E   L I N E S
   Nexus Plastics, Inc.                                        Date: *@td
   Warehouse #2 Inventory                                      Page:<@pn
 
  SPEC#    Cust   Description                   Cartons    Pounds
  --------------------------------------------------------------------
                             D A T A   L I N E S
  *1       *7     *6                             *3        *5
___________________________ T O T A L   L I N E S ______________________________
                         G R A N D   T O T A L
 
 
                                             Cartons    Pounds

                                   Totals:      =3        =5
                            E N D   O F   F O R M
 
 
 
File Name: npiwarestand           Printed: May 6 1997 14:04       Page 2
Output Format: list-noval  (fP 4), Dated: Mar  4 12:04:11 1997
 
          Sort Field:     1
              Length:     5
          Descending:
      Subtotal Field:
          Align form:     N
  Remove blank lines:     N
Grand Total new page:     Y
             Printer:
  Initial print code:
    Final print code:
 
 
File Name: npiwarestand
Processing Table: list-noval
 
         If: 3 eq "" and 5 eq ""
       Then: end
       Then: print
       Then: end
 
 
 
File Name: npiwarestand
Browse Format: default
 
  Spec#     Cust    Description                        Cartons      Pounds
   *1        *7       *6                                 *3         *5
 
 
      Number   --------------Field Heading--------------
         1     Spec#
         7     CustCode
         6     descr1
         3     cartons
         5     pounds
 
 

File Name: npiwaredet
Number ----------Field Heading---------- Len --Type--

1 spec# 5 .0

2 date 8 mdy/

3 seq# 3 .0

4 P# 5 .0

5 cartons 5 ,0

6 r 0  



7 pounds 7 ,0

8 in/out 3  

9 comment 20  

10 initials 3  
 
 
File Name: npiwarestand
Processing Table: automatic
 
       Then: ff(14,,g)="npiwaredet"
         If: fl eq ""
       Then: display "blank";end
       Then: display 1 ; end
 
 
 
File Name: npiwarestand
Processing Table: input
 
       Then: 'run with "rreport npiwarestand -sblank -lx -d"
       Then: gosub realtot
       Then: end
@menu    If:
       Then:
         If: bk eq "set"
       Then: bk="";end
         If: in ne ""
       Then: exit
       Then: input popup in(3,,g) "What are your initials? "
         If: @sk eq "BRKY"
       Then: exit
         If: in eq ""
       Then: goto @menu
       Then: pushkey "11[ENTR]G";end
@keyG    If:
       Then:
       Then: cls("20")
       Then: s(5,allup,g)="";p(5,allup,g)=""
       Then: popup update -,"goto"
         If: @sk eq "SAVE"
       Then: clearp;goto dogo
         If: @sk eq "BRKY"
       Then: clearp;end
         If: 'stopgap not needed
       Then: end
dogo     If:
       Then:
       Then: fl="1"
         If: s eq "" and p eq ""
       Then: end
         If: s ne ""
       Then: goto dos
dop      If:
       Then: lookup npio k=p i=a -nx
         If: not npio
       Then: lookup npio = npioarch k=p i=a -nx
         If: not npio
       Then: show "@P# not on file, try again.";end
       Then: s=npio(3)
dos      If:
       Then: lookup npis k=s i=a -nx
         If: not npis
       Then: show "@Sorry, that SPEC# is not on file!";show "";end
       Then: rc(5,.1,g)=npis(44)
       Then: da(28,,g)=npis(22) ; db(6,,g)=npis(2)
       Then: kg=s
       Then: lookup tst=npiwarestand k=kg i=a -nx
         If: not tst
       Then: goto addnew
       Then: lookup - k=kg i=a -nx
       Then: end
addnew   If:
       Then: lookup - r=free -ep
       Then: 1=s ; 8=rc ; 6=da ; 7=db ; write ; display ; pushkey "[SAVE]";end
@keyD    If:
       Then: input popup q " \r Are you SURE you want to DELETE EVERY ENTRY on t
               his Date/Shift? (y/n) \r "
          If: q ne "Y"
       Then: end
       Then: gosub killall
       Then: gosub clrflds
       Then: end
killall  If:
       Then: kd=1
       Then: lookup eat=(ff) k=kd i=a -nx



moreat   If: not eat
       Then: return
         If: eat(1) ne 1
       Then: return
       Then: delete eat;getnext eat;goto moreat
clrflds  If:
       Then:
       Then: ta(6,,0)=""; tc(8,,0)=""
       Then: return
@keyU    If:
       Then:
         If: @rn eq "1"
       Then: show "@Goto a Spec# first... then press U again.";show "";end
               getdet   If: '*getdet
       Then:
       Then: gosub tstnew
         If: n eq "1"
       Then: goto contold
       Then: input popup q "No entries yet, would you like to add some? (y/n) "
         If: q ne "Y"
       Then: end
       Then: cls("20");gosub clrvars;gosub adddet;goto @keyU
       Then: '
contold  If:
       Then: gosub gettots
       Then: cls("20")
       Then: display
       Then: gosub prompts
       Then: ky=1
brw1     If: '*brw1
       Then:
       Then: za="(brw=13,7,1 xkey=AMDX show=pkeep prc=proc1 mlen=5 fill=asc)"
       Then: zb="[Date P# In/Out Cartons Skids Pounds Comment
               Ini]"
       Then: zc= "*2 *4 *8 *5 *6 *7 *9
                *10"
       Then: lookup bom=(ff) k=ky i=a -ngm b=(za&zb&zc)
         If: @sk="SAVE"
       Then: cls("20");clearb;goto cleanup
         If: @sk="BRKY"
       Then: cls("20");clearb;goto cleanup
         If: @bk="X"
       Then: cls("20");clearb;gosub realtot;clearb;end
         If: @bk="D"
       Then: cls("20");gosub deldet;gosub gettots
         If: @bk="D" and n eq ""
       Then: cls("20");clearb;df="";goto getdet
         If: @bk="D" and n eq "1"
       Then: n="";gosub gettots;cls("20");gosub prompts;goto brw1
         If: @bk="A"
       Then: cls("20");gosub clrvars;gosub adddet;gosub gettots;cls("20");gosub
               prompts;goto brw1
         If: @bk="M"
       Then: cls("20");gosub clrvars;gosub ldvars;gosub moddet;gosub gettots;cls
               ("20");gosub prompts;goto brw1
       Then: goto brw1
proc1    If:
       Then:
       Then: end
deldet   If: '*deldet
       Then:
       Then: cls("20")
       Then: beep
       Then: input popup q(1,yesno) " \r Are you SURE you want to delete this
               entry? (y/n) \r "
         If: q ne "Y"
       Then: return
       Then: delete bom
       Then: gosub realtot
       Then: gosub tstnew
       Then: return
adddet   If: '*adddet
       Then:
       Then: lookup bom=(ff) r=free -ep
       Then: bom(1)=1
moddet   If:
       Then: oa=1
       Then: cls("20")
       Then: gosub prompt2
       Then: BREAK OFF
       Then: popup update -,"add",ob
         If: ob&od&oe&of eq ""
       Then: write bom;delete bom;clearp;return
       Then: BREAK ON
       Then: bom(2)=ob
       Then: bom(4)=od ; bom(5)=oe ; bom(6)=of ; bom(7)=og
         If: oh eq "o"
       Then: bom(8)="out"
         If: oh eq "i"
       Then: bom(8)="in"
       Then: bom(9)=oi ; bom(10)=in
         If: bom(3) eq ""



       Then: 2=2+"1" ; bom(3)=2
       Then: write
       Then: ky=1&bom(3)
       Then: clearp ; return
@entsel  If:
       Then:
         If: @sk eq "BRKY"
       Then: exit
       Then: gosub gettots
       Then: gosub legend
       Then: end
legend   If: '*legend
       Then:
       Then: cls("20")
       Then: show("21","1") "---------------------------------------------------
               ----------------------------"
       Then: show("22","1") "\r U \rpdate/View entries"
       Then: show("24","1") "\r G \roto another SPEC#"
       Then: show("22","53") "\r D \relete this entire SPEC#"
       Then: show("24","67") "\r X \r=Exit"
       Then: show("24","37") "\r L \r=List records (browse)"
       Then: show("22","37") "Select >"
       Then: return
gettots   If:
       Then:
       Then: gosub clrflds
       Then: kt=1
       Then: lookup det=(ff) k=kt i=a -nx
mordet   If: not det
       Then: goto fintots
         If: det(1) ne 1
       Then: goto fintots
         If: det(8) eq "in"
       Then: goto doin
doout    If:
       Then: ta=ta-det(5)
       Then: tc=tc-det(7)
       Then: getnext det ; goto mordet
doin     If:
       Then: ta=ta+det(5)
       Then: tc=tc+det(7)
       Then: getnext det;goto mordet
fintots  If:
       Then:
         If: ta eq "0"
       Then: ta=""
         If: tc eq "0"
       Then: tc=""
       Then: display;return
realtot  If:
       Then: 3=ta;5=tc;write
       Then: display;return
prompts  If: '*prompts
       Then:
       Then: cls("20")
       Then: cb="Use UP and DOWN arrows or NxtPg and PrvPg to scroll entries."
       Then: show ("22","40"-dlen(cb)/"2") cb
       Then: cc="\r A \r to Add an entry, \r M \r to Modify an entry, \r D \r to
               Delete an entry. \r X \r=Exit"
       Then: show ("24","40"-dlen(cc)/"2") cc
       Then: return
prompt2  If:
       Then: cd="Press \r ESC ESC \r to Save, \r DEL \r to cancel."
       Then: show ("24","40"-dlen(cc)/"2") cd
       Then: return
clrvars  If: '*clrvars
       Then:
       Then: oa(5,.0)="";ob(8,mdy/)=""
       Then: oc(3)="";od(5,.0)="";oe(4,.0)="";of(2,.0)="";og(7,.1)=""
       Then: return
ldvars   If: '*ldvars
       Then:
       Then: ob=bom(2) ; od=bom(4);oe=bom(5);of=bom(6);og=bom(7)
       Then: oh=bom(8);oi=bom(9)
       Then: return
tstnew   If:
       Then: kn=1
       Then: lookup new=(ff) k=kn i=a -nx
         If: not new
       Then: n="";return
       Then: n="1";return
@whelp   If:
       Then: help "main";end
@wlfs    If: s ne ""
       Then: p = "" ; display ; end
       Then: display;end
@wlfp    If: p ne ""
       Then: s = "" ; display ; end
       Then: display;end
cleanup  If:
       Then:
       Then: end
@wlfob   If: ob eq ""



       Then: screen ,ob
         If: ob lt "01/01/97"
       Then: show "Date out of range";screen ,d
       Then: show "";end
@wlfoe   If:
       Then:
       Then: og=oe*8
       Then: display;end
@wlfoh   If: oh ne "i" and oh ne "o"
       Then: screen ,oh
       Then: end
@keyL    If:
       Then: video off
       Then: bk(3,,g)="set"
         If: 1 eq "0"
       Then: pushkey "x4a"{1{"[ENTR]b" ; end
       Then: pushkey "x4a"{1{"b" ; end



COMMAND GROUPS
 
Commands can be grouped into sub-categories as follows;
 

User Interaction
 
BEEP

BREAK

CLS

HELP

INPUT

SHOW

DISPLAY

MSGBOX

ERRORBOX
 
 

Input Control (Inquire, Update, Add only)
 

ESCAPE

RESTART

SCREEN

SKIP
 

 
General Processing Control

 
END

EXIT

GOTO

GOSUB

MENU

RETURN
 

File Control and Interaction
 
CLOSE

COPY

COPYIN

DELETE

LOOKUP

GETNEXT

GETPREV

SYSTEM

WRITE

PUSHKEY



Dummy Fields in Processing Tables
 
Dummy fields hold data temporarily (in memory) for processing operations, display, and printing. Dummy fields (variables) can be generally categorized as either "Short" or "Long"
dummy fields. The "Short" dummy field names are limited to 1 or 2 letters from A to Z and AA to ZZ. "Long" dummy field names can have a length up to 64 characters thus offering
an advantage in documenting the variable usage within the name. Either category of dummy field can be used in filePro processing tables to hold any data type, the results of
lookups, calculations, or data you want to temporarily store from record to record. Only "Short" dummy field names can be used for presenting/updating data on data-entry screens
and printing data on reports.
 
Dummy fields can be used for almost every operation for which real fields can be used. Remember that these fields are "memory variables" and are not saved to disk unless the
results are written to real fields.
 
Dummy fields are always cleared (set to null) at the beginning of processing for each record (just before the automatic table is run) unless a GLOBAL attribute is assigned.
 
A variable can be set up to 32127 in character length.
 
Defining the Short Dummy Fields
 
1. You bring a "Short" dummy field into existence by typing the field, with its attributes (length, edit type, global attribute) on the "Then" line of a processing table. The exact syntax
is described below.

 
Aa(L ,T,G) Define the dummy field

Aa name of the dummy field, 1 or 2 letters and case is not significant. Codes aa - zz can be used. Do not use a letter with a number
since these are reserved for associated fields.

L length of the dummy field

T edit type of the dummy field (any available edit)

G Optional Global attribute. Default is non-global.
 
If edit type is left out, the dummy field assumes the default edit type (*), therefore:
 
     aa(1) and aa(1,*) are equivalent.
 
If the global attribute is used, the same data is retained in the dummy field between records until the value is cleared or overwritten by processing.
 
aa(1, ,g) defines aa as a global dummy field without an edit type.
 

aa(1,YESNO,g) defines a global dummy field with the edit type YESNO (only allows a "Y" or "N" to be entered).
 
2. A dummy field can be defined on a line by itself or when first used. It doesn't matter where you define the dummy field on the processing table.
 
       Then: aa(10,.0); bb(l2,UPLOW)
 
       Then: x(l2,.2)="298.33"
 
3. Dummy fields only have to be defined once on a table. For example, if you do aa(8,allup) anywhere on the table, you can refer to that field anywhere else as aa (do not need the
definition of length and edit).
 
4. If you define a dummy field on the automatic processing table, it can be used on output, input, and CALLed processing tables without being redefined.
 
5. Don't redefine dummy fields. Don't redefine fields that you've defined on the automatic table.
 
6. Undefined dummy fields will take on the attributes (length and edit) of fields they are assigned to, for example:
 
       aa=12 will set aa equal to the contents of field 12 and give it that same length and edit type.
 
7. Undefined dummy fields set equal to a numeric calculation will be given a default length of 255, as in.
 
8. Undefined dummy fields set equal to a string will be assigned a length of 128.



How A Processing Table Works
 
It is important to understand the "operation" and flow of the various processing tables.
 
Simply put, the operation of a processing table is a matter of "stop and flow". When you update (or create) a record, the cursor is put on the first field available on the screen (or the
first one specified by the cursor path) and control is handed to the user. When the operator is finished entering data on this screen an interactive program called the input
processing table is run. The most basic way this program is started is by the action of the operator pressing the SAVE command (Unix=ESCAPE ESCAPE, DOS=ESCAPE). At this
point the "program pointer" starts from line number 1 of the input table and progresses as directed from line to line, executing each "then" line for which the "if" line is true. If the
"if" line is false the program "falls through" the "then" line WITHOUT executing it, to the next "if" line and tests it, etc. etc. A "then" line can direct the program to "GOTO" a
different "if" line instead of the one immediately following. The program continues executing each line as directed until certain commands which stop the flow are encountered.
Commands that stop the flow are "then" lines which hand control back to the operator. The two most basic commands that do this are the SCREEN command and the INPUT
command.
 
The SCREEN command switches the user to another screen so he can see and enter data in other fields. When a SCREEN command is encountered, the user is placed on that screen
and control is once again handed back to him. The IMPORTANT thing to learn is that the program counter is sitting at whatever line the SCREEN command was on in the
processing table. The next time the user presses SAVE (ESCAPE/ESCAPE), the program (the input table) will start running with the command immediately after the SCREEN
command. It DOES NOT start from line number 1 as it did before.
 
There are several commands that can hand control back to the user. It is this interaction of user and program that eventually brings you to an END statement or the literal end of the
input table. If you are in Add Records mode, you will be brought to the next available record and the cursor is deposited on original screen you saw when you first entered Update
mode. The input table program pointer is sitting at line 1 again waiting for the user to press ESCAPE/ESCAPE on this new record. If you are not in Add Records mode, the cursor is
brought to the Enter Selection prompt.
 
To demonstrate this "stop and flown, consider the following input table. It demonstrates some aspects of program flow control. (We will assume there is no automatic processing on
this file.)

 
File: test

Processing: Input

 

       Then: 15=12+13+14
       Then: screen 2,9
       If:
       Then: 3=15*2
       If: 3 gt "100"
       Then: screen "credit";goto quest
       Then: 4="Y";end
quest    If:
       Then: input q(1,yesno) "Exceeds limit! Okay?"
       If: q eq ""
       Then: goto quest
       If: q eq "Y"
       Then: 4="Y";end
       Then: 4="N";end
 
An English translation of this table is as follows. When the operator presses ESCAPE ESCAPE the first time, the program pointer starts at line 1. Because there is no "if" condition
the process fills field 15 with the value of 12 plus 13 plus 14 (presumably just entered by the operator on the screen he was on).
 
Because there is no "if" condition on line 2, the process switches screens to screen 2 and hands control back to the operator by putting his cursor in field 9 on that screen. The
program pointer stops here and must wait for the operator to enter or view data on screen 2. The program is stopped and waiting. When the operator is finished on this screen and
presses ESCAPE ESCAPE, the program picks up at the point where it left off, and executes line 3 (because once again there is no "if" condition). Field 3 is filled with the value of
field 15 times the value of field 2.
 
The process then moves to line 4. Here it tests the "if" condition. If the value of field 3 is greater than "100", the user is sent to screen "credit" and the program pointer stops right
there. If it proves false (3 is equal to or less than "100"), the program falls through the "then" to line 5. Because there is no "if" condition on line 5 sets field 4 equal to a "Y", and
then ends. If the test of line 4's "if" condition did prove true, the program will be waiting for the operator to press ESCAPE ESCAPE to record the "credit" screen. At this point the
process picks up with the command immediately following the SCREEN command which means it goes to the line labeled "quest".
 
Here the INPUT command both alerts the operator to something and waits for a response. The program pointer is waiting once again at line 6. This time, however, the operator must
supply an answer to the INPUT statement. He cannot just press ESCAPE ESCAPE it will have no effect. His answer is placed in the dummy field (also called a variable) "q". The
dummy field "q" has an edit type of "yesno", which means only a "Y", an "N", or a RETURN is accepted by filePro as legitimate answers. Anything else will generate an Edit Failed
error. The process tests "q" for each of these possibilities and does something different for each answer.
 
As soon as the operator answers the question, the program pointer moves to line 7 and tests to see if RETURN was pressed. (If this is true "q" will be filled with nothing,
represented as "". This is referred to by programmers as "null".) If "q" is null, then the process sends the operator right back to the line labeled "quest", because we need either a Y
or N answer. We are in control, not him! The program displays the INPUT question again and waits for a better answer this time. If he keeps answering with RETURN, he keeps
getting the INPUT question. When he finally gives in and answers with either a "Y" or an "N", the "if" condition on line 7 tests false, because "q" is now not null and the process
falls to line 8. If the operator answered "Y", field 4 is filled with a "Y" and the program ends. If the operator answered "N", field 4 is filled with an "N" and the process ends.
 
NOTICE that there is no "if" condition necessary for "q" being equal to "N". This is so, because if "q" is not equal to "" and it is not equal to "Y" the only other value the "yesno"
edit would have allowed the operator to enter was "N". Therefore, if the process hits that line, we know "q" must be equal to "N". We have provided for the other two possibilities
before this line is reached. (It would do no harm to have line 9's "if" condition read q eq "N", but you might as well get used to the usual programmer obsession of not writing any
code that isn't absolutely necessary.)
 
By directing users through your screens with logic that forces them to do only what you allow; and by using edits which force them to give only answers that you have completely
covered in your processing, you can start to write simple filePro tables that will do what you want done and not what the computer wants done.



Keyboard Input
 
The INPUT command is how you obtain input from a user. It allows you to ask the user a question and put his response into a dummy variable so you can test that answer (variable)
against various criteria and thereby take some specified action.
 
Syntax:
 
       input dv "message/question."
 
The dummy variable used does not matter. It will be cleared of whatever value it had and filled with whatever the user types to answer the question/message.
 
Often, it is valuable to limit the response from the user to only certain values. You can do this most easily by giving the dummy variable a specific edit type. You can do this right on
the INPUT line, as in:
 
       input qq(1,yesno) "Does everything look okay?"
 
This assigns a length of 1 to the variable qq and it assigns the edit type of yesno. This is a factory provided edit type that only allows a Y or an N as an answer (or the user may
press ENTER). If the user presses a "B" or a "J" or any other key other than a Y or an N (or ENTER) the program will just sit there and wait for him to get it right. That is why it is
valuable to put the suggested answers inside your INPUT message, like this:
 
       input qq(1,yesno) "Does everything look okay? (y/n)"
 
In this way, you are asking the question and providing the allowable answers all in one message.
 
The INPUT command has just about the same set of variations as the SHOW command. You can use:
 
       INPUT(r,c) dv message
 
Where r and c are the row and column at which to show the input message, and dv is the dummy variable into which to which the answer goes. There is also:
 
       INPUT POPUP(r,c) dv "message"
 
And this is just like the show popup. The input message is neatly boxed (and centered if you leave row and column blank).
 
There is one more INPUT command, INPUTPW (and INPUTPW POPUP). These are the very same as INPUT except that they hide the users response by printing #s on the screen
instead of their actual response. This is so you can ask for passwords and secret things and no one standing behind the user will see the secret. However, the correct response is
still deposited in the specified input dummy variable.
 
 
Making Use of the Response
 
Once you have queried the user with any of the INPUT variations, you will end up with his response as the contents of the dummy variable you provided. If you issued the
statement as:
 
       input qq(1,yesno) "Do you want a hardcopy? (y/n)"
 
The program will now have the users response store in qq. You may do something like:
 

       If: qq ne "Y"
       Then: end
       If:
       Then: hardcopy ; end
 

This says in English: If the users answer was not equal to a "Y" then he must not want a hardcopy, just end the processing here. Otherwise, if the user had answered a "Y", the first
test would be false and the then line would not be done. Instead, the program falls through to the next "if" line and tests it. Since there is nothing to test, the program assumes that it
should execute the "then" line. This is true anytime there is no "if" test, the "then" line will be executed.
 
You can use the same INPUT variable over and over again. In other words, you do not need to assign a different INPUT variable each time you ask a "yesno" question. If you have
used qq once before, you can use it again. It gets cleared just before it is put on the screen so you will be testing the newly offered input from the user each time. If you need a
different type of input, say a date, then you would need to establish a date type INPUT variable (which you could use for every date question from then on in that processing table.)



The LOOKUP Command
 
Definition of a Lookup
 
To set up a lookup operation, there are always two, usually three activities:
 
Writing the LOOKUP statement, you specify:
 

1. The file to be connected and the record(s) from which data will be taken
 

2. Handle failure, tell the program what to do if the lookup fails.
 

3. Using the looked-up data, usually field assignments you specify the fields from which data will be read and the fields to which the data will be written.
 

Terms:
 

Current file , the file in which you're writing the lookup
 

Lookup file , the file you are looking into.



MSGBOX/ERRORBOX
 
The MSGBOX and ERRORBOX commands are essentially the same thing. You would only use one over the other for the sake of giving users a consistent look and feel to your
program. The MSGBOX and ERRORBOX can be assigned different color schemes. By this color scheme, the user knows immediately that he is seeing an ERROR or not. Each
command can take input from the user and allow only a special group of keys as acceptable responses. The syntax for these boxes is:
 
       MSGBOX(r,c) message,prompt,keylist
 
This means you can not only give a message to the user, but prompt him with special instructions (like what keys he may press in response, and you can disallow any other
keypresses. Something like this:
 
errorbox("5","5") "You forgot the payment. Enter it now? ","Y=yes,L=later,C=Cancel ",YLC
 
The message appears inside the box. The prompt on the bottom edge of the box, and the allowable responses go into a space provided on the bottom line by filePro.
 
You can make MSGBOX and ERRORBOX very elaborate with \r codes for reverse video (just as in SHOW and INPUT statements). You may also use \n to generate a "newline"
within the boxed message. All the SHOW codes work inside MSGBOX and ERRORBOX.



Output Processing Tables
 
Output processing is performed during Request Output on a selected group of' records.
 
When you Request Output the program performs 2 passes through the file. First, it selects and sorts the records. Then it performs the output processing on each record.
 
It may or may not include the printing of output. If there is no printout, it is called a "Processing-only" operation.
 
Common Uses
 

Formatting data for special display on the output device.
  

 Accumulating special totals on reports.
 

 Posting data to summary files
 

Uses of Processing-Only Operations
 

Mass recalculation, performing a math operation on a field throughout a file.
 

Global update, performing a textual change throughout a file
 

Moving outdated records into archive files
 
 
Trigger Processing (Output)
 
@wbrk called "when break" processing is triggered at subtotal and grand total breakpoints on a report.
 
It is done at subtotal or grand total breaks in Request Output.
 
Common Uses
 

Performing calculations or lookups when Request Output changes subtotal levels or breaks for the grand total.
 
Sort/Selection Processing
 
Sort/Selection processing can be performed when you Request Output during the first pass, before the records are sorted and selected.
 
Common Uses
 

Prompting users for sort or selection categories using customized prompts.
 

Calculating percentages.



Version 6.0.01
CABEBACKUP ON|OFF (on by default)
CABEBACKUPMINS n (minutes between backups)
CABEBACKUPCT n (backup files per process)

While editing a process it will automatically be * backed up depending on the settings of
these variables: * CABEBACKUP (ON|OFF) * CABEBACKUPMINS (MINUTES) * CABEBACKUPCT (NUMBER OF
BACKUPS BEFORE ROLLOVER) * Backups can be restored through menu item 5.



Processing Table Ingredients
 
Processing tables test the conditions to see if the action should be carried out. When conditions are tested, they are either true or false.
 
If the condition is true, the action is carried out. If the condition is false, the program falls through that "then" line without executing it to the next "if" line.
 
If the condition line ("if") is blank, the action line ("then") will be carried out.
 
Ingredients

 
Fields
 
Real fields
Dummy fields
System-maintained fields
Associated fields
 
Literals
 
Text or numbers must be enclosed in quotes.
 

Two quotation marks together ("") means null (nothing or blank)
/SConnectives AND, both conditions must be true
OR, either conditions must be true

 
Negate (NOT) Statements
 

NOT "not this", negates an expression
 

Relationship codes
 
EQ or equals
NE not equal
GT is greater than
GE is greater than or equal to
LT is less than
LE is less than or equal to
CO contains
XxF compare two fields

 
Punctuation

 
"n" Literals

( ) Groups parts of a condition

' Remark ~

 

; Command separator

: to assign aliases (and overlay arrays)
 
To write more than one action on a line, separate each action with semicolons.
 

Math Operators
 

+ Add

- Subtract

* Multiply

3 / !.
 

Text Operators
 

& Join

< Push left, and add one space

{ Squeeze left, with no space
 

Lookup file names - test if lookup is successful
 



If:
 
Then: lookup filename
If: not filename
 
Then: show "Not on File"
 

 
Labels - if conditions on that line are met

 
Example 1

 
past    If: "complicated selection"

 
Then: "complicated action, too long to fit on one line)
If: past
Then: "rest of action"

 
Example 2

 
pastIf: "complicated selection, too long to fit on one line"
       If: past connective "rest of selection"
       Then: "action"

 
Selection set names - if specified conditions are met

 
If: current
Then: "action"
 

Where "current" is a saved selection set
 

Actions ("then lines")
 

What the program does if the "if" condition is found to be true or blank.
 

Actions contain:
expressions or assignments
commands



Screen Messages With SHOW
 
The SHOW statement gives you great flexibility in presenting information to the user at virtually any point during a filePro program. The basic syntax is very simple:
 
Syntax :
       show "message"
 
This will place the message on Line 23 of the screen and center it for you. The message can not exceed 80 characters.
 
The "message" can be any expression allowed in filePro. For example, the "message" could be made up of the contents of a field.
 
       show 14
 
This would simply put the contents of field 14 on the screen. It might be nicer to do it like this, though:
 
       show "Field 14 contains"<14
 
This will print the text "Field 14 contains" and then leave one space and print the actual contents of field 14. The < operator is just that a "push left" operator. It tells filePro to push
the next value one space away from the preceding text or value. There is another operator like <. It is {. This is called a "squeeze left" operator because it does not leave the one
space the < does. It would squish the contents of field 14 right next to the letter "s" of the word contains.
 
If you wanted to print the content of several fields, you could do something like:
 
       show 14<15<16
 
Assuming that these were City State and Zip fields, you might see:
 
       Oakland NJ 07436
 
Again, the show command will mix and match text and expressions (a field is nothing but an expression, by the way, albeit a very simple one.) You could get elaborate, like this:
 
       show 14{","<15<16
 
This would print the following on the screen:
 
       Oakland, NJ 07436
 
There is one more important string operator (that is what the < and { are called). The third and final string operator is the &. It simply puts the values it is connecting next to each
other without leaving a space, squishing out space or doing anything at all. The same show statement above done with the & instead of the < or { would do this:
 
       show 14&","&15&16
 
       Oakland      ,NJ07436
 
Why? Because the contents of field 14 do not entirely fill up field 14. Usually a city field has about 15 characters in it and Oakland only takes up 7. The & operator tells filePro to just
place the next expression "next" to the previous one, do not add or take away any spaces so it does. FilePro knows how long field 14 really is and that is what it uses when you use
the & operator. The same is true for the literal "," which is only 1 character long, so the state field NJ butts right up against it. State fields are only two characters long so the zip field
butts right up against that and we are left with the funny mish-mosh above. Using the < and { and the & correctly allows you to format output to look just about any way you want
it to look. For example, you could do something like this:
 
       show "The contents of field 14 15 and 16 are:" < 14 { "," < 16 & "    and I              live there!"
 
The formatting will follow your instructions to the letter. The "<" operator will also work on output reports that you design.
 
When you join two or more fields with the & operator, you are "concatenating the fields". This means you are joining the fields right next to each other without taking away or
putting any extra spaces. If you join a 14 character field and a 25 character field in this way, you need a 29 character place to put them either screen, paper, or dummy variable.
 
Reverse Video inside SHOW .
 
Any part of the message can be shown in "reverse video" (highlighted) by using the reverse video codes inside the message area, as in:
 
       show "Are you \rSure\r you want to delete this record? (y/n)"
 
Anything between the two \rs will show up highlighted.
 
 
SHOW(r,c) message
 
There is a valuable variation to the show command. You can assign the row and column on which the message will appear. When you do this, the message is NOT automatically
centered anymore. You would use:
 
       show("10","4") "Please enter a bigger number here."
 
And it would appear at that point on the screen.
 
 
SHOWCTR(r) "message" command.



 
If you want to center a message on a line other than line 23, use the showctr command.
 
       showctr("10") "I am in the middle of the screen."
 
NOTE: SHOWCTR must have a line number specified.
 
IMPORTANT: You can use SHOW to stop the user dead in their tracks. They must acknowledge that they have read your show message by pressing ENTER. To do this, put an @
as the first character after the opening quote of your message text.
 
       show " @ The balance due is TOO HIGH!"
 
This will print on the screen as follows:
 
       The balance due is TOO HIGH!
       Press ENTER to Continue
 
The word ENTER will be surrounded by a highlight. The user can not do anything else but press Enter if he wants to continue working.
 
If you were to have no message text, the @ still works, just put it inside quotes by itself:
 
       show "@"
 
Produces
 
       Press  Enter  to Continue
 
The use of the @ does not preclude mix and matching expressions to form your message text.
 
       show "@The balance due is $"{22<"This is TOO HIGH!"
 
You can obtain more emphasis by issuing a BEEP command along with various messages. This keeps the user on his toes. Otherwise, they are likely to start ignoring things. Just
put the command BEEP immediately before your SHOW statement.
 
         If:
       Then: beep ; show "@Call this guy up right now."
 
 
Clearing a SHOW statement
 
If you do not use the @ which will stop the user at the SHOW line and then automatically clear the show message, the text of your message will remain on the screen until you take
it down (or until a variety of other things clear it.) For the most part, it is up to you to clear things that you put on the screen. If you are clearing the default show line (#23), you can
just issue the command:
 
       show ""
 
This, of course, means SHOW nothing, so the line is essentially rewritten with nothing anything that was there will be cleared.
 
If, on the other hand, you have shown something on a different part of the screen, you must clear it yourself with the same amount of spaces that your message used. In other
words if you issue:
 
       show("10","3") "Error, bad code"
 
Later, when you want to remove the show message from that location, you would have to do something like:
 
       show("10","3") "               "   <=there are 15 spaces here
 
This would "cover up" the message with blanks.
 
There is a short hand for this using a dummy variable. You could assign a dummy variable the length of 15 and set this variable equal to nothing and then show that variable on the
screen. This would accomplish exactly the same thing.
 
       aa(15)="" ; show("10","3") aa
 
 
IMPORTANT
 
Please note that you can put more than one command on a "then" line as long as you separate them by semi-colons. Also note that SPACES are not important between commands.
That is, you can use:
 
       show "@Did you see this";show "@Are you sure?"
Or
       show "@Did you see this?"    ;   show "@Are you sure?"
 
SHOW POPUP
 
This is the same as the SHOW command except that it puts your message inside a box that is centered on the screen. Everything works the same as the simple SHOW command,



including the @ for stopping the user and making him press ENTER.
 
       show popup "I  m boxed in the middle."
 
The SHOW POPUP command can also place the box anywhere on the screen within the limitations of the row and column designations that will fit the whole box. The row and
column designate the top left corner of the popup box.
 
Syntax
 
       show popup(r,c) message
 
There is one more variation to SHOW POPUP. It allows you to number the boxes you put on the screen.
 
       Show popup(r,c,popupnum) message
 
This means you can put several messages anywhere on the screen simultaneously. The number.
 
 
Clearing Show Popups
 
You must clear show popups with the CLEARS # command. You must issue the clears command with the number of the popup you are taking down (off the screen). If you overlap
the show popups, they must be taken down in reverse order of the way they were put up.



Simple Operations on Processing Tables
 
The idea of a processing table is simple. It is a place where you write code that controls your program. The code does not have to be complex. When you are starting off, it can be as
simple as 4th grade math and it looks just about like that too.
 
 
Getting Totals and Balance Due
 
Probably the most basic thing you would ever want to do is add up the charges on a multi-line invoice and put the total on the screen somewhere. Next, you might want to take a
payment against this charge and show the balance due after the payment. Here is the INPUT processing table that will do this.
 
We will assume that fields 5 through 14 are the ten charge amount fields on an invoice record. We will let field 15 be the subtotal of those charges, 16 be the tax amount and 17 be
the total charges (the addition of the subtotal and the tax). Field 18 will be the total payment received, and field 19 will be the balance due field.
 
 

Filename: classinv
 

Number -----------Field Heading----------- Len --Type--

1 Acct. Code 6 allup

2 Date 8 mdy/

3 Invoice# 6 .0

4 Status 1 allup

5 charge_1 7 .2

6 charge_2 7 .2

7 charge_3 7 .2

8 charge_4 7 .2

9 charge_5 7 .2

10 charge_6 7 .2

11 charge_7 7 .2

12 charge_8 7 .2

13 charge_9 7 .2

14 charge_10 7 .2

15 subtotal 8 .2

16 tax 7 .2

17 total_charge 8 .2

18 payments 8 .2

19 balance_due 8 .2

    

Key segment record length: 130
 
 

Screen .1
CLASSINV
-----------------------------------------------------------------
Acct. Code: *1    

Date: *2    

Invoice#: *3    

Status: *4    

    

charge_1: *5    

charge_2: *6    

charge_3: *7    

charge_4: *8    

charge_5: *9    

charge_6: *10           subtotal:    *15

charge_7: *11                tax:    *16

charge_8: *12   ========

charge_9: *13       total_charge:    !17



charge_10: *14           payments:    *18

        balance_due:    !19
 
 
The processing to do simple calculations begins with math operators. These are the +, -, * and / operators you learned in grade school. FilePro can add, subtract, multiply and divide
just about anything. The difference is, you are usually adding, subtracting and dividing the "contents" of a field, you do not need to know the value in the field, just specify the
fields and where you want to place the "answer". In other words if you want to total up 5 fields and put the "answer" into a 6th field just write it out the way you would any math
statement. 8=1+3+92 just remember that you are adding up the contents of fields 1, 3 and 92 not adding "1", "3" and "92". Although filePro can certainly do math on real numbers,
you just have to put real numbers inside quotes, otherwise it will think you are talking about a real field.
 
 

File Name: classinv
Processing Table: input
 

If:
Then: end

Totals If:
Then:
If:
Then: 15=5+6+7+8+9+10+11+12+13+14
Then: total_charge = subtotal+tax
Then: balance_due = total_charge - payments
Then: display
Then: return

@wlf4    If:
Then: gosub totals ; end

@wlf5    If:
       Then: gosub totals ; end

@wlf16 If:
Then: gosub totals ; end

@wlf18 If:
Then: gosub totals ; end

 
Date Math
 
FilePro can also do math on dates. If you take one date and subtract another from it, filePro will tell you how many days there are between those two dates. Or, if you add a real
number of days to a date, filePro will tell you the resulting date. For example:

 
If:
Then: aa(8,mdy/) = @td + "30"

 
This will put the resulting date into the dummy variable aa. We know we are going to end up with a date so we give aa a date type edit at the same time that we put it on the left side
of the equals sign. If you have code on a "then" line that has an equals sign in it, filePro will ALWAYS take the value it determines is on the right side of the equals sign and
assigns it to become the value of whatever field is on the left side of the equals sign. This is ALWAYS true. Even when it may not look right to you. If you are used to algebra, the
following would look very wrong, but it works just fine in fielPro.
 

 If:
Then: aa = aa + "3"

 
How can aa be equal to itself plus "3". That is not what this says in filePro processing terms. To filePro, this means "take whatever value is currently in aa, add "3" to it and stuff this
new value into aa. The next time filePro looks at aa, it will be 3 higher than it was before this "then" line was encountered. If you understand this, you understand just about all there
is to making filePro do all its tricks.



Steps to Define a Key-field Lookup
 

 
 
Lookup Wizard

 
Position cursor on an empty "Then" line and press the Define Lookup key (F5, Ctl-R).
(You can write the statement on the processing line yourself, by NOT pressing the Lookup wizard key.)
 

 
Select Lookup File

 
"Lookup From File:"  Name of the other file, the lookup file.

 
"Name Of Lookup Is?"

 
You can give a shorter "alias" to this lookup filename.

 
"How Is The Record To Be Found?"

 
K Key Field, R Record Number, F Free Record, Z Fuzzy Search
You are cross-referencing the files based on a key field. The key field in the current file has a corresponding
field in the lookup file on which an index is built.

 
"What Index Is To Be Used?"

 
A-P or 0-9, must be built on the corresponding field in the lookup file.
 

 
"What Field In 'current filename' Contains The key:"    

 
The field that contains the data that can be used to reference the correct record in the lookup file.
 

 
Lookup Match Criteria

 
X Key Must Match Exactly
G Use Next Greater Match
L Use Next Lower Match
When you pick the "less than" or "greater than" modes, the program looks for an exact match first.
If it finds no exact match, it selects a value just less or greater than the one requested.

 
Lookup Fail Action

 
B Blank The Field
N Do Nothing
E Report An Error
B    Allows the user to fill in and save despite incomplete entries in the lookup file. When data cannot be looked
up from the lookup file, the program puts blanks in the affected fields.
N    The lookup filename holds a true/false value for the success of the lookup and this can be used for testing.
This allows you to maintain control of the failure yourself. (i.e., put up a message like "Product not on file, do
you want to add it?")
E    Displays the message "Lookup Failed - Try Again". Then it returns you to the update mode in the field
where the lookup failed (the key field)
In automatic processing with -E flag, the error is displayed before the record appears, but you can't get into the
record to change the problem. Do not use -E on automatic processing tables.
In when-field processing, you cannot use the -E flag.
In output processing, the -E flag halts the processing and kicks you out. Do not use -E on output processing
tables.

 
Create Browse Lookup?

This allows you to build elaborate row-oriented display lookups.
You are returned to the processing table. The lookup statement is now written on the "Then" line.

 
 

Handling Lookup Failure
 
Definition
 
The lookup fails if no match is found in the "lookup" file. The lookup filename will "hold" the success or failure of the lookup. You must tell the program what to do.
 
Sample
 

If: not filename
Then: show "@Not on file, try again.";goto again

 
Making Field Assignments
Once the lockup file and record(s) are specified, you must tell the program how the data is to be used. Usually, this means "assigning" the lookup fields to fields in the current file.
This just means setting the fields in this file equal to the ones you found in the lookup file (or vice versa). Result fields ALWAYS go to the LEFT of the equal sign. Make sure the
edit types of the two fields match.
You can make assignments in either direction once you have done a lookup. You can change things in the lookup file or change things in the current file.

 
Receive - Data is received into the current file from the lookup file
 x=filename(n)
  filename is the name of the lookup file
  x is the field in the current file which receives the data



  n is the field in the lookup file that contains the looked-up data
   

Send - data is posted from the current file into the lookup file.
 filename(n)=x
   
  filename is the name of the lookup file
  n is the field in the lookup file to which data is sent
  x is the field in the current file that contains the data to be sent



Triggers
 
There are several kinds of processing "triggers". This section will cover @when leaving and @when entering triggers. They are used only on the INPUT processing table.
 
When you first work with FilePro processing tables, you are happy to find that math can be performed on the data: payments subtract from charges to leave balances due, columns
of figures add up into totals, and due dates pop into place. You can be shown help, moved to other screens, or be presented with menus, all matter of magic can happen to your
screen after you press the ESCAPE ESCAPE sequence. In many instances, though, it would be wonderful to do some of this magic before storing the record. This can be
accomplished by using the @when processing feature of FilePro. Pronounced "at when" processing, this is only one type of trigger that filePro can intercept.
 
There are several kinds of @when processing; we will discuss two here, @wlf (at when leaving field) and @wef (at when entering field). These are triggers that can initiate a
processing routine. For instance, when you leave field 22, the date field of an invoice, you want to immediately calculate the due date (say 30 days from this date) and display it in
field 23. Your input processing table (@when processing NEVER goes on the automatic table) might look like this:
 
         If:
       Then: end
@wlf22   If: 22 eq ""
       Then: 23 = "" ; display ; end
         If:
       Then: 23 = 22 + "30" ; display ; end
 
In English this processing says: when the cursor leaves field 22, if field 22 is empty (programmers say, if 22 is equal to null or if 22 is null) then set field 23 equal to null. Then display
all the fields on the screen with their most current values, then end. (In other words, this little snippet of processing is done, so end it and put the cursor into the next field on the
cursor path.)
 
Note 1: There is an end statement above this processing. You must not allow other processing to fall into an @when leaving or @when entering routines. The line above them must
either stop the processing or direct it somewhere else, such as "goto label", "return", "exit". For now, and until you get far more advanced, it is a safe idea to put all of your @when
processing snippets at the end of your regular input processing (the stuff that happens when you press ESCAPE ESCAPE) and be sure there is an END statement immediately
preceding each @when label. (or something that will not let the processing fall through by mistake.) (Advanced users can use @when processing as a label, but this is because they
thoroughly understand the difference between using it as a trigger and as just another piece of regular code.)
 
Note 2: All branches of each @when processing must be "stopped" correctly. There are five commands that will correctly stop an @when process (END, SCREEN, SKIP, ESCAPE,
EXIT), and they do JUST THAT. Study the following example. Let's say you want the operator to be brought to SCREEN 2 when his cursor leaves field 17. On SCREEN 2 are some
fields (13, 14 and 15) which you want to add up and put into field 16 when the operator is done on SCREEN 2. You have written the following code:
 
         If:
       Then: end
@wlf17   If:
       Then: screen 2
         If:
       Then: 16 = 13 + 14 + 15 ; display ; end
 
Everything looks beautiful, right? NO! The SCREEN command is an "ending" command for the @when processing. True, leaving field 17 will cause that command to happen, but
that is it! The processing on line 3 will never get executed. When the operator presses ESCAPE ESCAPE on screen 3, the processing table will pick up wherever the program counter
was last sitting (probably at the top of the INPUT table). Why? Because that is where input processing starts and INPUT processing is the table that is run when ESCAPE ESCAPE
is pressed. Just because the @wlf and @wef trigger processes are on this table, does not mean they get executed when ESCAPE ESCAPE is pressed. They ONLY get executed when
their trigger is pulled when the user actually moves the cursor into or out of the field they specify. Line 3 of the above code will never be reached.
 
These are the two keys to understanding @when processing. First, every possible branch of actions must eventually be ended with an "ending" command (one of the 5 listed
above). The real INPUT table program counter/pointer has never moved, and will never move because of a trigger process being executed. It stays right where it is. The next line that
will be executed when next INPUT processing is called (ESCAPE/ESCPE) is the same one that would have been executed with or without any @when processing..
 
The same rules apply to @when entering processing. An example might be the following. You have a new employee, Fred, who is allowed to change anything on a record but the
price field 14. All of your other operators CAN change this field. Your code might look like this:
 
         If:
       Then: end
@wef14   If: @id eq "fred"
       Then: skip
         If:
       Then: end
 
It may look strange, but it is correct. As the cursor "enters" field 14, this processing routine is triggered. FilePro checks the user ID of the operator and if it is equal to "fred", the
process skips this field and deposits the cursor (and Fred) into the next field on the cursor path. Any other user ID and the process just ENDS. Which, in this case, leaves the cursor
right where it was headed, field 14. In other words, there was NO @wef14 processing, jut do nothing.
 
 
Using @when Leaving As Powerful Edits.
 
One thing you often want to do is disallow certain data in a field. You might use something like the following to accomplish this :
 
         If:
       Then: end
@wlf3    If: 3 eq "whatever-you-don't-want"
       Then: beep; show "@Sorry, wrong data"; 3=""; screen 3
         If:
       Then: end



Types of Processing Tables
 

Automatic Processing
 
Automatic processing is done every time a record is accessed from disk. Records are accessed from disk at two times for user interaction, during Request Output and during Inquire,
Update, Add. Other times records are retrieved, for example, during index maintenance, there is no need to run any automatic processing.
 
More specifically, automatic processing is performed once if a record is accessed for output, but several times when a record is displayed on the screen in Inquire, Update, Add.
 
Automatic processing affects data as it comes from the disk to be displayed on the screen, but it does not, and should not, affect data on its way back to the disk. The automatic
table should never change anything on the record
 
You can use automatic processing for standard processing that is the same every time you access the record, whether in Inquire, Update, Add or Request Output.
 
Common Uses
 

Calculating a math formula, without saving it, whenever a record is accessed in Inquire, Update, Add or in Request Output.
 
Looking up an address from another file using a customer code, so that the address appears on the screen but is not saved in the records of the current file.
 
There are thousands of good uses for the automatic table. One of its most important features is that it ties together all other tables so that values can be passed through it to
them.

 

Input Processing Tables
 
Input processing is done on a single record when it is added or updated. The processing is performed after the user presses the SAVE key. (Unix=ESCAPE ESCAPE, DOS=ESCAPE
<= this can be customized).
 
Remember the user may press SAVE in 2 cases, either saving data for a brand new record, or saving updates (changes) to an existing record. Sometimes the programmer will want
different things to happen in each of these cases.
 
Use input processing when you want processing to occur on a record-by-record basis after you add or change data in the records.
 
Common Uses
 

Filling in an empty shipping address with the billing address.
 
Attaching screens to one another so that the user is taken from one screen to the next.
 
Posting data to another file on a record-by-record basis after the user presses ESC/ESC.

 
 

Output Processing Tables
 
Output processing is performed during Request Output on a selected group of records.
 
When you Request Output the program performs 2 passes through the file. First, it selects and sorts the records. Then it performs the output processing on each record.
 
It may or may not include the printing of output. If there is no printout, it is called a "Processing - Only" operation.
 
Common Uses
 

Formatting data for special display on the output device.
 
Accumulating special totals on reports.
 
Posting data to summary files
 
Uses of Processing - Only Operations
 
Mass recalculation - performing a math operation on a field throughout a file.
 
Global update - performing a textual change throughout a file.
 
Moving outdated records into archive files.



Creation Operations

The left side of the filePro Main Menu includes the Creation Operations, while the right side of the menu lists Runtime Operations. This primer will walk you through each of the
Creation Operations and then the Runtime Operations in sequence.

 

The filePro Plus Main Menu is a developer menu, so you will not normally make this menu available to your end-users. You will typically create user menus to control what your
end-users are able to do.

The above menu separates the filePro options into logical groupings. The "Creation Operations" are used for creating and modifying filePro elements, while the right side of the
menu "Runtime Operations", is used to test and perform maintenance on what you have created.

Prior to getting into a detail review of each option, suggest that you browse through the topics to get an overview of what each of the options entails.



Define Files - Option 1

 
Contents of this section

 
Define Files Description
Beginner Design
filePro and Non-filePro files
Data Types [edits]
Create Default Formats
Qualifiers (basic)
 

Description:

When defining a new filePro file, filePro will create a subdirectory in the "filePro" directory with your chosen filename. All of the screens, formats, user data, etc., for this filePro file
are stored as regular system files within this named directory. Therefore, a filePro filename actually refers to a directory name.

Under Unix, the filePro filename can not exceed 14 characters in length. Under WINDOWS, the filename size can be up to 8 characters long. The WIN95/98/NT version allows up to
32 characters for filename. It is good practice to use filenames that have more than two characters.
Beginner Design

When you define a filePro file, after you pick <NEW> and enter a filename of your choice, you will see the following screen:

"filePro & Non-filePro files

filePro can work with filePro format files and flat ASCII files. The flat ASCII files or "non-filePro" files are also called "alien" files because they are not structured in the filePro
format. It is normally better to use the filePro file type since it keeps track of things like "Creation Date", "Date Last Updated", and other system information that is useful in
selecting and maintaining the records.

When selecting either file type, you are prompted for a creation password.

With this password, you can prevent others from changing your file structure and formats. If you are a beginner, do not use passwords. Creation passwords can always be applied
later.

After the password prompt, you are presented with a "Define Files" screen as follows;



Field Heading

You simply enter a description that is meaningful for each field under "Field Heading". Although the description can be anything you want (up to 32 characters), use descriptions
that are meaningful to the user.

Headings longer than 21 characters may be truncated on some screens.
Len

The Len is the maximum number of characters that the field will hold. Remember to leave space for punctuation in dates and non-integer numbers i.e. "04/21/99" is 8 characters,
"99999.99" is 8 characters. Many edits (discussed later) such as "Dates", "Time", etc. have specific field length requirements. The Len is limited to a number between "0" and "999".
Many programmers use a zero "0" in the "Len" column to reserve lines for spare fields but normally a number "1" through "999" would be entered as the length of a field. It is best
to limit the length of the field to what you think you really need since longer fields take longer to sort and will use up unnecessary space when storing the data.
Type (Edit)

The "Type" is short for "Edit Type". This column determines the kind of information that will be allowed in the field. If the "Type" column is left blank or contains an " * ", the user
will be able to enter just about anything. filePro provides pre-defined types (edits) such as; "allup" to capitalize any data input into the field; "phone" to insert parentheses and dash
in a typical phone number format. You can also create "user edits" which will be discussed later.
Data Types

Data can be classified into four major groups or "Data Types" as follows;

 
Character: Any combination of ASCII characters (almost anything)

Numeric: Integer numbers; numbers with decimal values or commas

Date: Dates in various formats mdy; mdy/; ymd; ymd/; etc.

Time: In hours & minutes - hm; or hours, minutes & seconds - hms

IMPORTANT: If you will need to perform any math operations on a field, be sure that the field is defined as a "Numeric" data type. If you need to perform any date calculations on a
field, use the "Date" data type.

Example: To make sure that a Social Security Number is always entered correctly, we can enter "SSNUM" in the "Type" column to ensure that Social Security Numbers are always
entered; with the correct number of digits; as numbers; with the " - " dashes which will be automatically insert dashes, if not provided.

 
User Input Edit Results Description

123121234 123-12-1234 Valid Data & dashes inserted

123-12-1234 123-12-1234 Valid Data

a12121234 SSN Invalid Data rejected "a" is invalid

The "SSNUM" example is just one of many "edits" pre-defined for you in filePro. Edits are contained in tables called "Edit Dictionaries". The "GLOBAL Edits Dictionary" contains
the pre-defined edits furnished by filePro to cover commonly used fields like phone, zip, state, allup, cheque, SSN etc. Click on edits to view the "GLOBAL Edits Dictionary".
 
User Edits

The data allowed in a field can be further constrained by creating your own filePro "User Edits". "User Edits" are maintained and associated with a specific filePro directory.
Therefore, "User Edits" are unique to each filePro file unless you include the edit in the "GLOBAL Edits Dictionary".
 
A typical filePro file

The following is a snapshot of a filePro called "FPCUST".



This file is a typical customer file that you might create. Notice that the field headings are self-documenting, so when the end-users access the data, they will know exactly what it is.
The "Len" length of the fields are typical of what you will need to accommodate "last name" first name" etc.

The "edit types" column contains "uplow" for the name fields which will always capitalize the first letter in the name and set all other characters in the name fields to lower case
unless you have purposely typed a character in caps. The "allup" edit will set the address and city fields to "all uppercase". This is a normal U.S. Postal Service requirement. The
"state" edit type will ensure that only valid state abbreviations can be entered. The "zip" edit type will handle both 5 character and 10 character zip codes. The ".2" edit for "year-to-
date sales" will ensure that dollar amounts will always be formatted with 2 decimal places.
 
Selection Options
 
K for Key Press K for the key segment. filePro data can be split between two Segments called "key" and "data". When entering "Define

Files"The "key" segment is used by default.

D for data Press D for data segment. Most developers no longer use the "data" segment. It is still maintained for compatibility to older
versions of filePro.

U to update Press U to define or change fields.

O for Options Press O to select Advanced Options

H to Hardcopy Press H to print a list of the fields and definition.

PgUp PgDn Use to see fields below and above the edges of the screen.

X to Exit Press X to record the changes.

The "Previous record length" and "Current record length" are provided for informational purposes.
 
Press "U" to update

When entering Update, the selection options change at the bottom of the screen.

 
F10 for Help Retrieves system help for define files.

ESC to record Saves the changes made to your file definition. (this is ESC
ESC on UNIX and other systems.
Refer to Terminal Guides )

Ctrl - C Cancels changes made.

F9 to go to. Used with definitions with many pages to quickly go to a
Specific field number.

F8 for Block... Allows you to copy rows quickly.

  

By pressing the "F10 for Help" key, you can retrieve the system help for each section. The following is an example of what you see for the "Type" column.



 
Select Options

 
Create Default formats

After creating / updating in "Define Files" and saving the file definition , you are presented with various options for creating default formats. When typing a "Y" for these options,
defaults will be established or you will be presented with additional screens to specify the values for the defaults.
Creating a screen 0 (Y/N)

"filePro" tries to make a screen from the fields provided. Sometimes there are too many fields or the field lengths are too long. In these cases, filePro truncates the screen to whatever
it can do.
Create a default report (Y/N)

The default report will be labeled "default.out" in WINDOWS or "out.default" in UNIX/LINUX systems.
Create automatic indexes (Y/N)

You can elect to create indexes at this time or create at a later point using the "Index Maintenance " option. Automatic indexes can be established for any field in the key segment.
For filePro versions prior to 4.5, automatic indexes could only be built on multiple fields if the fields were concatenated (if maintained in the map next to each other). For example, in
the "FPCUST" file, an automatic index could be built on "last name" and "first name" by extending the sort length to 30 characters, 15 characters for "last name" and 15 characters
for "first name". With versions 4.5 and later, you can sort on multiple fields no matter where they are defined in the map.

NOTE: ver. 5.8.03 - ddefine will now use the version 4.5+ dxmaint interface when making indexes for new files

Set PFDDEFXMAINT to OFF to revert to the old 4.1 index routine in ddefine

 
Create qualifiers (Y/N)

Qualifiers allow you maintain multiple sets of data for a single filePro program definition. This is valuable for maintaining a separate set of data for testing your design i.e. use a
qualifier name "TST" for test. Other uses include maintaining sets of data for multiple customers i.e. payroll systems for company A, company B and company C, or inventory data
for more than one convenience store. As a developer, the qualifier feature is valuable for testing or troubleshooting a data problem for customers. Qualifiers allow you to maintain
multiple copies of data for a single set of filePro program files. Data from a customer site could be copied with a qualified name to the same filePro directory. So when you make a
change to a process, report or screen, the changes can be easily maintained since you will only have a single version or a master of your programs. The following screen will be
presented by define files when you set the "Create qualifiers" option to "Y".

Enter the qualifier names you wish to create. After pressing ESC, the files associated with filePro data will be created in the respective filePro directory.



 
Example:

If you entered qualifier "TST" for test, the filePro directory would contain "keyTST", "dataTST", "indexTST.a", etc. The qualified sets of data can be accessed through processing ,
by using the appropriate menu flags or from the command line.

Other uses of qualified sets of data may include developing divisional accounting systems. The data for each division may be maintained in qualified data sets while the corporate-
wide data may be maintained in the non-qualified data set. filePro processing allows you to easily post and retrieve data between qualified sets with the "LOOKUP" command.

 

Advanced Concepts - Define Files
 

Contents of this section  
Design Considerations
Associated Fields
Non-filePro Files
Qualifiers
 

Design Considerations

You can very quickly design applications with filePro ranging from a simple "single" file application (rolodex) to complex relational database applications containing many filePro
files (accounting system). Although it is relatively easy to go back and make changes with the "Define Files" option, it is best to give some thought to organization and logical
grouping of fields in this option on your initial design. If you forget something or put something in the wrong place, it is not difficult to add or change the fields at a later time since
filePro will take care of restructuring your data with ease. You dont want to be forced to re-visit a design any more than necessary, so this preliminary organization will save you
time.
Associated fields

These fields are sorted and selected as a group. Whenever one member of the group is specified, all members of the group are considered. These fields can only be defined as real
fields with the "Define Files" option. The following provides a sample of associated fields for "product code" and "quantity".

Associated fields are designated with a "letter" , a "number" followed by a close parenthesis, and then whatever description you want to give the group of fields. You can also add
subfields ( the quantity fields) by starting with the same letter and advancing the number.
Example:  
 

A1) product code  A2) quantity
A1)   A2)
A1)   A2)
A1)   A2)

In the above example, we now have two associated field groups containing four fields each.
Selecting

To demonstrate the advantage of selecting data using associated fields, refer to the following;

In the above screen, you can see that product code "201" applies to Invoice # "1", "3" and "4". When selecting field "A1" eq "201", you would only see invoices where fields 11,
12, 13 or 14 contains product code "201".



 
Results of "A1" eq "201"

To get the same results without associated fields would require a more advanced search as follows;

The above selection is not extensive for a group of four fields, but if it were 10 fields, you can see how time consuming creating the selection could be.
Sorting

Another big advantage of associated fields is sorting. We can now sort on the entire group of fields as a single group. The following example shows a typical sort.

The results of sorting the file by "Customer number" and then "product code".



Without the associated field "A1" to sort on, it would very difficult to even get these results since the product code fields 11, 12, 13, 14 could only be sorted using four sort levels
i.e. 1st, 2nd, 3rd, 4th sort respectively.

Product code "200" would only be sorted to the top of the list for all records only if it is entered into field 11 and never entered in fields 12, 13 or 14. If product code "200" was
entered into any other field than field 11, it would show up further down the list after all product codes were sorted for field 11 as depicted in the following example.
Results of sorting by fields 11, 12, 13, 14

Notice that the description, quantity, and date fields relate only to the first associated field (field 11) on the above report and product codes seem to be in random order even they
though they are sorted on the individual fields. The above report is not very useful and actually misrepresents the data.
Other Uses include calculating values

Associated fields are also valuable for calculating values. You can obtain a total_cost in a processing table by multiplying an associated field for quantity x unit cost.

 @wlfA4):  Total_cost = A2) * A4)

 where: A2) = quantity; A4) = unit cost

This offers a great advantage in processing since you only need one line of programming code to calculate all associated subfields.

NOTE: You can have up to 32 instances of any subfield.
Non-filePro Files

With filePro, you can maintain data from other programs. The differences between filePro and non-filePro files are:

System maintained fields like @CD (creation date), @CB (created by), etc. are not available for Non-filePro files.

New records are only added to the end of the non-filePro file. Therefore, you can not overwrite deleted records. This will leave spaces in the non-filePro file that you may have to
periodically scrub to keep the files as small as possible. After selecting the "Non-filePro file" option from define files, you will see the following screen.



Enter the full path (up to 58 characters) of your non-filePro data file and include the extension of the file if appropriate.

If the file does not exist, your will be prompted to create the empty file. At this point, there is no difference between defining a new non-filePro and filePro file.

You are limited to using ASCII type files with fixed record lengths. If you have existing alien file that you want to maintain using filePro, you will need to have a list of the files fields,
field lengths, and know the record length. Keep in mind that special characters like CR/LF (carriage return/linefeed) have to be added to your file definition if these are used in the
alien file.

Non-filePro File Utilities - filePro offers conversion utilities for some non-filePro file formats.

Click on Utilities .
General rules:

Respect the 8-character limit of WINDOWS if you want portability across platforms. The *nix limit is 14 characters, and WIN95/98/NT is 32 characters.

Wildcard-group your applications by name prefixes.

 Example:

Nexapcd Nexapvd Nexarinv

Nexapch Nexapvnd Nexarmenus

Nexapmenus Nexarcd Nexarsls

Nexaptd Nexarcus Nexartemp

Nexaptemp Nexargs Nexctrl

Nexarhst Nexenv Nexperms

This way all of any wildcard group can be treated together, for example: The "ap" databases can be referred to at one time (nexap*), or all of the "ar" databases (nexar*)... ALL
databases starting with "nex" can be moved to another system (nex*). This naming convention is not mandatory, it is only a helpful convention.

Qualifiers
 
Description:

Qualifiers allow you to develop and run the same application for up to 161 separate sets of data. For example, if you managed an accounting firm that performed payroll operations
for other companies, you could develop a payroll program and use it on several separate sets of data. The separate sets of data would be qualified versions of the file. (It is possible
to manipulate more than 161 sets of data, but that is the current limitation of the qualifier editor.)

With qualified files, there will be copies of the key segment, data segment and of each automatic index for every qualified version of the file.
Advantages

In this case, you want the data to remain totally separate. You never want to see data from company #1 together with company #2.

As far as the program is concerned, you only have one copy of the file definition, screens, formats, and processing tables. This will save you time in maintaining your systems since
you will only have to make the change in one place on your system for all of your customers.

Offers additional flexibility and simplifies programming when dealing with large corporate systems.

Allows you to keep databases smaller and segregated thus improving performance and avoiding a complete (corporate) shutdown when a single divisions data becomes corrupted.
 



Creating Qualified Sets

Use "Define Files" and when asked to "Create Qualifiers (Y/N):" - Answer "Y".

The Edit Qualifiers table appears. Enter the specific qualifiers. The qualifier is a code to differentiate the separate sets of data.

Limits: 

7 letters and/or numbers to a qualifier name (Unix and WIN95/98/NT)

3 letters and/or numbers (Windows)

Suppose you enter two qualifiers "act" and "bb", there will now be three separate sets of data, the unqualified version ("key") and two qualified versions ("keyaa" and "keybb").
 
Accessing Qualified Sets

To access the unqualified file use Inquire, Update, Add or Request Output as normal. To access either qualified file, use Inquire, Update, Add or Request Output with the following
user menu flags:

?m code uses the indicated file name qualifier
-md displays the "Enter File Name Qualifier" prompt after the "Enter Pile Name" prompt
-mq "message" displays a user-defined prompt for the qualifier

 
Important Define Files Functions
 
"filePro & non-filePro files" All filePro files contain a hidden 20 byte header, Non-filePro files are structured ASCII files with no

hidden header per record, therefore, no system maintained fields.

Fields The real fields of any file.

Data types & Edits Keep data clean and organized.

Associated fields Unique feature of filePro. Group fields for searches and comparisons

System Maintained Fields Record created by, creation date, updated by, updated date, etc.

Qualifiers Unique to filePro and allowing multiple data sets with the same processing, screens and outputs.

Password Security feature for locking the creation side of the menu on any file.

Expert Level
 
Access Qualified Sets in Processing

When defining processing, if you are standing in a qualified set of a file and do a lookup into a second file, the program will look for a qualified set of the same name in the second
file. You can lookup data from a non-qualified set from a qualified set and vice-versa using the LOOKUP flags properly.

Make sure to use the LOOKUP filename@ when standing in a qualified set to access the non-qualified set. You also have the environment variable " PFQUAL " available to you, so
this could be used to your advantage in conjunction with the " GETENV " command.
 
The "map" file

When you enter information in the "Define Files", filePro creates a definition layout called "map". If you look at the "map" for "FPCUST" with an editor, you will see something
similar to the following;

The first line of the map file is as follows;

Map:xxx:yyy:zzz:XXXXXXXX:PPPPPPPPPPPPPPP

Where:

Map is the literal "map".
xxx is the record length of the key (excluding the 20 byte header).
yyy is the record length of the data file.



XXXXXXXX is the 8 digit hexadecimal checksum of the encoded password.
PPPPPPPPPPPPPPPP is the encoded password.

The second and subsequent lines contain references to each field by name, length and data type. As you can see, the references are separated by a ":" colon.

Dates are stored as the number of days since January 1, 1983.

User IDs are stored as the user ID number from the /etc/passwd file (UNIX/XENIX) or as "0" (Windows)

Password - Keep in mind that a browse window will not display fields in the current file if the field is not included on the screen when the filePro file has a creation password.

v6.1 Added logging to ddefine.

ddefine can now optionally track changes made to filePro file layouts. This includes the name of the file, who changed it, and what fields were changed. Requires a logging
configuration file to be added under the ./fp/logs directory named 'ddefine.cfg'. Format of the config file is the same as the servlog.cfg file that comes shipped with filePro.

Example ddefine.cfg: 
    ROLLING,DEBUG,ddefine.log,60000



Define Screens - Option 2
 
Contents of this section

 
Description
Using Define Screen Help
Copying a Screen
Adding Fields
Toggle Graphics
Box Functions
Adding Color
Resolving Fields
Advanced Section

Description:

Use this program to create Input Screens (subsequently referred to as "Screens") for use in adding and changing record information in a filePro file. Input screens are often referred
to as "forms" in other programming languages. An almost unlimited number of screens can be created for each filePro file. Multiple screens can be created when you have more data
in each record than can fit on a single screen or to control input functions. Suppose you are developing an "Accounts Payable" application. You will probably want separate
screens for entering payments and charges. Payments may be entered on screen named "pay" and charges on a screen named "chg".

Separate screens can be used to protect certain data from change or access by unauthorized users such as a "Payroll" system. Although you have a payroll entry clerk, you may not
want the payroll clerk to have complete access to all employee information. This sensitive information can be maintained by a separate screen with password protection to allow
access by management personnel only.

As you design screens, keep in mind that you can use system-maintained fields, "real" fields defined through the " Define Files ", and variables created by " Define Processing ".
System maintained fields contain information 'remembered' by the system, e.g. the date a record was first created, when the record was last updated, etc. System maintained fields are
built into filePro and can't be redefined.

Select "Define Screens" option 2 from the filePro Main Menu.

 

Select a file name from the list of files by highlighting the filename and press Return.

 

After selecting the filename you will only see option [NEW] for a new screen and "0", the default screen 0, which was created by "Define Files" for file "Rolodex".



 

Notes: The screen name is limited based on the Operating System you are using. If you want to maintain WINDOWS compatibility, use screen names of three characters or less.

If you assigned a creation password to a file during the "Define Files" operation, you will be prompted for this password. This prevents unauthorized users from creating screens for
your password-protected files.

If you press Return while [NEW] is highlighted, you can enter a new screen name. In our case, we are going to select "0" to use screen 0. This screen was the default screen created
when defining the file.

Enter "0" and press Return.

 

You will be presented with default screen 0 with selection options at the bottom of the screen depicted as follows;

 

 

Using Screen Help

Press F10 for help and the following "Help Screen" is presented for define screens.

 

The help screens provide descriptions of the selection options shown for the previous screen. When you see the option "PgDn To Scroll", there are additional help screens
provided included. Press PgDn to retrieve the following screen.



  

This is the last page of help for the selections as indicated in the lower right corner of the screen. Press Return To Exit Help and return to "rolodex" screen 0.

 

Press "U" to update screen "0"

 

Notice that the options have changed at the bottom of the screen. Help is provided for the screen options, so press F10 to retrieve screen help.

 

Notice that the help provides an additional option "F9 - Search" to search using indexed help. This feature was added in filePro version 4.5 to allow you to quickly access help on
specific functions and topics based on your current selection options. Press F9, to get a list of available indexed help for this section of "Define Screens".



 

Generally, help follows standards which uses upper and lower case. Those items in all uppercase are filePro functions, System-Maintained-Fields or commands, whereas items in
upper and lower case are HOW-TO or general topics.

Example - selecting @CD (creation date) will go to a description of the system-maintained field @CD and other system-maintained fields. When selecting "Fields", you are placed in
the section which describes how to place fields, including @CD, on a screen. Highlight @CD and press Return to get the following screen.

 

When pressing F9 again and highlighting "Fields", you are returned to the original help screen when starting discussion on this sub-topic.

Press F9 and highlight "Fields"

 

Copying a Screen

Press Return to exit help and return "Rolodex" Screen 0.

 

Although you could use Screen 0 to enter data for the Rolodex, any changes made to screen 0 will be potentially overwritten when redefining the file. For this reason, it is a good
practice to copy the default Screen to another screen name. This will ensure that any changes we make to the screen are preserved.

Press C to copy the screen.



 

Since we will be copying Screen 0 to a new screen, highlight [NEW] and press Return. At the screen name prompt, enter 1 (meaning copy to screen 1) and press Return.

 

Adding Fields

Notice how the screen name has changed in the lower right hand corner to Screen: 1. Press "U" to update the screen. Use your arrow keys to go to row "18" column "4". Use the
cursor position number in the lower left corner of the screen to get to the starting position. Type in a literal "Date Record Created: ". Use your right arrow key to go right two
positions and type "!@cd" for the system field "Creation Date". Press the TAB key twice and type "Last Updated: !@U4". Your screen should look similar to the following screen.

 

We have just added two system-maintained-fields. The exclamation point "!", preceding the system-maintained fields, is a " field indicator" and has the meaning "the field is
protected from update". Notice that the other fields are prefixed with an asterisk "*". The "*" field indicator means that the contents of the field can be optionally modified. There is
another field indicator, the "%", and meaning that the field is a "must fill" or mandatory field. Lets change the screen to make the name_last, name_first, address_1, city, state, ZIP
mandatory by replacing the "*" with a "%" field indicator. Your screen should look similar to the following after the changes.

' Toggle Graphics

When pressing the F9 key notice that the word "Graphics" is displayed in the lower right and corner of the screen.

 

When pressing the F9 key again, the word "Graphics" disappears. This toggle feature allows you to change to the mode of the number keypad on your keyboard. (On single-user
systems, the number-lock must be on.) When "Graphics" is displayed, the number keypad will place graphics characters on your screen instead of numbers. By pressing the help
key and then pressing F9 for index search, select the help for "Graphics". You should see a screen that looks similar to the following and shows the relationship of the number keys
and graphics characters.



 

Place your cursor in a blank area on the screen (4,60) and draw a simple box by pressing the applicable keys on the number keypad and type a literal in the box "Graphics Box" as
depicted in the following screen.

 

Box Functions - F7

Use of the F9 key and number keypad was the only way that you could enter graphics in older versions of filePro. This feature is useful when you want to repair a graphics box but
a complete set of "Box Functions" are provided with later versions of filePro when pressing the F7 key. To get a description of the box functions, do the following.

Press the F10 - Help key, F9 for search and select Box_functions help as follows.

 

As you can see in the previous help screen, you have a range of options for manipulating the information while designing your screen with the "Box functions". To demonstrate
how easy it is to use this function, draw a box around the system-maintained-fields that you previously added near the bottom of the screen. Place you cursor at position (17, 2) of
your screen and press the F7 key. This will place a plus sign as an anchor for one corner of the box. Use the cursor keys to move right and down to position (20, 78) and press "D"
to draw a box. Your screen should look similar to the following screen when done.

 

Try erasing the box by repeating the above procedure but instead of pressing "D" to draw press "E" to erase. Try drawing boxes around in other areas of the screen and move the
information using "M". After you are done experimenting, press Ctrl -C to cancel the changes that you have made. If you inadvertently save the changes to screen 1, return to the
"Copy" function, select screen 0, and re-copy screen "0" to screen "1". Change screen 1 to look like the following screen and preserve your screen by pressing ESC to record the
changes.



 

Change Cursor Path

After moving the information around on the screen, the fields are now in a different order. If you used the screen for inputting data without making changes to the cursor path, (the
way the cursor moves between fields) the cursor would jump all over the screen based on the field number order e.g. field 1 (name_last), field 2 (name_first), field 3 (address_1) etc.
since the default cursor path follows the sequence of fields as they were defined and placed on default screen 0. You may want to print a hardcopy of the screen 1 to refer to the
information at this point.

We can define a new cursor path by using the Extended options. Press "U" to update the screen, and press F8 for "Extended Functions". When pressing the F8 key for extended
functions, the following screen is presented.

 

Press "C" to change the cursor path. You will see the original cursor path based on the sequence of the fields in the map. This cursor path was established when the default screen
"0" was created during "Define Files". When in the cursor path screen, highlight field "1" and press the F4 key to delete "1" as the first field in the cursor path. Highlight field "3"
and press F3 to insert a blank after "2". You can use the F3 and F4 to insert and delete respectively while editing the cursor path. Insert TABS by pressing the TAB key. Change the
cursor path to agree with the following screen and press ESC to save the new path.

Note: The cursor-path program doesnt accept fields that are not used on the screen, protected fields, or undefined fields. Instead, it gives you an error message and returns you to
the cursor-path screen so that you can correct the mistake. However, it does accept dummy fields created by " Define Processing ". There are no dummy fields included in this
example.

Other Extended Functions

While in update mode, let's take a quick look at the other "Extended Functions" by pressing the F8 key. You should see the extended options selection menu once again as follows.

 

Select "O - Set options" to retrieve the following screen.



 

This extended function allows you to add a password for your screen and prevent record deletion when using this screen.

Press Ctrl C to cancel this option and to return to update mode. Press F8 again and select "I" for "Import text file". This feature allows you enter a path and file name to import text
directly into your screen. Make sure to place the cursor in a blank area on your screen prior to importing text. Press Ctrl C to cancel this option and return update mode.

Display Fields

Press F6 to display fields previously defined for the "Rolodex" file.

 

When pressing F5, field lengths and edits are displayed as follows.

 

Press Return to go back to update screen mode.
 

Adding Color

If you have color capability on your system, you may want to spice up your screens to keep them interesting to the users by highlighting data entry areas and titles. You can press
Ctrl F10 to retrieve help on this topic.

 

By pressing combinations of Shift, Alt & Ctrl with a function key, you can set color combinations to perform highlighting on your screens. Return to screen update mode and try
setting various combinations of foreground and background colors. When pressing the key combinations you will notice that the color combination you have selected will show up



in the lower left-hand corner of the screen. Try changing screen "1" to highlight the literals and draw a colored box around your name as depicted in the following screen.

After selecting your color combination, use the F7 key with "F" to fill color, much like you used it previously to draw boxes. In fact, you will use the "D" to draw the colored box
around your name.

 

Resolve Fields

After completing the screen color changes, press F5 key to show how the screen will look to the users when using IUA . You should see a screen similar to the following when
pressing F5. Press Return to continue updating your screen. Modify the screen colors, boxes etc. until you have a color combination that you like. Go to IUA and test your screen
design.

 

When exiting "Define Screens", if you assigned a creation password, you will be prompted to change password or to press Return.

Note: See Technical notes on " Blinking " attribute.
 

Advanced Design - Define Screens

Field Indicators

The following field indicators can be used on screens to control data input.

 
* Accepts data.

! Protected ----no data can be typed in.

% Must-fill ---there must be data in this field before the record can be recorded.

\ Truncates field.

Use the TAB key to move quickly within a line. This moves the cursor right eight characters at a time. Make sure that you leave enough room for each field. "Enough room" is the
length of the field plus one. An end-marker will appear in that last space. (End-markers on single-user systems are usually small triangles; on multi-user systems, periods or small
boxes.) In other words, if field 1 is 15 characters long, leave 16 spaces counting from the field indicator:

Name_last: %1

If you leave only 15, the first character of the next field is lost. You may also wish to leave a second space for visual separation between the fields. Use F5 to check for visual
separation.

Aesthetics: Lines, borders, boxes and screen headings have two purposes. They make screens:

Attractive

easy to use

Use subheads and borders to separate screens into logical sections. Think about the organization of your file ---- does the information fall into two or three parts (e.g., name-and-
address information vs. account information)? If so, consider visually breaking the screen into two parts with a line or box.

Reverse video and graphics. Do you want instructions to the user on the screen? Consider doing them in reverse video---- dark letters on a light background instead of light letters
on a dark background. For reverse video, press ALT F9 to return to normal mode, press ALT F9 again. When reverse is on, the cursor-position box is also in reverse.

For graphic character mode, press F9 to return to normal mode, press F9 again. When graphic mode is on, the word Graphics appears at the lower right corner of the screen. The
graphic characters themselves are accessed with the numeric keypad at the right of the keyboard. (On single-user systems, the number-lock must be on.) To remember which keys



access which characters, think of the keypad as a box with lines running through its center. The corners of the keypad are the "corner" graphics characters.

Use the F7 and F8 keys to draw lines and boxes quickly. To draw a box, you simply pick two diagonal corners of the area you want to enclose; press F7 at the two points. To draw a
line, press F7 at the starting and stopping points. For vertical lines, put the two points within the same column on the screen. For horizontal lines, put the points on the same line. To
erase a box, press F8 at any two diagonal corners. To erase a line or portion of a line, press F8 at the points where you want to start and stop the erasure. For reverse boxes, go into
reverse mode and press F7 at two corner points. This creates a narrow black box within a highlighted box. For a highlight-only box, create a reverse box, then erase it with F8. The
highlighted portion of the box will remain on the screen.

Note: All graphic and reverse characters can be overwritten and erased, reproduced and moved using the regular function keys.

Check List: Look over the format for errors, using this checklist:

 
a. Are there any spelling mistakes in the headings?

b. Does every field have a field indicator? Use only protected-field indicators for system-maintained fields.

c. Did you leave enough space for each field?

d. If you have more than one field on a line, is there at least one blank space between the end of one field and the beginning of the next, and at
the right edge of the screen?

Use F5 to "resolve" (analyze) the screen. Check that fields dont overlap or run into each other ---look for each fields end-marker. If you have forgotten a field indicator, the field
number appears; if you put a nonexistent field on the screen, the field number and indicator appear. If you've typed the wrong field number, the field length will look too long or too
short. Only dummy and system-maintained fields do not change (see "Defining Processing" for information on dummy fields). After noting which fields need to be corrected, press
Return to go back to the format screen.

You may want to pre-set the movement of the cursor through the record. For instance, rather than having the cursor move from left to right, top to bottom through the screen, as it
usually does, you can have it go up and down through columns. If the screen is split up into sections, you may want to set tabs that let you jump from one to another quickly.

Note: If youve restructured the file or revised the screen, a message saying that the cursor path is invalid may appear.

How to Revise Screens 

The only difference between creating and revising a screen is that, when you change field numbers, you invalidate the cursor path. If you see a message saying that the cursor path
is invalid, you should revise the path to match the new format.

Color on Screens

Color can be added to screens created in the Windows versions of filePro. If you add color using the Windows version, the color version of the screens can be transferred to non-
WINDOWS versions (even though you can not create colored screens in non-WINDOWS versions) and used if your terminals or workstations are capable of displaying color
screens.

If your IBM PC/XT has a color monitor and adapter card you can set both background and foreground colors for the entire filePro program. Use the "Set Color" utility to modify the
default screen colors.

Some Extra Considerations

Avoid including Screen 0 (created by "Define Files") in your finished application design. If you modify this screen and later, by accident, ask Define Files to build a screen for you, it
will wipe out any changes or modifications you have made to Screen 0 and build you a fresh screen. For this reason, it is sometimes helpful to "Copy" Screen 0 to another screen,
usually Screen 1. Then, delete Screen 0 and continue modifying and enhancing Screen 1.

Cursor Paths: If you have eliminated fields from a screen that already has a cursor path, the program may warn you that the cursor path is no longer valid. If you forget to put a field
on the cursor path chart, the program adds it to the end of the list automatically. Unless that is where you want it, you should go back to Define Screens and add it to the cursor
path chart at the appropriate spot. Use the F3 and F4 keys to open and close spaces.

When you update records in Inquire, Update, Add, the program refers to the cursor-path chart as you move from one field to the next. If you have no chart, the program uses its
own cursor-movement rules.

The up and down arrow-key rules have particular significance because the keys will seem to skip fields if indicators arent aligned. The rules are:

When you press the down key, the cursor goes to the first character of the field just below it; if it finds no first character, it goes to the first character of the field to the right of its
previous position.

When you press the up key, the cursor goes to the first character of the field just above it; if it finds no first character, it goes to the first character of the field above and to the left
of its previous position.

For example, say that this is your format:

Company: * 1 Contact: *2

Street: * 3 City: *4

If you update field 1 and press the down key, the cursor jumps to field 4, not field 3. If youre in field 4 and press the up key, the cursor jumps to field 1, not field 2.

To get the cursor to move straight down when you press the down key and straight up when you press the up key, simply align the field indicators.

It is possible to send the operator from screen to screen during data input. See SCREEN in "Defining processing."

filePro Style Headings: If you want your headings to match the ones applied with filePro, use all uppercase letters, separate each letter from the next with a space (three spaces
between words), center the heading, and use an underline.

 
Concatenating fields on a screen:

There may instances when you want to combine fields like name_last, name_first and middle_initial on the screen so that a lookup name is combined e.g. Smith, James, G. to be
displayed as James G. Smith. This can be easily done by creating a dummy field that combines the 3 fields and concatenates the fields leaving a single space between name_first,



middle initial and name_last.

Create the dummy field in automatic or input processing to hold the value of the displayed field as follows;

Then: n(32) = 2 < 3 {"." < 1

where "n" is defined as name with a length of 32 characters (15 characters for Name_last & name_first, and 2 characters for middle_initial with the "." period), field 2 = name_first,
field 3 = middle_initial and field 1 = name_last. The "<" pushes a field left leaving a single space between values and "{" pushes left and leaves no space between the values. The
literal "." is placed tight up against the middle_initial.

Place the dummy field on your screen using "!n".

Concatenated fields are normally used for display purposes only and therefore should be treated as protected fields by using the "!" field indicator. If you have a need to update the
fields, keep them separate as defined in your file.

Note: You can put arrays of dummy fields on screens. See " Defining Processing " for more information on arrays and dummy fields.
 
Truncating Fields:

Use the slash "\" field indicator to truncate fields on a screen. This will establish a limit to prevent wrapping of the fields to the next line when the field length has not been defined.

 
New in Version 5.8.02 and higher
To implement a scrolling field, place a field as you normally do, but then place a backslash ("\") at the location you want to truncate the visible part of the field.  Then, in *clerk, the
field will only display as wide as the place you specified with the "\".  However, when you are in the field, you can scroll horizontally.  The EOF (end of field) designator will now
also show a > indicating additional characters for a field when viewing a record.
 
Screen Limits:

Width and depth: 80 characters across, 20 lines down.

Size per screen format: up to 2,270 bytes (characters).

Maximum number of fields per screen: 200.

Maximum number of tabs per cursor path: 20.
Tricks:

Apply highlights to field contents by highlighting the field indicator preceding the field.

Remove end-markers by making the foreground and background colors the same at the end-marker position on the screen. Make sure that you use the screen background color to
hide the end-markers.

Centering - hidden function under (M)ove box function. You can press (h) or (v) to center the boxed area horizontally or vertically.

Use Ctrl and F7 when in update mode to get the current color settings for an area on the screen. This is useful to duplicate existing color areas in other areas on the screen.

For portability to WINDOWS, it is important to keep the screen names to 3 characters or less. Otherwise, screens can be up to 7 characters long under Unix, and 25 characters in
WIN95/WIN98/NT.



Define Output - Option 3
 
Version 6.0.00 enhancement
from the F8 – Options in Define Output, you can select F – Hide or Show Forms. This will allow you to manage the .out files that are hidden from clerk. A list of .out files will appear when you press F. This
list will display showing .out file hidden with an asterisk and those not hidden unmarked. You can manually toggle the .out files or you can press F7 to reverse toggle them all. Once you have the list the
way you wish it to be, press SAVE to process the new settings for this one directory.

Also allows you to switch just the .out file that you have selected by selecting F8 – Options. The line “Hide forms from clerk: N” determines rather this form is hidden or not from clerk (IUA).

 

Contents of this section
 

Features
Kind of Output
Formats
  Forms
  Labels
  Reports
Define Processing Only Format
 Grouping [Subtotal & grand total breaks]
Sorting
Extended Functions

Features:

The "Define Output" option is used to create printed output and process only formats. Any output you define with this option can have output processing associated with it to do
things like; printing a field value from other files; posting field values from the current file to other files; posting calculated data to other files. Output formats can contain real fields,
system maintained fields and dummy fields as well as any literal text for thinks like 'Report Titles", "Field Headings" etc. The presentation of the printed output is controlled through
the use of print codes to change fonts, line spacing and other characteristics of the output.

Select Option 3

You will see a list of filePro files from which you can choose.

After selecting the filePro file from the list, you can select an existing output format, if you want to modify the format, or create a new format by selecting [NEW].

When selecting [NEW] from the listbox, you can enter the "Output Format" name of your choice. In this case, we will create a new list output format by typing "list".



After entering a format name ("list" in this example) and pressing enter, you are presented with various options for defining your output format as follows;

 
Kind of Output:
 
Option 1 A report is the standard output format that provides three sections including;

Heading/Title Lines;
Data Lines;
Total/Sub-total Lines

Option 2 A mailing label provides for printing several labels across the page.

Option 3 A full-page form is typically used when printing a single page for each record.

Option 4 Other printed output is similar to option 1 but a catchall option.

Option 5 A processing only format is used when you do not want a printed output (normally used for posting to lookup files). 

The above options give you a lot of flexibility to rapidly design any output you will ever need.

A Report:

When selecting option 1 for "A report", you are presented with a screen to set the options for your output as follows;

The "Output format options" are self-explanatory for standard output formats, but it is important to consider the purpose and controls you wish to invoke when printing your
reports. For example, if you include payroll check printing in a system, you will probably want your checks to always go to a specific printer where your checks are pre-loaded and
provide for printer alignment checking. A "check printing" format would probably also have password protection whereas most other printed output would not require that level of
control. So for "Check Printing", you would want to enter a "Y" at "Change password", change the "N" to a "Y" at "Alignment check needed", and specify your check printer in the
"Printer Name" option. Note that the "Printer Name" is assigned through the " Printer Maintenance " option.

Getting Help

Although a help key option is not displayed as an option in the above screen, when pressing [F10] you can get help and recommended settings for each option. An example is
provided as follows.



For options "Printer name", Initialization print code" and "Terminator print code number", you can press the [F6] to lookup the predefined values, highlight the value you want and
press "Enter" to plug in to the options. The following is an example for the "Printer Name" option.

As with most other filePro options, there is always more than just one way to accomplish your objective. You can leave the "Printer name" option blank, and use a "Request Output
menu flag " instead. This is even true for the password option since you can prompt a user for a password through processing by using the command " INPUTPW " or "INPUTPW
POPUP". In fact, using the processing commands is probably a better method if you have a multi-user system for a large office and want to provide system administration features
with your system design. This will prevent having to change the system when the payroll clerk leaves the company for another job. You could do this by creating a password file
that is accessed for sensitive data (like payroll) so that password(s) can be periodically changed by the office administrator instead of a single password controlled through the
output format. This would be a better method if you are distributing the system to more than one company.

Sort Fields

When defining a report, you can specify the order of data or sort fields to be used. For our list, we have selected the "last name" and "first name" as our sort fields.

The default sort is in "ascending" order, but typing an "X" in the "Sort Definition" for your fields, you can sort in "descending" order. You can also identify what fields you want a
sub-total break to occur on by typing a "X" or "F" (Form feed) in the Subtotal Field row. In the above screen, there is a subtotal on field "6" or "state" to calculate the total sales by
state. The customer list is further sorted by name within each state. A typical report definition might look similar to the following.

 
Field Indicators

The following field indicators can be used on reports.



* Data printed starting at this position.

! Same as asterisk.

< Push left ---- data is moved left leaving one empty space between fields.

= Subtotal or total this field (subtotal and total lines only)

\ Truncates field.

Note that an equal sign is used as the field indicator inside subtotal and data areas to obtain the appropriate total for any numeric field. Also note that system maintained fields are
used on this example, i.e., @td (todays date), @tm (current time), @pn (page number). These will be replaced with their proper values when printing or viewing the output. Note
finally, that the "push left" operator (<) can also be used on report formats. It is used here to push the page number one space away from the literal "Page:" and to push the
customers last name to the left.

Sample Output: The sample definition yields the following results.

 
Sample Output: Last page

IMPORTANT: Processing tables can be associated with output formats, making use of fields, text, calculations or data from any filePro file (or other system resource). This attached
processing is automatically given the same name as the output format (be it a report, a form, or a label). You can choose to run an output format with a "different" processing table.
This is done by using the -z option flag from a menu or system prompt for dreport or rreport, and placing the name of the desired processing as the argument following the -z (after a
space).

Refer to output flags for additional information on use of -z and other output flags.

 
Example 1:

dreport filename -f formatname -z othername -a

If there is an attached processing table to an output format and you do not wish to run it (or any other processing either) then you can put a "" after the -z option. This will let you
employ the format with no processing at all.

Example 2:

dreport filename -f formatname -z ""

IMPORTANT: While in Inquire, Update & Add, the processing attached to any output format will be executed if the format is selected by pressing the (F)-Print Form option.
However, if the form is called from within INPUT processing as in:

Then: form "invoice"

the attached processing will NOT be run. You must make sure that all variables and calculations you need for the output called in this manner are present on the INPUT table before
this line is reached.

A Mailing label

This option can be used to print mailing labels, rolodex cards, index cards etc. where you do not have headings or footings, or want to print multiple forms across a page. You can
also use this type of format to print from IUA using the " form " processing command or selecting a form name while IUA.

 
Select LABEL



This label format has been previously defined for FPCUST.

Press [U] - update, to edit the format.

When pressing [F8], the following screen is presented.

When defining a new label or when selecting O - Options, you will see a screen to control your report format.

"Width of Page" - how wide your paper is in terms of the number of characters. The standard 8.5 inch paper is 85 characters wide when using 10 pitch (10 characters per inch). The
widest that you would want to go when using standard letterhead is 80 characters to allow for margins. The maximum number of characters for 14 inch wide paper would "144".
Typically you will use "132" character width of page (default) to provide a "6" character margin on each side the page. The program accepts a maximum of "255" character width of
page.

"Width of Form" - With labels, the width will probably never be greater than 25 characters. If you are printing index cards with two across the page, then your width would be 40
characters. The maximum is the same as the maximum width of page i.e. "255" characters.

"Number of Lines per page" - Use the vertical measurement of your individual labels for label stock, or cards for card stock or other printing stock. Include blank lines at the top and
bottom of the label in determining the number of lines to print. The number of lines to print will equal the number of lines per page for this format type. By leaving blank lines at the
top and bottom, it makes it easier to position your printing stock in the printer at runtime since the top edge of the paper can be used for alignment.



"Change passwords" - Use this option to add or change your format password.

"Remove unwanted blank lines" - This will remove blank lines so is not recommended for labels or other report formats where data needs to be positioned in a certain place on the
form.

"Alignment check required" - This will force an alignment check before printing your data. This is useful for labels and other formats where page alignment is critical.

"Print grand totals on new page" - This is useful if you want to separate the grand totals from the detail report to create (in essence) a separate report for grand totals. This option
will not be available for reports unless grand totals apply e.g. it does not apply for labels and full-page forms.

"Initialization print code number" - You can apply a print code to be sent to the printer before the job is started. This overrides the default initialization code for the printer driver and
can be useful for things like setting another font, changing from portrait to landscape, etc.

"Terminator print code number" - Sends a print code to get ready for the next print job e.g. send print code for portrait mode after printing this report in landscape mode.

A full-page form

A full-page form is usually used to print checks, insurance forms, invoices etc. In general, anytime you want to print a page of information for a single record in a file e.g. checks,
invoices, statements etc. use this output type. You can also use this type of format to print from IUA using the " form " processing command or selecting a form name while IUA.

Other Printed Output

This option lets you design a form free-hand. The program gives you heading, data and sub-totals/totals and is very similar to option 1.

Process-Only format

This format is primarily used for batch posting operations, archiving, recalculating results, creating export or merge files to be used with word-processing and spreadsheets etc.

There are two steps to defining processing-only formats. First is setting up the sort instructions and password (accomplished through this option) and defining the processing.
Only the first step is covered on this topic. See " Define Processing " for the 2nd step.

Select 3 - Define Output

 

Select FPCUST and Select [NEW] to create a new format.

Enter "export" as the format name. This would be a typical processing-only format name.



Press Return

Select 5 - A processing-only format

Enter Y or N for change passwords

Note: If you assign a password, the user will be prompted for the password to run the output. If you intend to use scripts or batch files to run the processes unattended, do not
assign passwords.

This completes the processing-only format. Press ESC to save the processing table and then Press X to exit to the filePro main menu.

See " Define Processing " for creating the "export" output processing table.

Extended Functions - [F8]

We have previously covered some of the extended functions options such as "O-Options", "S"-Sort Information, etc. but these are worthwhile mentioning again so that they are all
covered in the same place in this documentation.

After pressing "U"-Update to update a report format, press the [F8] key to see the "Extended functions" menu as follows.

 



"O-Options" - Allows you to set various options for the report format as follows.

"Width of Page" - how wide your paper is in terms of the number of characters. The standard 8.5 inch paper is 85 characters wide when using 10 pitch (10 characters per inch). The
widest that you would want to go when using standard letterhead is 80 characters to allow for margins. The maximum number of characters for 14 inch wide paper would "144".
Typically you will use "132" character width of page (default) to provide a "6" character margin on each side the page. The program accepts a maximum of "255" character width of
page.

"Width of Form" - With labels, the width will probably never be greater than 25 characters. If you are printing index cards with two across the page, then your width would be 40
characters. The maximum is the same as the maximum width of page i.e. "255" characters.

"Number of Lines per page" - Use the vertical measurement of your individual labels for label stock, or cards for card stock or other printing stock. Include blank lines at the top and
bottom of the label in determining the number of lines to print. The number of lines to print will equal the number of lines per page for this format type. By leaving blank lines at the
top and bottom, it makes it easier to position your printing stock in the printer at runtime since the top edge of the paper can be used for alignment.

"Change passwords" - Use this option to add or change your format password.

"Remove unwanted blank lines" - This will remove blank lines so is not recommended for labels or other report formats where data needs to be positioned in a certain place on the
form.

"Alignment check required" - This will force an alignment check before printing your data. This is useful for labels and other formats where page alignment is critical.

"Print grand totals on new page" - This is useful if you want to separate the grand totals from the detail report to create (in essence) a separate report for grand totals. This option
will not be available for reports unless grand totals apply e.g. it does not apply for labels and full-page forms.

"Initialization print code number" - You can apply a print code to be sent to the printer before the job is started. This overrides the default initialization code for the printer driver and
can be useful for things like setting another font, changing from portrait to landscape, etc.

"Terminator print code number" - Sends a print code to get ready for the next print job e.g. send print code for portrait mode after printing this report in landscape mode.

"S - Sort Information"- Allows you to control the sort order by field number, field lengths and ascending or descending order.



"G - Toggle Grow Mode" - Allows you to change how the [F3] insert key and [F4] delete key works. When grow mode is toggled on, you will see "Grow" in the lower right corner of
the screen as depicted above. While in "Grow" mode, you can add or remove lines to the bottom of your format. When "Grow" mode is off, the [F3] and [F4] inserts and deletes a
line under the current cursor position.

"R - Resolve fields" - This will redraw the screen and display the end of field markers to assist you in making sure that you have enough room for each field.

"I - Import Text" - Allows you to import a text file at the current cursor position.

 

"N - Import Screen" - Allows you to import a screen format at the current cursor position. Select the applicable screen number.

Note: Make sure that your report length and report area have been adequately expanded to handle the screen that you are importing or you may overwrite things like subtotal break
fields or other previously defined report variables.

Select the screen name you want to import to your report format. The entire screen will be imported to the current cursor position. If there is not enough room for the entire screen to
be imported, you will see a WARNING message similar to the following.



Press Return to accept or [Ctrl - C] to abort the import.

"P - Define Processing For Format" - This option allows you to define a processing table without exiting the report format.

Enter your processing table lines and press [ESC] to return to the defining the format.

Note: This option will provide the same functionality as using the "Define Processing" option from the filePro Plus main menu.

"X - Exit Extended Functions" - Returns you to the regular "Define Output" functions.



Define Edits - Option 4
 
Contents of this section

 
Description
Edit Dictionaries
Edit Syntax
Prompted Edits
Define Edit Screen Commands
Building Block Edits
The Global Edits Dictionary

 
Description:

The "Define Edits" option provides an ability to perform sophisticated validation of data as it is entered into any field or when creating outputs such as reports. This feature of
filePro can save you an enormous amount of time in validating data without having to write a single line of programming code. This powerful tool is one feature of filePro that sets it
aside from most other programming languages since most languages require many lines of programming code to accomplish the same things that you can do in a few minutes by
creating a simple edit. This tool is sometimes call a "filter" in other program languages since it filters out unwanted data.

Edit Dictionaries

NOTE:  There is a system limit on how many edits you can have. Between GLOBAL and LOCAL edits added together, they cannot exceed 200.   If the total at runtime is greater than
200, the user will get a Run-Time error message letting them know that certain edits may not be recognized and applied.

A "Global Edit Dictionary" is predefined for you (referred to as GLOBAL) that will satisfy many of your validation requirements. Edits in this dictionary are available to all filePro
files and normally resides at /fp/lib/edits . You can add "User" edits to this dictionary by selecting GLOBAL when entering "Define Edits".

"Local Edit Dictionaries" can be created to accommodate edits unique to a file. These edit dictionaries are also accessed, in addition to the GLOBAL edits, when working with filePro
files. "Local Edit Dictionaries" are maintained in the respective filePro directory as /filePro/filename/edits.

As a general rule, only modify the "GLOBAL Edits Dictionary" if you plan to use the edit many times and across all of your applications. As you develop programs in filePro, you
will find that edits that you develop for "Key fields" (a field used to link multiple files) will generally be the only edits you add to the "GLOBAL Edits Dictionary". Examples of
"Local Edits" would be "Part#", "UPC# "or "Acct#" which control how a user enters data into your inventory or accounting systems. You may design several systems with
different requirements on each system for "Part#" and "Acct#". The "UPC#" might be a candidate to be added to the "GLOBAL Edits Dictionary" since there are standards for
formatting this type of number and you designed your systems to only use vendor provided UPC codes. However, if you also print non-standard barcodes for "Point-of-Sale"
scanning, you may want to change the edit rules for "UPC#" from system to system and therefore include the "UPC#" in a "Local Edits Dictionary".

Edits Syntax

In the following descriptions, "X" and "Y" are edit expressions, and "L" is any literal, surrounded by quotes.

( X ) Parentheses may be used to separate expressions as in algebra.

[ X ] The expression X is optional.

{ X } The expression X may occur any number of times, but must occur at least once.

< L > The literal may appear, but if it doesnt, filePro will add it. For example, Y<es> " will accept either "Y" or "Yes" as input and will turn a "Y" into a
"Yes".

! L ! The literal must appear, and filePro will delete it.

X | Y Either expression is permitted. For example: "N" | "N"!o! will accept only "N" or "No", and will turn a "No" into an "N".

X & Y The data must conform to both expressions.

* Accept any single character.

\ At beginning of line. Right justifies the resulting field.

^ Ignores case differences. Takes effect where it occurs on line.

% Turns off case conversion. Takes effect where it occurs.

~ Converts data to uppercase. Takes effect where it occurs.

_ Converts data to lowercase. Takes effect where it occurs.

  

 Example: edit ~"N"_<o> will accept any of the following as input and turn it into "No".

 "N", "n", "no", " NO", "No", "nO"

 Punctuation may be combined to form the following functions:

[{ X }] The expression may occur any number of times, or not at all.

[! L !] If the literal appears, it will be deleted.

 

Prompted Edits

filePro lets you add prompts to your edits by using and apostrophes around the prompt message. When the user moves to a field that uses a prompted edit, the prompt will appear
at the bottom of the screen before the user types anything into the field.



Syntax:

name prompt normal edit syntax

where "name" is the name of the edit and "prompt" is the prompt text enclosed in apostrophes (do not use quotation marks).

Define Edit Screen Commands
 
F - Select File Selects another edit table or allows you to define a new file edit table for an existing file.

U - Update Updates the edit table currently displayed.

C - Copy From Prompts you for the edit table to append to the end of the current edit table.

Pgup/PgDn - Scroll Scrolls you through the current edit table a page at a time.

F10 - Help Invokes the filePro help screens.

H - Hardcopy Prints the current edit table.

T - Test Edits Allows you to test any system or global edit as well as any of the file edits currently displayed.

X - Exit Exits from the Define Edits program.

 

Building Block Edits

The simpler edits such as N, A and NUM are often referred to as building block edits. You can define more complex edits by using any other edit as a building block edit. In the
following table, notice the way some edits make use of more than one line by naming another line to include in the edit (Example: STATE uses state2, state3, state4 etc.). Also, notice
how some edits make use of other simpler edits by referring to them. Notice the prompted edit for SSNUM is enclosed in apostrophes.

The Global Edits Dictionary-The following edits are some of the edits predefined for you in the "Global Edits Dictionary". For a complete list of edits, go to the "Define Edits" option
5 of the filePro Plus Menu, and select [GLOBAL].

 

Customizing Global Edits

The "Global Edits Dictionary" can be customized for your specific needs. The following is an example of adding user edits to the "Global Edits Dictionary".



Notice how the Canadian province abbreviations have been added and a new line "state6" has been added to the edits table. Canadian ZIP Code "canzip" and other building
block edits have been added to the pre-defined "zip" edit so that all U.S. and Canadian ZIP codes are handled properly.

TIP: You may find the following useful if you need a Spanish CHEQUE edit.

CKESP:[{!" "!}](cero| <*** >(esp3|esp2|mil|cien|diez|unos) chele | <***zero> chele)
esp3:N N N N N N & (!000! | ( !00! diez | cien ) < mil > ) (mil|cien|diez|unos)| tt
esp2:N N N N N & (!00! | ( !0! unos | diez ) < mil > ) (cien|diez|unos)
mil:N N N N & (!0! | xunos < mil >)(cien | diez | unos)
cien:N N N & (!0! | xunos < cientos >) (diez | unos)
xunos:!0!|!1!|!2!<dos>|!3!<tres>|!4!<cuatro>|!5!<cinco>|!6!<seis>|unos2
unos:!0!|!1!<uno>|!2!<dos>|!3!<tres>|!4!<cuatro>|!5!<cinco>|!6!<seis>|unos2
unos2:!7!<siete>|!8!<ocho>|!9!<nueve>
diez:!10!<diez>|!11!<once>|!12!<doce>|!13!<trece>|!14!<catorce>|diez2
diez2:!15!<quince>|!16!<diez y seis>|!17!<diez y ciete>|!18!<diez y ocho>|diez3
diez3:!19!<diez y nueve>|!20!<veinte>|!30!<treinta>|!40!<cuarenta>|!50!<cincuenta>| diez4
diez4:!60!<sesenta>|!70!<setenta>|!80!<ochenta>|!90!<noventa>|diez5
diez5:(!0!|diez6 <" y ">) unos
diez6:!2!<veinte>|!3!<treinta>|!4!<cuarenta>|!5!<cincuenta>|!6!<sesenta>|diez7
diez7:!7!<setenta>|!8!<ochenta>|!9!<noventa>
chele:< con > [!.!] num num </100 ***>
zero:zero1 <*** zero> !.! chele
zero1:(N N N N N & !00000!) | (N N N N & !0000!) | zero2
zero2:(N N N & !000!) | (N N & !00!) | (N & !0!)



Define Processing - Option 5
 
Contents of this section

Option Screens
Simple Processing Examples
Sample Processing Tables [INPUT & AUTO]
Use of @KEY [triggers]
Use of @SN [screen name]
Output Processing Uses
Flags_Define_Processing_rcabe_dcabe>Second [cabe flags link]

 
Advanced Concepts

Arrays
Debugger
Drop ALL
Help Screens
ListBox Command
Lookup Dash
Menu Command
O/S File I/O Functions
Sort Select Processing Tables

 

 
Option Screens

When selecting "Define Processing", you will see a listbox of available files to choose from.

Dont be concerned if the listed files are different than what you see on the above screen since you will have likely created files with different names when using the "Define Files"
option. When selecting a file, you will see "Define Processing" options for creating processing as follows;

The above options provide for defining 3 different types of processing tables that control data entry and affect the results of output options. Notice that option "4" allows you to
change the filename you previously selected so that you do not have to back out of this menu to reselect a file if you make a mistake or when defining processing for more than one
file.

Simple Processing Table Examples

This section contains sample INPUT, TRIGGER, and AUTOmatic processing. These are 3 of the most used and useful types of filePro processing. Learning how to read code like
this is not difficult. Usually, a good English explanation for each line of code serves well enough to describe how to use a command or function. The Processing Reference contains
the syntax and description of every filePro processing function.

INPUT

INPUT processing is performed just after the user SAVES the record being added or updated. The following code asks the user if everything on his screen looks okay. Element "1"
captures an answer and puts it into a dummy field "q". Element "2" acts on this answer by testing the value of "q". If the answer is anything but "Y", the users cursor is put back
onto the screen and he is given a chance to fix whatever didnt look right. The next the user SAVES the record this question is asked again, and again, and again, until he answers



with a Y, then the process falls through the test of q and ends. The (1,yesno) after the dummy field q limits the users answer to only one character, and further limits that character to
either a Y or an N or an ENTER. (In this process, both N and ENTER mean the whole process will restart.)

 
TRIGGER (@key)

"filePro" can act on many different triggers. These can be events within the program or actions taken by the user. The @keyX trigger is activated whenever the user presses key X.
(or whatever key is specified @keyA, @keyB, @key?). @key processing is written on the INPUT table but does not happen when the user SAVES the record. It only happens when
the designated key is pressed. This code will put the time on the screen for 3 seconds and then clear it off the screen. (The Unix operating system uses seconds for filePros SLEEP
command. Windows uses milliseconds, hence the test to see which operating system is running this code. @os is another system maintained field within filePro.)

 
AUTO

AUTO processing (called "automatic" under Unix) is performed immediately after a record is retrieved from the disk and just before it is displayed on the screen (or used on an
output of some other kind (printouts, etc.). This means fields on a record can be tested and actions taken based on these values before the user ever sees the data.

The following code tests whether this table is being run under IUA. If it is, there will be a current screen. When automatic tables run along with output processes, there is no current
screen. FilePro maintains a dummy field that holds the current screen name, @sn.

The first thing this table does is check the value of @sn (the current screen name). If @sn is empty, the process just ends and nothing is done. Therefore this table will only do
something under IUA. If this is running under IUA, the next "if" condition will be tested. It says, is the Balance_Due field of this record greater than "500". If it is, sound the
speaker. If the test is false, the process falls through to the next line and just ends.

These are very simple examples of processing code. It does not get too much harder than this to understand, you just have to read the syntax on how to use a command and the
description of what it does. Then, try it out. Experimentation is the best way to learn any programming language.

Output Processing Tables Uses

"Output" processing tables are usually defined to support output formats i.e. reports, labels and posting actions. The "Define Output Processing" option can also be used to define
both "Input" and "Automatic" processing since these types of processing do not have to be called by there respective names when using option flags. Although this may sound
confusing, keep in mind that these options are available to you and will be discussed in more detail in the "Define Menus" topic. In essence, the names "INPUT" and "AUTO" or
"automatic" can be replaced by names of your choice when using the appropriate flags.

Exporting Data

A common requirement for output processing table is exporting data to ASCII or comma-delimited files for word-processing mail merge. This is easily accomplished with just
a few lines of code in most cases.



Example: You want to export name and address information from your customer file to be merged into a "Newsletter".

Select option 5 - "Define Processing" from the filePro Main Menu.

When presented with the following screen, select a filename ( FPCUST in this example).

Select 3 - Output Processing

Select [NEW] for a new output processing format name.

Type the name "export" (for this example) and press Return.

This screen is the same as the screens previously used to create automatic and input processing and contains a Label, Condition and Action sections for each element.

At this point, we need to find the field numbers for the name and address for the mail merge output. Press the F6 key to see the FPCUST fields. For a "word" merge file, the
"first name" and "last name" should be combined into a single field so that it reads properly in the newsletter e.g. "John Smith".

We would also want to combine the "City", "State" and "ZIP" into a combined field since they will usually be treated as a single field when being merged into the newsletter.



Enter the following lines to export the FPCUST data.

The six lines of code entered in the above table will create a comma-delimited file that can be merged into your newsletter.

Element 1 uses the "<" operator to push the last name left to the "first name" leaving a space between the fields.

Element 2 uses a combination of operators and literal text to combine the "city", "state" and "zip" fields into a single field for the output. The "{" pushes the comma right up
against the "city", and the following "<" leaves a single space between the comma and "state", and between "state" and "zip".

Element 3 reflects an "alias assignment" name e.g. "merge" and identifies the output path\filename.

Elements 4 through 6 simply assign the dummy and real field values to positions in the output file "\temp\fpcust.wp" e.g. output position 1 of "merge" is assigned the value
of "n" (the combined name); output position 2 is assigned the value of field "4" (address); output position 3 is assigned the value of "c" (combined field for city, state,zip).

When defining processing, make use of comments using the apostrophe to document your code. For the little time that it takes, it will save a lot of time when you want to
revise the code. This is imperative when more than one programmer is involved in maintaining a system.

After entering the above lines, press ESC to save the "export" processing table. Answer "Y" to check the syntax and print hardcopies as desired.
 
Sample Export Output

The following is the results of the "export" processing example for file "FPCUST". You can create this sample output by going to Option "D" of the filePro Main Menu, selecting file
"FPCUST", selecting format name "export", and selecting all records, or by clicking Run Report . If the format name is not shown, go to "Define Output" and create the Processing-
only format sample "export" for file "FPCUST".

Sort & Selection Processing

You will also use the "Define Output Processing" option to develop " Sort and Selection " processing.

NOTE: There are flags for Define Processing (*cabe) which allow you to customize operations from a menu or command line.

Version 6.0 



Defining files now allows you to tag a specific auto processing to use with the process for tokenizing and syntax checking. This alternate auto process is displayed at the bottom of the window. *clerk and *report
will use this alternate process if there is no -y flag on command line.



Define User Menus - Option 6
 

Contents of this section
 

Defining User Menus to call filePro and other programs
One line actions and commands
Multi-line commands [scripts, batch files]
Menu Flags
Advanced Concepts

It is surprising how many filePro users access all of their programs and data through the main filePro menu. This menu is more than adequate for most operations that concern
designing and testing files, but once the program is up and running, it is overkill. The entire creation side and a good percentage of the runtime side of the menu are not required to
operate the newly created program. In fact, most business users out there rarely do anything more than Inquire, Update & Add and Request Output from this powerful 4GL menu.
Actually, it is even worse than that. A good majority of the users dont ever use the Set/Change file Name function either, which means they spend a great deal of their time
answering lots of questions about; which file, what screen, browse mode, what record selection mode, etc.

You can make your computer time infinitely more productive by designing custom menus of your own that take you directly to the things you want to do without asking all those
questions. You give the menus that you design names and you can run these "User Menus" from the command line or from the "G" option on the main menu, or most commonly
from another menu.

Define User Menus

When entering "Define User Menus", a screen similar to the following screen is presented. You may see additional menu names not reflected in this example.

After selecting a menu name or [NEW] option you will get the following screen which allows you to enter "Menu Heading" and "Menu Version" for your user menu.

 

Menu Version

With filePro version 5.0.9 and later, you can use a system variable to control the menu version that is displayed for the user. Identify your variable name enclosed with the " %"
symbol e.g. %menuv% where "menuv" is the variable included in your filePro configuration or system environment. You can use any variable within the limits of the version field

After saving the menu name and version, you will see the menu editing screen depicted below. You can enter up to 24 choices per menu, but it is often better to leave blank lines or
to place sub-titles for your menu by leaving the choice blank and entering just the "Description Line". This will place a category title on your menu i.e. "My Creation Operations" in



the following example.

Choice
Any single letter, number or punctuation mark except
x and X. The entry "X - Exit" is automatically
added to every menu.

Description

Any text that would tell the user what the menu entry does, such as "Print end-of-month report" or "Run Word Processor".

Action

The program, single or multiple operating system commands that you want executed when a user chooses this element.

You can use flags with many of the filePro programs to apply parameters.

In the above screen, "-t 120000" and "-ty 30000" are flags to control the processing table tokenization sizes.

Note: Use a minus "-" after filePro program names when using flags. This reserves space for the filePro filename variable so that the following parameters are recognized as flags.

Example:  /fp/rcabe - -t 120000 -ty 30000

Menu Batch/Script Files

You can press the F5 key on the action line to create a filePro batch /script file when you want to perform more than one action per menu element.

Example: You need to run several reports each day before leaving work. Set up an option for "My Daily Reports", go to the action line and press the F5 key.

When pressing ESC to save the batch file, notice how the menu action line is entered for you. The action line contains the menu name with a suffix ".A" which corresponds to the
CHOICE you have entered.



 
Long Description

This string will be centered on the bottom line when running your user menu when the menu cursor is on this element. "Long Descriptions" allow you to explain what the option
does to the user, but can be left blank.

The long description entry in "MYMENU" option "A" would be presented to the user as follows;

The filePro "Define Menus" option is not limited to filePro programs. You can include your any system utility programs like editors, word processors, and generally apply about
anything that you can do from the system prompt to manage your user applications.

Menu Passwords

Each menu can be password protected. The password is case sensitive in all operating systems.

You have the option to print a hardcopy of the menu when leaving the "Define User Menus" option.



Flags

Add flags to the menu action lines to control how your data is presented or output. Different flags apply depending on the program that you are running i.e. clerk, report, dxmaint
etc. Any flag that can be used in a menu option can also be used from a command line. Refer to the following topics for lists of menu action flags.

Flags - Inquire Update & Add - Use these flags to control user input.

Flags - Request Output - Use these flags to control the creation of reports, printer redirection, selection etc. (report programs)

Flags - Expand Files - Use these flags to control expanding filePro files to reserve blank records. (dexpand program)

Flags - Index Maintenance - Use these flags to perform Index rebuilding. (dxmaint program)

Note: You can not put passwords on an action line or in a batch/script file. The user will be asked for it at the appropriate point in the program.

User Menu Indicators - Use these indicators at the beginning of the action line or lines in a filePro batch/script file indicate menu operational options.

@ Waits for user acknowledgement after executing command.
# Returns to previous menu after executing command.
! Tells filePro that the following command is a user menu. (This speeds the loading on UNIX/XENIX systems.)

Advanced Concepts
 

Flags

Flags - Inquire Update & Add - Use these flags to control user input.

Flags - Request Output - Use these flags to control the creation of reports, printer redirection, selection etc. (report programs)

Flags - Expand Files - Use these flags to control expanding filePro files to reserve blank records. (dexpand program)

Flags - Index Maintenance - Use these flags to perform Index rebuilding. (dxmaint program)

Note: You cannot put passwords on an action line or in a batch/script file. The user will be asked for it at the appropriate point in the program.

User Menu Indicators - Use these indicators at the beginning of the action line or lines in a filePro batch/script file indicate menu operational options.

@ Waits for user acknowledgement after executing command.
# Returns to previous menu after executing command.
! Tells filePro that the following command is a user menu. This speeds the loading of the menus.

Define User Menus allows you to create or modify any filePro menu (including the Main Menu itself which has a name of "dpromenu".

NOTE: Any changes you make to "dpromenu" will not become apparent until you exit the Main Menu or load a different menu and then come back to the Main Menu).

Advanced Example

Below is a User Menu called "test" to demonstrate a variety of things. You can copy some of the lines to a test menu and experiment with the actions shown here.

Two notes: The "-h" is used on menu action lines to place a heading at the top of the screen when the action is being performed. The heading must be enclosed in quotes. Here it is
used to describe the actions a little better and, of course, not needed to run the action in any way. Choice "E" is a script which you created while in the Define Menus program. The
script is created on a screen behind the menu (so to speak) and is reached by pressing F5 (check the prompts on your screen). This script is stored in a *nix file and the name
"menuname.-CHOICE" is substituted on the command line for you automatically. You will need this feature if you want to do things that cannot fit on one action line.

Below is "test menu".

1 CUSTOMER FILE D CATALOG FILE - to screen

2 CUSTOMER FILE (screen 1) E PRINT 3 REPORTS IN A ROW

3 CUSTOMER FILE (Add Records) F SCRIPSIT WORD PROCESSING

4 PRODUCT FILE (Index B) G MAIL SYSTEM

5 INVOICE FILE (Selection XXX) H Edit a File

6 CATALOG (Browse Mode On) I SHELL ("exit")

7 QUIKSTART (large token size) J FILEPRO MAIN MENU

8 VENDOR FILE (output to file) K SOME OTHER USER MENU



9 VENDOR FILE (debugger on) L WHO IS ON THE SYSTEM

A CUSTOMER FILE - Summary M Utilities

B CUSTOMER FILE - Print Invoices N BACKUP FILEPRO FILES

C VENDOR FILE - Report (Index.A) O Windows

Below are the action lines associated with the above menu.

1 /fp/dclerk cust -h "Customer File - Ask for screen number"
2  /fp/dclerk cust -s1 -h "Customer File"
3  /fp/dclerk cust -s1 -xa -h "Customer File - Add Records"
4  /fp/dclerk prod -s1 -xib -h "Product File - Direct index B."
5  /fp/dclerk prod -s1 -xs XXX -h "Invoice by selection XXX.
6  /fp/dclerk catalog -s1 -b -h "Catalog - Browse Mode On."
7  /fp/rclerk - -h "Asks for filename because of the -."
8  /fp/dclerk vend -s1 -p /tmp/file -h "Any output to /file."
9  /fp/dclerk vend -sl -db -h "Vendor File with debugger on"
A  /fp/dreport cust -f summary -a
B  /fp/dreport cust -f invoice -s new
C  /fp/dreport vend -f reportname -iA "Uses index.A"
D  /fp/dreport catalog -f inventory -pq -h "Menu of output choices"
E  /fp/menus/test.-E
F  cd /usr/wp ; wp
G  mail
H  edit
I  /bin/sh (Windows=command.com)
J  !dpromenu or "p dpromenu"
K  !usermenuname or "p usermenuname"
L  @who (Windows=n/a) -h "The @ pauses the output to see it!"
M  !util or "p util"
N  cd /appl/filePro ; tar -cvf /dev/rctO . (Windows=pkzip -rp filepro /appl/filepro/*.* )?
O  win

The following script relates to choice E and stored in file /fp/menus/test.-E

/appl/fp/dreport filename -f reportl -a
/appl/fp/dreport filename -f report2 -a
/appl/fp/dreport filename -f report3 -s selset

Hints:

Use the Menu Version number to print the menu name on the screen. It is not worth much as a version number, but it is valuable as a name. Users can tell you immediately which
menu they are using when they run into trouble.

If PFNAME is set, then the value of PFNAME will be show at the top of all menus/submenus. This allows the programmer to use PFNAME in manners not originally
intended, but nonetheless is very useful. You could use PFNAME to display the qualifer being used.

In Unix, where all commands specify -m $qualify by setting PFNAME = $qualify.

In WINDOWS/Windows where PFQUAL has been set, set PFNAME = %pfqual%.



Printer Maintenance - Option 7
 

Contents of this section
 
Printer Maintenance Description
Entering Print Code Sequences
Escape Sequences
Decimal Control Codes    
Hexadecimal Control Codes
Printer Routing
Copy and Modifying Printer Drivers  
Advanced Concepts
Expert
 

Description:

Option 7 allows you to configure printers and to create printer drivers for use with filePro. filePro has pre-defined many of the printer drivers for you. These pre-defined drivers can
be used as templates to create a new printer driver if your specific printer is not reflected in the list.

When you select the "Printer Maintenance" option "7", you will see a table similar to the following;

When pressing "S" - Select , a listbox of available printer tables is displayed. This presents a range of pre-defined printer drivers that you can modify or copy to a new printer driver
name.

filePro accepts print code sequences in ASCII, decimal, and hexadecimal form. Control character combinations are also accepted. So you have maximum flexibility and can use
whatever sequences you prefer. You can even mix these different forms in one print code sequence. Blank spaces are ignored but you may wish to use them in your sequences for
clarity.

U - Update Update the print code table currently loaded. Note: Print codes 1 and 2 cannot be changed.

S - Select Selects a different table or define a new one.



C - Copy Copies the current table of print codes to a new table or replace The print codes of an existing table with the current table.

F10 - Help Displays help similar to what you are reading now.

D - Delete Selects print code tables to delete.

P - Printer
Maintenance

Goes to the Available Printers table to tell filePro what printers are available, which print code tables they use, and how they are
connected to the computer.

H - Hardcopy Prints the current print code table.

Number The print code number.

Space The number of printed spaces, if any (0-99), that the print code will take up when it is sent to the printer. For example, a "Horizontal
line" symbol (code 45) will take up one space, While "Underline on" (code 5) wont take up any spaces. A Zero or a blank in this
column means no spaces.

Sequence The print code sequence, from your printer manual, for the print code desired. Help (with sequence syntax) can be retrieved by
pressing F10 while you are updating a table.

Description These are simply descriptions of what a print code entered here would be expected to do.
 

 

The first 54 code descriptions are pre-defined. For print code tables you create new or edit, you can fill in the number of spaces (if any) and the print code sequence that match the
description. Print code descriptions can be either global or local. Global descriptions are the default descriptions that are predefined for every print code table. Local descriptions
apply to the table in which they are defined. Whenever you edit a description, filePro asks whether the description should be saved as global or local. To edit a global description
press F5.

Entering Print Code Sequences

filePro Plus accepts print code sequences in ASCII, decimal, and hexadecimal form (note examples below). Control-character combinations are also accepted. You can even mix these
different forms in one print code sequence. The program ignores blank spaces, but you may wish to use them in your sequences for clarity.

# - Decimal Type a pound sign (#) in front of each decimal number.
Example: Epson FX, subscript on, is: #27 #83 #1

$ - Hexadecimal If the number has an odd number of digits such as 0 or 1, add a zero to the beginning of number.
Example: Epson FX, subscript on, is: $1b $53 $01 or (does not work in decimal): $1b5301
 

^ - Control Characters Type a caret (^) in front of the character. The ESC Character in your printer manual can be entered as ^[.

%nn - Nested Sequences Type a percent-sign (%) and the code number of the Code whose sequence you want to insert (nest) in.
Another sequence. Example: Epson FX, you can Nest the sequence for code 5 in code 12 by typing: $1b M
%5. Since the sequence for code 5 is "$1b - 1", you are entering the equivalent of: $1b M $1b - 1.

%name Download a file to the printer "name" is the file to Send to the printer. Use with environmental variable
PFDLDIR.

\\ - Literals Type a backslash (\\) in front of a character to be Taken literally if it is ordinarily used for another Purpose by
a print code table, as the $, #, and % Symbols are, for example. Example: If you needed to use the code "ESC-
$", you would enter ^[\\$ rather than simply ^[$. \\$ tells filePro that the dollar-sign is a dollar-sign and not the
flag for a hexadecimal number. Any other character will be interpreted as an ASCII literal.

Table Options

Type the codes shown in your printer manual following these rules.

Printer description A description of the printer limited to 40 Characters.

Initialization print code number The number of the print code, if any, that you Want to be sent to the printer before
anything else.

Terminator print code number The number of the print code, if any, that you Want to be sent to the printer after the
output has been printed.

Graphic start print code number The print code number at which the graphic sequences begin in the current table. On the
default table the graphic sequences run from code 44 through code 54.

New-Line options 1=CR/LF; 2=CR; 3 = LF; 4 = "\"LF. Enter the number 1,2, 3 or 4 for the kind of code that this
printer requires to move to the beginning of the next line. Note: Code 4 was added in 5.0.9 to
support the fP2RTF printer option.

Printer can form feed? (Y/N) If the printer feeds a whole page of paper in response to the print code "$0c", then answer
"Y", otherwise, "N".

Printer can backspace? (Y/N) If you get a backspace in response to code "$08", then press "Y", otherwise press "N".

Page width The maximum number of characters to print Across the page. (Usually, you will set this to
either 80 or 132).

Page length The length of the paper measured in printed lines. (For 8 ½" X 11" paper, you would set this
to 66).

Print length The number of lines to print per page. This no may be less than the page length and will
give the page top and bottom margins.



Printer Routing

Configure printer routing with options by pressing "P" for Printers;

 

New in version 5.8.03
New interface that now allows managing up to 99 printers.

Insert, Delete, Move printers
Search by printer name or number
Follow the prompts for the available functions

New in version 6.0.00
When browsing printers in Options for output formats, filePro now shows only valid printers. Pressing F6 again will display the complete printer and printer type list as it did in previous versions. F6 will toggle
between the two lists

Printer Maintenance Options

 
Name A unique phrase or number to help the users of the System identify the printer. The name can be up to sixteen characters and

may not contain embedded blanks.
Examples: printer3, joes, acctdept.
 

Type The name of the print code table used by the printer. If youre not sure of the name, press F6 to select a name from a list of
existing print code tables. This column must be filled in for each printer.

Destination File
(Windows)

Type in the device name of the printer or a filename. If out leave the "Destination File" column blank, filePro will use the
device name PRN".
Examples: COM1, LPT1, PRN or a filename such as OUTPUT.
Version 5.0 - Enhanced to use Window's printer spooling.
Examples: WIN:LPT1, WIN:PRN, WIN:\\machine_name\printer_share_name.
Examples: PDF:filename , PDF:[open],  (See PDF Printing)
Version 5.8 and higher

Comment You have a maximum of 80 characters for comments.

Destination
(Linux/Unix)

Type in the command that the printer output will be sent to. Example: lp -dprintername -s where "printername" is the printer
name that the operating system uses. If the line starts with a >, the rest of the line is the name of a file to send printer output.
Examples: >/dev/lp01, >/tmp/output
If the destination file is left blank, filePro will use a default print spooler command, typically: "lp -s".
Examples: PDF:filename , PDF:[open],  (See PDF Printing)
Version 5.8 and higher

 
NIX Warning:

Report will crash if lp destination does not exist.  The problem has to do with how the operating system handles pipes and the fact that Joe's printer command was a
composite of lp and cat.   There does not appear to be any way to trap a valid pipe error when lp is used. We can set SIGPIPE to ignore errors to test errno after a write,
however errno is being set even if the pipe is valid. As a result the actual write to lp is performed in any case and does not crash until it gets to fflush. At fflush we should be
able to turn off SIGPIPE and test fflush, but apparently, on Linux anyhow, the fflush function sets it back to default and it will SegV. So it's very unlikely we can do anything
about this. If lp is not valid - beware.

Windows Spooling

Spooling for Native Windows filePro Windows doesn't spool print jobs, sent by native windows console applications to local printer ports, the same way that it does for
MS-WINDOWS programs. (That is, open "lpt1" as a file and write to it.) We have added the necessary code to the native windows version of filePro to use the Windows
printer routines (ie: OpenPrinter, StartDocPrinter, etc.) which do respect the Windows spooler. However, the spooler is also limited to those printers defined in the printer
control panel. Therefore, we have made it a requirement that, in order to use the Windows spooler, you must prefix the filePro destination with "win:", as in "win:lpt1:". The
rest of the destination must be the exact port name or printer name as you have defined it to Windows. So, if you have a printer attached to LPT1 that is named "HP DeskJet
870Cse", you would use either: win:lpt1: or win:HP DeskJet 870CseIf you have a network printer "\\server\printer" that is captured to LPT2,called "Bob's printer", and the
Windows destination is "\\server\printer"then you would use either: win:\\server\printeror or win:Bob's printer. You could not use "win:lpt2:" as "lpt2" is not the destination
that Windows knows the printer by. (Though you could use "lpt2" without the "win:" and go directly to that port without the spooler.)

Remember: You can only use the exact port name or printer name that Windows uses. Anything else will result in a "the parameter is incorrect" error when filePro tries to
open the printer.

 



FP2RTF

The files in the fP2RTF install shield are used to setup filePro to print through Rich Text File (RTF) printer drivers. This provides the capability to print standard filePro
reports with little or no modification in Rich Text format to "Windows Only" printers.

Prerequisites and Limitations

- fP2RTF is LIMITED for use with character-based filePro in the Windows environment and is NOT intended as a solution for graphic-based filePro e.g. fileProGI or *NIX
systems' printing.

- filePro version 5.0.9 or later is required to use fP2RTF.

- Maximum Report Widths for 8.5" x 11" paper

- Portrait Printing:

10 pitch - 80 characters

12 pitch - 96 characters

condensed - 132 characters

- Landscape Printing:

10 pitch - 100 characters

12 pitch - 120 characters

condensed - 168 characters

Environment

PFPOSTPRINT: The Rich Text drivers rely on pfpostprint being properly set. This variable should set in startup batch file for filePro. 

PFPRTC: Identifies the Rich Text printer driver to be used. The RTF66 driver will allow you to print reliably for most applications and should be set in your startup batch file.
 

PFPRT: Identifies the output filename to use for fP2RTF. This variable is normally set by the "~\fp\fp2rtf\getname.bat" file.

Example

 set pfpostprint=runbatch.bat

 set PATH=%PFPROG%\fp\fp2rtf;%path%

 set PFPRTC=rtf66

 call %pfprog%\fp\fp2rtf\getname.bat

The above lines need to be in your startup batch file e.g. fpplus.bat to implement fP2RTF. This is automatically done for you if you have used the fP2RTF install shield and
use a standard startup batch file name e.g." fpplus.bat", "hcfa.bat", etc. If you use a batch file with a name other than one of the standard batch file names, add the above
lines near the end of your startup batch file and before the your the line that executes the p.exe menuname. Although you can set pfpostprint=Atlantis.exe, the above
method is preferred since it will prevent sharing violations in a network environments and cleanup temporary files.

Atlantis Editor: Although other editor programs can potentially be used for viewing and printing the output, Atlantis should be used to ensure that the output is properly
formatted and printed from filePro when using the filePro Rich Text drivers. Atlantis provides for proper margin and page control unlike other Rich Text editors/viewers.

fPfonts: fPtype1a.ttf and fPtype1b.ttf fonts have been specifically designed for fP2RTF.

Although other fonts can be potentially used, fP Technologies Inc. doesn't guarantee that they will be properly rendered or printed with fP2RTF.

Installation and Setup

Run setup.exe - This will install the fonts, make the fonts immediately available to Windows, will install the fP2RTF printer drivers and will create the reserved directories
required for fP2RTF e.g. ~\fp\fp2RTF, ~\fp\fp2RTF\tmp.

Modify startup batch file - Modify your filePro startup batch file to include the following lines if it has not been automatically updated by the install shield.

 set pfpostprint=runbatch.bat

 set PATH=%PFPROG%\fp\fp2rtf;%path%

 set PFPRTC=rtf66

 call %pfprog%\fp\fp2rtf\getname.bat

Note: The above lines should be added near the end of your filePro startup batch file and after any other "set path=" line. "Sample.bat" is provided in the root of the source
media as an example.

Note: File "~\fp\fp2rtf\Getname.bat" invokes the "RTF66.PRT" driver for development since filePro defaults to 66 lines for hardcopies created by "Define Files", "Define
Processing", etc. You can change the "pfprtc" variable to use the "RTF60.PRT" driver for runtime applications if your dominant report format is 60 lines. Either driver can
accommodate the less dominant report format by including the applicable print code in the report or as an initialization print code.

Add fP2RTF Printer line - You should also add a printer line to your filePro configuration so that it can be selected when using the -PQ printer flag. Use the "Printer
Maintenance" option from the filePro Plus main menu, and then "P" for printers.

Examples:



Name  Type Destination Comment

RTF66  RTF66 report.rtf  To print 66 line RTF reports

RichTxt  RTF60 report.rtf  To print 60 line RTF reports 

Troubleshooting fp2RTF

Reports run but are not displayed in the Atlantis viewer - This is due to the way some systems handle font registration. Although we have made every effort to make our
fonts immediately available without restarting your system, rebooting is sometimes required to read the font locations from your system registry. If reports are not displayed
after rebooting your system, contact the applicable technical support team.

%fpuser%%reportn%.rtf created instead of a report with the actual user name - You are running out of environment space so the required variables are not set. Increase your
initial environment space by going to "icon properties" and then memory. Recommend setting initial environment to a value of "4096".

Another method for gaining environment space is to add a line near the beginning of your batch file used to start filePro e.g. "fpplus.bat". Add a line to shorten your path
when running filePro. This will not affect other applications since the original path is restored when exiting filePro.

Example:

set path=c:\windows;c:\windows\command

Lines do not wrap properly - Reports are displayed but the lines do not wrap properly.

You are probably attempting to use an old version of filePro. Version 5.0.9 or later is required. Check your filePro path variables to make sure you are accessing the correct
version of filePro.

Report Lines or Boxes are shown with dashes "-" and "+" - The fonts supplied with fP2RTF are either missing or not properly registered. Restart your system and then re-
install the fP2RTF update. As a last resort, you can manually install the fonts using your control panel "fonts" option. This will install the fonts to your windows system
directory. The fonts are available on the source media under directory ~/fp/fp2rtf as "fPtype1a.ttf" and "fPtype1b.ttf", etc.

Copy Print Code Example

Many printers use the same sequences to control common functions such as "Underline ON", Underline OFF", "Boldface ON", etc. You can quickly create a new printer
driver by copying a generic printer driver like the EPSONFX (which applies to a narrow carriage printer like the EPSON Model FX80) to a table for your EPSON letter quality
printer (like the EPSON LQ2550 132 column letter quality printer). Once the table is copied, you can modify the table by changing and adding sequences of codes to create a
printer driver tailored to your specific printer model and then access the extended features for printing such as printing in letter quality mode and 132 column mode. For the
sake discussion, we will copy the EPSONFX print driver in the list box to a new table labeled "LQ2550";

The above table contains "Escape Sequences" that are identical to the sequences required for the EPSON LQ2550 printer except for the added features pertaining to letter
quality printing. The sequences are usually provided in the printer manual and referred to as "ESC Sequences" and "Control Codes". The following tables apply to the
LQ2550 printer.



 

 

Notice that the sequences can be represented in 3 different ways in the above example i.e. ASCII (ESC Sequences), Dec (decimal values) and Hex (hexadecimal values).
filePro provides the flexibility to use any of these representations as a sequence when defining the filePro printer driver.



After you have created the preliminary version of the new printer driver for the LQ2550, you can update the driver to add or modify print codes by pressing "U" for Update.

Tricks: Extend the number of defined printers from 9 (available in this maintenance editor) to as many as you need, by adding the additional printers in the filePro "config"
file (found in the "fp/lib" directory). These printers must be added sequentially as printer10, printer11, printer12 and so forth. You can not skip a number in the sequence. If
you do skip a number above printer10, that is as far as filePro will count, to the skipped number and no further. You will not be able to access the other printers.



Runtime Operations

The right side of the filePro Main Menu contains Runtime Operations.

You can look at the "Runtime Operations" as those options that you will make available to your end-users. You will typically create user menus to control where what your
end-users are able to do, so the above menu would not normally be used exactly as depicted but does help to separate the filePro options for the developer in logical
groupings i.e. "Creation Operations" and "Runtime Operations".

Prior to getting into a detail review of the following sections, I suggest that you browse through the topics to get an overview of what each of the options entails.



FilePro Directory - Option ?

Contents of this section
 
Description of filePro Directory Option
Precautions    
filePro Directory Option Screens  
Flags Flags_Directory_ddir_dprodir_>Second [flags link]
 

Description:

This program allows you to view the configuration of your filePro files.

Among other things, it provides file format information all in one place, delete utility for all filePro formats e.g. screens, selection sets, browse formats, etc. and a hardcopy file info
function.

Precautions:

It is relatively easy to completely erase a database, so be careful when you distribute runtime versions of the directory program "dprodir". If the user needs to delete "lockfiles" or
perform other maintenance furnished by "dprodir", create a maintenance menu for the specific options to prevent inadvertent deletion of the users data, or establish creation
passwords which to prevent killing the files.

FilePro Directory Option Screens:

Directory Information

Qualifier displayed

 

The Delete Option
 
Selecting a file.



 
Selecting a delete option

Delete Options

 
Selecting formats to delete

Confirming delete

 

Flags:

The filePro Directory (ddir) has flags to help you manipulate filePro databases from the command line or inside script or batch files.



Expand Files - Option A

Contents of this section
Description
Extending Key Files [keyx1, keyx2, keyx3]
Key & Data Mismatch error

Description:

Expand Files lets you pre-allocate space for a file by adding unused records to it. This technique obviates the "free chain" under Unix. It also uses up disk space non-dynamically.
This practice is not recommended under normal circumstances.

Select option A - Expand Files

 
 
Select a file from the list of filePro files.

Enter the number of additional records.

 

Extending Key Files (keyx1, keyx2, keyx3) :

Expand Files also lets you switch drives for new records being added to a key (and data) file. (You might want to do this when your data gets too large for the current
filesystem.) If, at the "Number of Records to Expand File By" prompt, you type the word "switch". filePro will allow you to designate a new hard drive (filesystem). From this
point on, all records in this file will be added to a file called "keyx1" (and datax1) in the same hierarchical path as the primary drive. If there already is a keyx1, filePro will add
keyx2 and then keyx3. You are limited to 3 expansion filesystems for a total of four filesystems when considering the original "key" and "data" files. Extending "key" files is
not recommended as normal procedure since it is better to move the entire key file to a larger drive. This feature is a holdover from earlier days when hard drives were very
small. However, extended keys can be used for very large files when you have exceeded the maximum file size for the filesystem. Maximum file size is determined by the
operating system/partitioning method.

Key & Data Mismatch error:

Expanding files by one record can sometimes fix a key/data length mismatch error. If a file that uses both a key and a data segment gets corrupted in a particular way,
sometimes adding just 1 field from the Expand Files function will correct the situation.



Inquire, Update & Add - Option B
 

Contents of this section
Using Inquire, Update & Add
IUA Flags
Retrieving Records
Selection Sets
Use of AND, OR
Field to Field Comparison
Associated fields

Using Inquire, Update & Add:

When entering Inquire, Update & Add (IUA) from the Main Menu, filePro presents you with the available files (filePro databases).

Multiple screens (named or numbered) are supported in filePro. When you enter IUA from the Main Menu, filePro displays all the "numbered" screens for your selection. (Named
screens are reached through programming.)

Screen.0 is the default screen created for you by Define Files.

 

Once you have selected a file and a screen, filePro deposits you at the "clerk" menu. It gives you the ability to have all of your filePro files (and applications) have the same look and
feel.



Retrieving Records

Records can be retrieved in a variety of ways through the "clerk" (IUA) menu.

Record number Direct system maintained number.

Selection Sets Criteria matching based on record content.

Indexes Fast organized retrieval, alphabetic, numeric, date sorted indexes. (Combinations supported).

Browse Screens/rows - Display records in row orientation instead of one full screen per record.

Fuzzy search Excellent "sounds like" or "soundex" search.

Processing tables can be associated with IUA, making use of fields, text, calculations and data from any filePro file (or other system resource).

The normal behavior of IUA is to display a full screen of data for each record. At the users request, records can be shown in a line-oriented manner. This is called "browse mode"
because 18 records are displayed on the screen at one time. Users can browse through these records using the up and down arrows and Page Up and Page Down keys to view many
records very quickly. Once a desired record is found, the user moves a highlighted bar to that record and presses ENTER to go to a full screen view of that record. (The user may
also press "U" while on the browse screen and this will not only take them to the highlighted record, but also put them in "update mode" on that record.)

The browse format of data display is easily designed. Any user can store tailored browse formats. Named formats can be modified quickly and resaved or just used temporarily. Not
only the field names, but the lengths and edit types are available as you build a browse format. Unless specified otherwise, the browse format originally called to the screen is named
"default". If there is no browse format named "default" then a format is composed of the field numbers in sequential order starting from field 1. In this case, only those fields that will
fit on the screen are used.

Selection Sets

Selection sets allow you to pick criteria on-the-fly by which to retrieve records. These selection sets can be used in Inquire, Update, Add or in Request Output (printed reports and
forms). By testing the real fields of a filePro record against your criteria (values, other fields, system maintained data, etc.) you can scan through the data and pick out only the
records that meet the criteria on the selection set. These selection sets can be stored by any user by any valid name.

Adding lines of tests means the record must match every line of criteria. Giving any line a group designation and it becomes an "or" line or group.

The Selector Sentence allows you to use designated groups (and other selection sets) in virtually any combination of "and", "or" and "not" tests. Use parentheses liberally in a
selector sentence for good clarity.

The lines in a group "or" with each other.
Groups always "and" with each other.
A plus sign (+) at the beginning of a group line makes them "and" instead of "or" with other members of the group.
 

Mass Update [F4]

When accessing records using an index or scan selection, you can enter "Mass Update" mode by pressing the F4 key from the IUA selection menu of a screen. This feature will
remain active for the session until all records are updated or you exit the update session. This feature eliminates the need to press "U" to update each record and similar to using the
"-N" menu flag for clerk.

Special Field-to-Field Comparison for Selections
 
The NNf Relationship

There is an additional relationship that does not appear in the normal scan prompts. This relationship tests one field against another. You might want to test if @cd eq @td on a
group of records. (Was the record created "today" whenever "today" happens to be.)

Use the "NNf" operator to compare the contents of one field to the contents of another field.

NN stands for the relationship, i.e., eqf, gtf.

Sample
 
Field Relationship Value

1 (Title) Eqf 2 (Artist)

11 (Qty) Ltf 14 (Reorder Point)

 
Selecting with Associated Fields



Selecting an associated field can be done using the code such as "A)", which would search all other members of the associated group. If you select an associated field using the
specific field number it will only search the designated field.

Usually the Equal or Contains relationships are used for selecting with associated fields.

Other relationships arent often practical.

Sample

Field Relationship Value

b) Co day

a) Eq jazz

There are many flags to IUA (dclerk) which allow you to customize its operation. The flags can be used from a system prompt or on the " Define User Menus " action line when
defining your menus.



Index Maintenance - Option C

Contents of this section
Description
Automatic Indexes
Demand Indexes
Flags
Index Comments

There are two kinds of indexes in filePro, Automatic and Demand.

AUTOMATIC

Automatic indexes contain every record in the file. Automatic indexes are constantly updated as you add, modify and delete records in a file, whether you do the modification from
IUA or another filePro program.

DEMAND

Demand indexes can be built on a specified group of records. They do NOT have to contain every record in the file.

Demand indexes are static. They do not change regardless of what you do to the file. They can be built on ascending and descending sorts, and can make use of selection set
criteria to build on only selected records.

Flags

There are flags to the indexing program that will allow it to run unattended as part of a script or batch file.

Example:

dxmaint filename -r -oA -e
This will rebuild the A index of the file "filename".

Index Comments:

You may put a comment on an index. This is a custom name for the index. Using comments will distinguish an index from the default name it is usually given, i.e., the map
designation of the starting field of the index. This is very useful when you have an index sorted on multiple fields. Suppose that you have associated fields for e-mail addresses so
that you can maintain more than one e-mail address in a rolodex file.

 

Without using comments for your indexes, it would be difficult to distinguish between an index built on "All e-mail addresses" and "personal e-mail addresses". This would be
particularly true if you left the map description blank for the 2nd and subsequent occurrences of the associated fields. By using index comments, you can clearly identify which
fields the indexes are built on.

You can also improve the aesthetic presentation of the indexes to the users when indexes are built on multiple fields e.g. name_last, name_first. The following screens are examples
of a rolodex file with and without index comments.

Example without Comments:

 
 
Example with Comments:



  
 
Version 5.8.01 - Automatic Index Selection set



Request Output - Option D

Description:

Request output can be run from the command line (a menu action line). It lets you run processes and/or printouts on any filePro file. There are many flags which can be used with
the output program to customize its operation.

Request Output (dreport) can be run in interactive mode allowing for the following control.

 Choose output format Sort and Select records in one choice by picking an index

 or

 Choose Sort order first, and then Select which records to output second

Tricks: Put a report into the background on-the-fly by pressing !g while the report is counting down through its records.



Set/Change File Name - Option E

Description:

This feature lets you set the filename to any existing filePro filename. This way you do not have to keep selecting the filename during all the various operations on the filePro Plus
Main Menu since it is retained for you, and this prompt is automatically skipped.

Setting the filename is useful during development stages. For some people it is also useful during runtime operations. In most cases, you would take care of "setting the filename"
by running user menus which have the desired filenames pre-packaged on each command line. This is a small step of automation in that direction.

Choose "E - Set/Change Filename" from the filePro Plus Main Menu and enter in the filename you want. Some programs will let you change it internally, but for the most part, this
allows you to work with one file alone until you reset the name or enter no name with Set/Change Filename.

Note: If PFNAME is set, then the value of PFNAME will be show at the top of all menus/submenus. This allows the programmer to use PFNAME in manners not originally intended,
but nonetheless is very useful. You could use PFNAME to display the qualifer being used.

 In Unix, where all commands specify -m $qualify by setting PFNAME = $qualify.

 In Windows where PFQUAL has been set, set PFNAME = %pfqual%.



Run A User Menus - Option G

Description:

You can use !menuname on the command line of a menu and that menu will be called. This is a faster route to the menu than using "p menuname" as the text of the new menu is
simply read into place without executing the calling script again.

You can run any user menu from the Run a User Menu choice on the filePro Plus Main Menu (choice G). It is a normal practice to call up user menus from a users login script. Under
Unix, this would be done in the users .profile script. Under Windows, this would be done in the personalized .bat file that calls up the desired filePro user menu e.g. fpplus.bat,
fulldev.bat, user.bat, etc.



------------------- * * * * *    General  Info   * * * * * ---------------------

GIserver 6.0.1 no longer requires Java to run on any platform. Each binary is 
now compiled for a specific platform, removing the need for a JVM.

`lserv` is no longer required to run GIserver on *nix systems.

Passwords are no longer stored in the user's *.cfg file. Tools have been 
provided to make changes to user accounts.

Many configuration variables have been deprecated. Please check the 
configuration settings below to see what you may be able to remove from your 
configuration files.

Heartbeat messages are no longer required for GIserver 6.0.0+.

GIserver 6.0.1 can now take advantage of a new threading model and various
network optimizations have been implemented (See changelog for more 
information).

Improved error and crash handling has been introduced to GIserver. On most fatal
errors, GIserver will attempt to write a 'giserver_crash.log' file to the
installation directory, and dump core where system settings allow.

Programs provided by GIserver 6.0.1:
    giserver    - The main application.
    giaccount   - Local administration module for on system changes.
    gilictool    - Local license management/metric reporting.
    
giserver:
    This is the main service application, responsible for handling account
    logins and authentication, as well as networking the messages between
    filePro, fileProGI, and fileProWeb.
    
    On *nix based systems, the binary only supports the -ver/-version options.
        giserver -ver
    
    This prints out version and build information for giserver.
    
    On Windows, an additional -sa option is supported. This allows the program
    to run in 'Stand Alone' mode, not requiring the use of a system service.

    GIserver now has an alternate licensing mechanism required to enable
    fileProWeb. This is an online license server which enables flexibility
    for new licenses.

    On first run, GIserver MUST contact the remote server to start (remote 
    licensing only). After first contact, GIserver will drop into grace period 
    if it cannot contact the server.
    
giaccount:
Usage: giaccount option [arguments]
     -m | --mode          giaccount -m username (true|false)
                              Set administrator flag for account.
                              Requires current user to be root.
     -l | --list          giaccount -l
                              List all accounts saved in the password file.
     -p | --passwd        giaccount -p username [current_password] new_password
                              Change a user's password.
                              Requires current password if user is not root.
     -i | --invalidate    giaccount -i username
                              Invalidate a user's password.
                              Requires current user to be root.
     -a | --useradd       giaccount -a username password [template_user]
                              Add a new user.
                              Requires current user to be root.
                              Can take an optional template user for
                               initial config values.
     -x | -d | --userdel  giaccount -x username
                              Delete a user.
                              Requires current user to be root.
     -c | --convert       giaccount -c [username]
                              Convert pre-6.0 GIserver passwords to new format.
                              Requires current user to be root.
     -v | --version           Display version information.
     -h | -? | --help         Display this help message

    
    This is the local administration tool. Some options are only available as
    a superuser/system administrator.
    
    Administration accounts can also be tied to a user account. This allows for
    multiple administrators per installation (One active connection).
    
gilictool:
usage: gilictool [-c <path> [-v] | -t <path> | -h]

options:
    -h, --hwid                Generate device ID.

    -c, --check               Check license file.

    -t, --transfer            Transfer license to this machine (3 day minimum 



                              between transfers).

    -v, --verbose             Enable verbose output.

    -ver, --version           Show version information.

    -?, --help                Show this help message.

    This is the license/metric reporting tool. It can be used to determine your
    device's hardware identification string, check the license file for errors,
    or to transfer your license to a new machine (remote licenses only).
    
    To transfer a license:
        Stop GIserver.
        Run `gilictool --transfer`.
        Install GIserver on the target machine with your current license.
        Start GIserver.
        
-------------------- * * * * *    Configuration   * * * * * --------------------

Logging:
    logLevel=(off|severe|warning|info|config|fine|finer|finest), default info
        Sets logging level from least->most verbose.
    
    logAdmin=(true|false), default false
        Sets if admin interface events should be logged.
    
    log=(true|false), default false
        Sets if any events should be logged.
    
    logSize=(integer), default 0 (infinite)
        Sets the maximum log size before rotation in bytes (cumulative).
    
    logSizeKB=(integer), default 0 (infinite)
        Sets the maximum log size before rotation in kilobytes (cumulative).
    
    logSizeMB=(integer), default 5
        Sets the maximum log size before rotation in megabytes (cumulative).
    
    maxLogRotations=(integer), default 5
        Sets the maximum number of log rotations to keep (0 is infinite).
    

General Configuration:
    useActiveDirectory=(true|false), default false
        Sets if the server should authenticate using Active Directory or built 
        in authentication.
    
    activeDirectoryDomain=(string), default is Undefined
        Sets the active directory domain for authentication, e.g. my_domain.com.
    
    activeDirectoryServer=(string), default is Undefined
        Sets the active directory server for authentication, 
        e.g. local.my_domain.com or the IP address.
    
    serverName=(string), default is from system
        Sets the name of the server.
    
    serverAddress=(string), default is from system
        Sets the address for the server to listen on.
    
    idleout=(integer), default 0 (never)
        Sets how long before a session is automatically disconnected due to 
        being idle (in seconds).
    
    adminPort=(short), default 4450
        Sets the port the admin interface can use to connect.
    
    admin=(true|false), default true
        Sets whether the admin account is active for this server.
    
    remoteShutdown=(true|false), default false
        Sets if remote shutdowns are allowed from the administrative interface.
        
    maxLoginAttempts=(integer), default 0 (infinite)
        Sets how many failed logins (GIclient) before automatic disconnect.
    
    doesNotExpire=(true|false), default false
        Sets if passwords expire or not (Can be set in the user's *.cfg file)
    
    exec=(string), default fpdaemon
        Sets the path to the fpdaemon program for the server to use.
        
    restrictClientVersion=(true|false), default false
        Sets strict mode for client version verification, prevents outdated
        clients from logging in.
    
    maxLoginsPerUser=(integer), default 0 (infinite)
        (6.0.01.08) Sets the maximum number of sessions that can be in use by a
        single user at once.

    expireWarnDays=(integer), default 7
        (6.0.01.11) Sets the number of days prior to expiration that the end



        user will be warned. Max value 120 days.

    heartbeatInterval=(integer), default 60
        (6.0.01.12) Sets the number of seconds before a wakeup message is sent
        to the client application. Setting this value to 0 will disable the
        feature.

Password Configuration:
    minimumLength=(integer), default 5
        Sets minimum length of a password.
        
    maximumLength=(integer), default 48
        Sets maximum length of a password.
        
    expireDays=(integer), default 0 (does not expire)
        Sets how many days until a password is marked as expired. Overrides
        general configuration.
        
    reuseDays=(integer), default 0
        Sets how many days until a password can be reused.
    
    reuseInstances=(integer), 3
        Sets how many password changes until a password can be reused.
    
    requireUpper=(true|false), default false
        Sets if a password requires at least one uppercase letter.
    
    requireLower=(true|false), default false
        Sets if a password requires at least one lowercase letter.
        
    requireNumeric=(true|false), default false
        Sets if a password requires at least one number.
    
    requireSymbol=(true|false), default false
        Sets if a password requires at least one symbol.
    
    complexityErrorMsg=(string)
        defaults to "Entered Password is not sufficiently complex."
        Sets the error message to display on a complexity check failure.
    
    reuseErrorMessage=(string) 
        defaults to "Too soon to reuse this password."
        Sets the error message to display on a reuse failure.

GIserver server configuration file format.

The configuration files can take advantage of comments by prefixing a line
with either '#' or 'REM'.

There are also a few tags that can be used to augment the behavior of these
config files.

[GLOBAL]
    This is the default tag. It suggests to GIserver to include this variable
    for all client types.

[GI_ONLY]
    This tag suggests to GIserver that it only sets this variable for a 
    fileProGI client.
    
[WEB_ONLY]
    This tag suggests to GIserver that it only sets this variable for a 
    fileProWeb client.

A blank line will also reset the tag to GLOBAL

NOTE: These tags are ignored in the 'giserver.cfg' and 'password.cfg' files.

Example:
    # set startcmd to open the menu 'mainmenu_gui' if launched with fileProGI
    [GI_ONLY]
    startcmd="p mainmenu_gui"

    # set startcmd to open the menu 'mainmenu_web' if launched with fileProWeb
    [WEB_ONLY]
    startcmd="p mainmenu_web"

    # these are in the global namespace
    # the space between the last [WEB_ONLY] tag and the next line reset the
    # namespace
    somevar1=definition
    somevar2=definition
    somevar3=definition



Installation of fileProGI Runtime

fileProGI is a Windows®only graphical interface to filePro. It comes on a CD complete with an Install Shield® that will step you easily through the initial
installation of fileProGI Runtime.

Insert the fileProGI Runtime CD into your CD-ROM Drive and Click on the Start Icon at the lower left hand corner of your screen:

 

and then Select Run:

When the Run dialog box appears type in X:\setup.exe where X is the drive letter of your CD-ROM Drive [example shows the D Drive] and then click on the OK button:

 

The initial fileProGI Runtime installation screen should appear. Click on Next to continue:

Read and acknowledge the license agreement and click on the Yes button if you agree to the terms:



Select the folder you want to install the fileProGI folder under. You can hit the Browse button to specify a different folder than the default. When you have selected the folder you want
the Next Button:

 

Select the icon label you want and the location to store the icon and click on the Next button to continue:

Enter the IP Address and Server Port Number to use and then click on the Next button to continue.



Note: If you are upgrading, the previous Server IP Address and Server Port Number will be provided.

Select the components you want to install and then click on the Next button to continue:

If for any reason you want to cancel the installation at this point, click on the Cancel button:



You will be asked to acknowledge your desire to quit the nstallation process:

If you elected to continue with the installation, the installation will proceed and an installation complete screen will appear.
Note: If you are upgrading fileProGI, you will be prompted before overwriting some files. If you are unsure as to whether to overwrite the files, the safest method is answer "No" to these
prompts.

 



Launching fileProGI

To launch fileProGI, simply click on the fileProGI icon that the installation process put on you windows desktop:

The initial Log on screens will appear:

Log on to GIserver/filePro

Before you log on for the first time, you must make sure that fileProGI is pointed to the right IP address and port number of the GIserver/filePro server. Click on the Setup
Configuration button and set the connection options.

Make sure that the IP address and port number match the GIserver's IP address and port #. The example shown is for a local GIserver installation and then click on the OK button. You will be
returned to the LOGON screen.



If you decide not to Log on, click on the Exit button:

If you want to log on to fileProGI, click on the Log On button

The User ID & Password screen will appear. Enter your assigned User ID and Password and either hit the Enter key or click on OK:



The fileProGI Runtime Menu will then appear:

Note: If the fileProGI Runtime Menu does not appear, you probably have a wrong IP address /Port number or GIserver has not been launched. Launch GIserver (noting any errors) and try
launching fileProGI again. If the problem persists, check your connectivity by pinging the applicable IP address or refer to troubleshooting procedures for GIserver.



Introduction To fileProODBC (not included in filePro Lite)
Welcome to the fileProODBC Manual. This resource has been developed to satisfy a wide range of audiences ranging from new filePro users to our loyal filePro filePro experts. This manual is
intended for use in conjunction the fPmanual and so should be considered as an addendum. If you are new to filePro, refer the How Do I ? and filePro Menu Options topics in the fPmanual which
serve as guides to get you started. For the experts, see Advanced Concepts and Reference topics in the fPmanual. By focusing on practical usage of the language, these guides are intended to
familiarize you with filePro and fileProODBC at each level.
What is fileProODBC? fileProODBC allows you to access and maintain ODBC database records directly from filePro. This provides for quickly integrating filePro applications with databases
developed with other application design tools such as Microsoft Access, SQL 2000 Server, Oracle, Sybase and many other ODBC compliant databases. The fileProODBC module provides for High-
Level access to ODBC databases by simply using the " Define Files " option and Low-Level access using processing tables. Both methods are integrated into existing filePro design tools and each
has inherent benefits that should be considered based on your requirements. The High-Level method is simpler to use but has some restrictions while the Low-Level method is intended for advanced
users and is less restrictive.

Revision Date: 11/03/2003



System Requirements - fileProODBC
Windows NT 4.0, Windows 2000, Windows XP, Windows 2003, or later.
Minimum RAM: 48 MB
Disk Space: 10 MB
The minimum RAM requirements for Windows will usually allow you to run filePro applications satisfactorily. Additional RAM may be required for Peer-to-Peer Network Servers to achieve acceptable
performance for filePro if the machine designated as the filePro file Server is also used as a workstation and/or provides other services such as printing, FAX services, etc.



Foreword
Using Help
There are many hyperlinks in the fileProODBC Manual. They will stay on your screen until you press ESCAPE, press ENTER, or click the left mouse button. There are also many hyperlink jumps .
These are secondary HELP screens that will appear on top of your primary window (depends on the Help version you are using). They have scroll bars and look very much like your primary HELP
window. Read them and then close the jump window as you normally would close any secondary window. Do not lose your place on the primary topic by maximizing one of these secondary
windows. It is also important to understand that these jumps are usually extra reference material and may be much more advanced in content than what you are studying. If this is true, just close the
window and keep reading where you are. You can always find these resources later.
To go to the next sub-topic within a topic, use the >> button in the Help Menu bar. To go to previous topics, use the << button. If one of the buttons is not lit up, you are at one end or the other within
that topic and should probably press Help Topics to choose the next (or previous)  topic.
Viewing:
The text quality and size is dependent on your system video configuration and various other factors. You can change the font size by selecting "Options" and then "Font" to change to a larger or
smaller font.



Disclaimer
 

This documentation is distributed by fP Technologies Inc for your use with licensed copies of filePro and may not be distributed except as covered by the filePro
license agreements. In using this documentation, you assume all risks arising from the use of this documentation. fP Technologies Inc or its suppliers are not liable
for any damages (including, without limitation, damages for loss of business profits, business interruption, loss of business information, or other loss) arising out of
the use of or inability to use the documentation.



Installation
The installation contains replacement filePro executables that will replace your existing files if you are currently running a non-ODBC version of filePro. We recommend that you always copy or save
your old files before installing any upgrade.
DLLs are also needed for the ODBC version of filePro. While there are numerous places where these could be placed, the typical location is either " C:\windows\system " or " C:\windows\system32
" . The install program will determine the applicable system directory and copy the required files to the right location. If the files already exist, the date of the files is compared to determine if files
should be overwritten on your system. Even though the files we furnish may be newer than your files, the install program will prompt you to confirm " overwrites " . We recommend that you always
replace older versions of the files.
When installing fileProODBC, a new ICON is created in your Programs folder and on your desktop (unless you elect not to create the desktop ICON) for you to access fileProODBC.
Finally, we provide some sample ODBC filePro applications for you to test drive and to become familiar with fileProODBC. These will be copied to the specified \filepro directory on your system. A new
reserved directory name of \fp\fputil\filepro is created by the install to store the sample database files and a cool index utility process. The filePro applications are copied to the specified \filepro folder.
Refer to the " fileProODBC.hlp " file on how to apply ODBC to your applications.
Note:
Again, if you decide to overwrite your existing filePro programs, you should do one of the following before installing fileProODBC.

·    Make a backup of your existing fp directory.

·    Duplicate the fp directory tree into another directory (keeping the " fp " basename) and overwrite the programs there. Then, point PFPROG to the new directory when testing the ODBC
version.



What Method Should I Use?
There are inherent benefits to using each method. Review the Method Selection chart to determine which method will better suit your requirements.
 

Method Selection High Level Low Level
Exchange data between filePro and ODBC data source files on an on-going basis. Method to select is dependent on programmer  s level of experience
with filePro. If you have used advanced programming functions such as arrays, understand use of subscripts and know a little about SQL, the Low-
Level method should be used. Otherwise, begin with the High-Level method.
 

  
 
X

One-time exchange between filePro and ODBC data source or limited Query access to merge/compare data in your filePro files. High-Level method is
very quickly implemented and will save you time.
 

 
X

 

Integrate use of indexing with large ODBC databases that are updated by filePro as well as other applications developed in MS Access, SQL 2000
Server, etc.
Low-level is recommended since filePro  s automatic indexes will not do the job for you. You will need to address the indexing requirements using SQL
clauses such as ORDER BY and should create necessary table indexes on the ODBC data source as required.

  
 
X

Integrate use of indexing with ODBC databases of any size that are updated only by filePro but accessed by other applications such as MS Access,
SQL 2000 Server, etc. for things like read-only queries, to produce charts and create reports.
High-Level will work well here since you can take advantage of filePro  s automatic indexes, " Define Screens " , " Define Edits " and other utilities and
treat the ODBC data source just like a filePro file. Although this type of application can also be implemented using the Low-Level method, the High-Level
method has the advantage here since you can more quickly implement this method and utilize all of filePro  s advanced programming options to integrate
access to the ODBC databases.

 
 
 
 
X

 

Periodically exchange data between filePro and ODBC data sources for weekly or monthly reports where indexes are not needed.
High-Level or Low-Level can be used and method selected is dependent on the size of the ODBC databases, how much updating activity there is on the
ODBC data sources. If the ODBC databases are typically small and are not being updated when exchanging the data, e.g. nightly batch processing, use
the High-Level method. If the data sources are large corporate databases or you need to exchange data while the source files are being updated by
other than a filePro applications, use the Low-Level method.

 
 
 
 
X

 
 
 
 
X

Create new ODBC data source tables from filePro.
Use the Low-Level method since you cannot create new data source tables with the High-Level method but can only link to existing tables.

  
X



Using Define Files for ODBC (High Level method) (not included in filePro Lite)
Use the " Define Files " option to create links to existing ODBC files. You cannot create a new ODBC file using define files but can only establish links to the data source with the " High Level "
method. If you want to create an ODBC file, use the Low-Level method.
Using the " Define Files " option is the simplest method and should be considered by both new filePro developers and filePro experts as the first method. Take a look at the restrictions for the High-
Level method and topic " What Method Should I Use ? " before selecting a method.
When using " Define Files " (ddefine), there is now a third choice, "ODBC data source".

 
Upon selecting "ODBC data source", the standard Windows ODBC "select data source" dialog will appear:
 

 
The first step is to select the type of source being used. (For example, "MS Access Database", or "SQL Server".)
Once the source type is selected, a type-specific dialog will appear, allowing you to select the actual source of the data. For example, if using an MS Access Database, you will be asked for the
name of the .mdb file, using the standard Windows "open file" dialog:
 

 
Other data source types may use other dialogs to select the data source.
The actual table within the data source must be selected. This is currently done with a Windows dialog that will either be redesigned, or pulled back into a filePro dialog.



Click the First/Prev/Next/Last buttons to scroll through the available tables. Click SELECT when the proper table is shown.

 
At this point, the data source has been selected, and you are returned to ddefine  s ODBC information screen:
Note: Pressing F6 in the "Table" field will redisplay the table-select dialog, allowing you to select a different table from the list.



Note: Some combinations of Windows and video drivers cause parts of the screen to not be redrawn upon taking down the table-select dialog. This is being looked into. If necessary, press
Alt+Enter twice to switch to full-screen text mode and back to the GUI desktop to force Windows to redraw the screen.
ODBC data sources have two parts, a "DSN" (short for "Data Source Name") and a table name. These are what you defined with the previous dialogs. filePro needs one more piece of information e.g.
the name of the unique ID field. The best way to do this is to press F6 within the "Unique ID field" entry to bring up a list of fields within the selected table.
 
Note that the current version has extra information displayed beyond just the column name, mostly for debugging purposes:

 
For the curious, the items within parens are:
·    SQL data type, as a number.
·    Data type, as a string returned from the ODBC database.
·    The "autonumber" flag, as returned from the ODBC database.
·    The "writable" flag, as returned from the ODBC database.
 
If you do not yet have a unique ID field specified, filePro will select any available autonumber field by default. It is important that you have a " autonumber " field available in the datasource since filePro
will need this field to act as the pseudo @rn field. If there is no " autonumber " and you cannot assign one in the datasource, you should use the Low-Level method for ODBC files.
Once the unique ID field has been selected, save the ODBC datasource dialog to get to the standard ddefine field listing. Notice that filePro has already filled in the column names, lengths, and types:

 
The field names are not editable, as they are determined by the ODBC data source. The length and type are editable, and are initially filled in by filePro based on the information as returned from the
ODBC table. While you can change the length and type to anything you want, you need to keep in mind the original ODBC data type. (For example, don  t tell filePro to use an "MDY/" type if the ODBC
type is "currency".) This allows you to determine, for example, which filePro date format to use when handling an ODBC date field, or to overlay a user-defined edit on top of a CHAR-type field.



filePro's ODBC objects (Low-Level method) (not included in filePro Lite)
To provide low-level access to ODBC data sources, filePro now includes ODBC " objects " . These are called ODBC_CONNECTION , and ODBC .
 
The ODBC_CONNECTION object (not included in filePro Lite)
The first part of creating an ODBC recordset is to establish a connection to an ODBC server. This is done by creating an ODBC_CONNECTION object:

handle = new ODBC_CONNECTION( [CONNECTION_STRING] )
where " CONNECTION_STRING " is the connection string for the server. If none is specified, or an empty value is provided, Windows will ask for the data source at runtime. Also, if
insufficient information is provided in the connection string, such as not including the password for a password-protected dataset, Windows will ask for that information at runtime.
The return value is a handle to the new object. If the value is less than or equal to zero, the connection failed.
Once the connection has been established, this handle is used to create the ODBC recordset object.
Example connection strings:

Driver={Microsoft Access Driver (*.mdb)};DBQ=c:\mdb\filepro.mdb;
FileDSN=CustomerFileDSN;

Note that multiple recordsets can be created on a single connection.
To do: include a connection wizard.
To do: include a method for accessing the reason for failure.

The ODBC object (not included in filePro Lite)
The second part of creating an ODBC recordset is to create the ODBC object itself:

handle = new ODBC( connection_handle [ , query ] )
where " connection_handle " is the handle of the ODBC_CONNECTION object created earlier and " query " is the optional SQL query to be used to create the recordset.
The return value is a handle to the new object. If the value is less than or equal to zero, the recordset creation failed. (Note that, even if you specify an invalid query, the creation can still succeed. It
will simply contain no data.)
If a query is not specified when the object is created, you must specify it later by using:

ODBC handle QUERY query [ DYNASET|SNAPSHOT ] [ BOOKMARKS ]
The optional DYNASET and SNAPSHOT flags force those modes to be used for the recordset. If neither is specified, the driver  s default mode is used. The optional BOOKMARKS flag
enables bookmark support, if supported by the driver. (Note that enabling bookmarks may slow down data retrieval, so don  t use it if you aren  t going to be using bookmarks on the recordset.)
A query must be executed prior to accessing any of the records within the recordset.
Note that you can replace the recordset within an ODBC object by executing another QUERY command. Doing so will close the existing recordset and create a new one.
 
Moving around within the recordset (not included in filePro Lite)
Once a recordset has been created, you can move around within it with the following methods:

ODBC handle GETFIRST
ODBC handle GETLAST
ODBC handle GETPREV
ODBC handle GETNEXT

These will move the current record to the first, last, previous, and next records in the set, respectively.
Note that you only have sequential access within recordsets. This is a limitation of ODBC.
Note that ODBC does not include a method of determining the number of records returned within a recordset. The only way to do so is to GETNEXT through the set, counting the records, until EOF
is reached. If there are no records being modified on the table by another process, you can run a separate query with " SELECT COUNT(*)  " using the same WHERE clause. (If the table is
being modified by another process, there is no guarantee that both queries will return the same set of records.)
Note that with some ODBC servers, the GETLAST operation may take a long time on large recordsets. If you need to access the last record and scroll backwards through the recordset, it is
recommended that you instead use an ORDER BY clause in descending order, and scroll forwards from the first record.
 
Bookmarks (not included in filePro Lite)
Although there is only sequential access through ODBC recordsets, it is possible (if the server supports it) to " bookmark " your current position and return to it later.
To retrieve a bookmark to the current position, you use the " BOOKMARK GET " method:

 ODBC handle BOOKMARK GET bookmark
where " bookmark " is the variable in which to store the bookmark. This variable must be at least 16 bytes long, and of type " * " .

If the bookmark cannot be made (for example, you didn  t specify the BOOKMARKS flag on the query), the variable will be set to blank. (ie: bookmark="" will test true.) In that case,
@ODBCERROR[] will contain the error. If the bookmark succeeds, the bookmark variable will contain something other than all blanks. (ie: bookmark="" will test false.) The bookmark
data is not in a human-readable format.
Once a bookmark has been made, you can return to that position within the same recordset at any time by using the " BOOKMARK SET " method:

 ODBC handle BOOKMARK SET bookmark
where " bookmark " is the same variable used to GET the bookmark earlier.

Note that there is no guarantee that a bookmark will remain valid for anything other than the current recordset. Even executing a REQUERY may invalidate the bookmark.
Note that there can be multiple bookmarks per recordset.
 
Refreshing a recordset (not included in filePro Lite)
Not every ODBC data source can return a dynamic data set. Rather, they return a " snapshot " of the records at the time that the query was executed. (ie: if records are updated, added, or deleted
while the recordset is open, you won  t see those changes.) In order to get an updated snapshot, you need to re-execute the query.
Rather than requiring that your code keep track of the query used, you can simply " requery " the recordset using the same query as the current set:
  ODBC handle REQUERY
You will be positioned back to the first record, if any.
 
Closing a recordset (not included in filePro Lite)
Once you are finished with a recordset, you can close it without deleting the ODBC object. (This allows future queries to be executed on the same connection, without the overhead of creating a
new object.)



  ODBC handle CLOSE
Once the recordset is closed, no more operations may be performed on it, aside from DELETE and QUERY .
 
New in filePro 5.8 is a 'timeout' function (not included in filePro Lite)

status = @ODBC.handle.TIMEOUT(timeout)
This sets the ODBC query timeout to "timeout" seconds.  Only subsequent operations are affected.
As described by Microsoft:
 > The default value for query timeouts is 15 seconds. Not all data sources  support the ability to set a query timeout value. If you set a query timeout value of 0, no timeout occurs; the communication
with the data source may  stop responding.
The return value is the previous timeout value, or a null string -- "" -- if the data source does not return the old value.
 Also, note that the data source may share the timeout value with all queries on the same connection, so if multiple ODBC handles are retrieved from the same ODBC_CONNECTION handle, setting the
timeout on one may affect all ODBC handles on the same ODBC_CONNECTION.
 

xx = @ODBCERROR.CLEAR
This will clear the previous @ODBCERROR results
 
Accessing columns within the recordset (not included in filePro Lite)
Accessing the columns within a recordset is done with the new @ODBC[] system array, which is accessed using the syntax:

@ODBC.handle[subscript]
where " handle " is the handle to the ODBC recordset object, and " subscript " is the column number or name.
As with all system arrays, subscript zero returns the number of elements within the array, and accessing an out-of-range subscript returns an empty string.
If the number of elements is zero, then there are no columns available. This could be due to query returning no records, or positioning the current record to BOF, EOF, or a deleted record.
An enhancement from other system arrays is that " subscript " can be the name of the column, in addition to the numeric column number. For example:

@ODBC.handle["zipcode"]
This is especially important when doing " SELECT * " clauses on older ODBC servers, where the order of the columns cannot be guaranteed. (Or even on newer servers, where the database
can have columns inserted within the existing structure, thereby changing the column number of the following ones.)
Note that there is currently only read-only access to the recordset.
 
Accessing column information (not included in filePro Lite)
There are " class members " within the @ODBC[] array to access information about the columns.

To return the names of the columns,use the " .NAME " member:

  @ODBC.handle.NAME[column]
Note that expressions and aggregate functions have default names generated by ODBC. To explicitly specify a name for the column, you need to append " AS name " to the expression, such as "
SELECT MAX(sales) AS MaxSales  "
To return the types of the columns (as a server-specific name), use the " .TYPE " member:

 @ODBC.handle.TYPE[column]
To return the types of the columns (as a server-independent number), use the " .TYPENUM " member:

 @ODBC.handle.TYPENUM[column]
 
The following members can be returned when using the TYPENUM subscript.
SQL_GUID -11
SQL_WLONGVARCHAR -10
SQL_WVARCHAR -9
SQL_WCHAR -8
SQL_BIT -7
SQL_TINYINT -6
SQL_BIGINT -5
SQL_LONGVARBINARY -4
SQL_VARBINARY -3
SQL_BINARY -2
SQL_LONGVARCHAR -1
SQL_UNKNOWN_TYPE 0
SQL_CHAR 1
SQL_NUMERIC 2
SQL_DECIMAL 3
SQL_INTEGER 4
SQL_SMALLINT 5
SQL_FLOAT 6
SQL_REAL 7
SQL_DOUBLE 8
SQL_DATE 9
SQL_TIME 10
SQL_TIMESTAMP 11
SQL_VARCHAR 12 Note that these members can also use the field name as the subscript. (Yes, even the " .NAME " member can take a name as its subscript, as redundant as that may
seem.)



This page is under reconstruction - please check back later.
Adobe Flash Player is no longer supported.



This page is under reconstruction - please check back later.
Adobe Flash Player is no longer supported.



Restrictions
Unique ID - The field selected to the unique ID must be an integer type. The value in the field will be used as @RN within filePro. This is not yet enforced.
 
Use of filePro Automatic Indexes - Automatic indexes cannot be properly maintained when updating the ODBC files using other applications such as MS Access, SQL 2000 Server, etc. since the
filePro indexes are not updated by these applications. Suggest using Demand indexes if they can be applied or use the Low-level implementation method.
 
Wide_Character Fields - There appears to be a bug in Microsoft  s ODBC library related to fixed-length wide-character ODBC fields, where the last character is not returned. For example, in SQL
Server if you define a field of type " nchar " and length 5, and the field contains " ABCDE " , only " ABCD " will be returned by the ODBC library. Note that " nvarchar " (variable-length
wide-character) fields do not appear to have this problem.
 
Currency Fields - filePro currently cannot save records from a Microsoft Access database that has a " currency " type field.
 
Column Limits - There is an undocumented(?) limit of 255 columns for Microsoft's MFC "CRecordset" class for accessing ODBC data sources. This limit is manifested as an "Assertion failure" error
when using "Define Files", "Inquire/Update/Add", etc. when the table is more than 255 columns



SQL Data Type & filePro Edits
The ODBC database data type is translated to a filePro edit type when using the High-Level method. The following chart identifies the filePro edit type that is applied for the corresponding ODBC data
types.
 

SQL data type Default filePro data type Notes

GUID (-11) *  

WLONGVARCHAR (-10) *  

WVARCHAR (-9) *  

WCHAR (-8) *  

BIT (-7) .0  

TINYINT (-6) .0  

BIGINT (-5) *  

LONGVARBINARY (-4) *  

VARBINARY (-3) *  

BINARY (-2) *  

LONGVARCHAR (-1) *  

UNKNOWN_TYPE (0) *  

CHAR (1) *  

NUMERIC (2) .n " n " is determined by the " scale " setting of the field.

DECIMAL (3) .n " n " is determined by the " scale " setting of the field.

INTEGER (4) .0  

SMALLINT (5) .0  

FLOAT (6) F  

REAL (7) F  

DOUBLE (8) F  

DATE (9) MDYY/  

TIME (10) HMS  

TIMESTAMP (11) * You can change the filePro type to a date field, and filePro will use just the date portion of
the field. Or, you can use a time field, and filePro will use just the time portion.

VARCHAR (12) *  

Notes
The default length of the field (except for MDYY/ and HMS ) is determined by the " precision " setting of the SQL field, except for NUMERIC and DECIMAL , which use " precision + 2 " for the length.
 
The above SQL data types are the internal representation format used by the SQL data engine. ODBC data sources may have different names for the field types, but they are all represented
internally by one of the above types. For example, SQL Server calls its auto-increment field type " int identity " , and stores it as INTEGER . Microsoft Access also uses INTEGER , but calls it
" COUNTER " .
 
Microsoft Access  " currency " data type is stored as a NUMERIC type, precision 19, scale 4. However, there appears to be some problem with currency fields that prevents filePro from saving a
record that has a currency-type field in it.



Technical Notes
READ-ONLY FIELDS & ODBC (not included in filePro Lite)
filePro recognizes fields marked as " read-only " from the ODBC data source, and will not allow you to modify them. If placed on the screen, filePro will automatically treat it as protected. You cannot
assign to such fields in processing.
Microsoft SQL Server does not return a read-only status on read-only fields. Rather, every field is listed as " writable_unknown " , meaning it is not known whether the field is writable or not.
Unfortunately, since every field is listed this way, filePro must treat " writable_unknown " as " writable " . Modifying read-only fields marked this was is not stopped by filePro, and will lead to SQL
errors.
NULL SQL Values
ODBC returns NULL SQL values by using specific " pseudo-NULL " C values. Unfortunately, there is no way we currently know of to distinguish between a pseudo-NULL value and a field containing
that same non-NULL value. For example, long-integer NULL values are returned as 1,246,576,928. If a long-integer field happens to contain 1,246,576,928, there is no way to distinguish that from the
pseudo-NULL value. For now, filePro will not do anything special with such values, and NULL values will appear with their pseudo-NULL values.
PFLONGVARDOT=OLD
filePro used to accept a period in variable names. This is now not allowed (it never should have been allowed in the first place), in order to permit enhanced functionalities. To revert to the old
behavior and allow periods in variable names, you can set PFLONGVARDOT=OLD. Note, however, that this will disable certain features, such as access to ODBC and biometrics, which require that
periods not be allowed here.
 



Environment Variables
 
PFODBCCOMMITTYPE= n
Selects the open-commit-type to use for high-level ODBC data sources, where:
 
  0 = "SELECT * FROM tablename" (default)
  Very slow on some data sources with very large files,
  but uses nothing non-standard.
 1 = "SELECT * FROM tablename WHERE id_field = nnn"
  (Where "id_field" is the name of the ID field, and "nnn"
  is a valid ID.)
  Usually faster, but may be slower on some systems, as
  filePro must first determine a valid ID to use.
 2 = "SELECT TOP 1 FROM tablename"
  Fastest version, but "TOP 1" is non-standard and not
  supported everywhere. Will cause ODBC failure on those
  DSNs that don't support it.
 
 Version Ref: 1.0.14
 
PFLICFILE= path
 

Override the default license path for fileProODBC.
Sample:
Set PFLICFILE = %pfprog%\fp\license\licfp.dat (right of the equal sign can be any path you wish but must contain the licfp.dat file)
Default path is %pfprog%\fp\lib\licfp.dat
 
Version Ref: ODBC 1.0.01

 

Handling errors
Currently, there really isn  t much error handling ability included.
If a query fails, for example if no records are selected due to a WHERE clause, then @ODBC.handle[ " 0 " ] will return zero, indicating no data is available. (Note that this is also true should
you scroll to BOF or EOF, or position to a deleted record.)
The system array @ODBCERROR[] will contain the text of the most recent ODBC failure. Subscript 1 will contain the human-readable text of the error, and subscript 2 will contain the state
information from which you can programmatically extract the error information. For more information, see
http://msdn.microsoft.com/library/en-us/vcmfc98/html/_mfc_cdbexception.3a3a.m_strstatenativeorigin.asp



Appendix A - SQL Statements (not included in filePro Lite)
ALTER TABLE Statement
Modifies the design of a table after it has been created with the CREATE statement.
Syntax

ALTER TABLE table ADD COLUMN field type [( size )]
ALTER COLUMN field type [( size )] |
ALTER TABLE  DROP COLUMN field

 
The ALTER TABLE statement has these parts:
Part Description
Table The name of the table to be altered.
Field The name of the field to be added to or deleted from table . Or, the name of the field to be altered in table .
Type The data type of field .
Size The field size in characters (Text and Binary fields only).
 
 
Remarks
 
Using the ALTER TABLE statement you can alter an existing table in several ways. You can:

·    Use ADD COLUMN to add a new field to the table. You specify the field name, data type, and (for Text and Binary fields) an optional size. For example, the following statement adds a 20-
character Text field called Remarks to the mytest1 table:
ALTER TABLE mytest1 ADD COLUMN Remarks TEXT(20)

·    Use ALTER COLUMN to change the data type of an existing field. You specify the field name, the new data type, and an optional size for Text and Binary fields. For example, the following
statement changes the data type of a field in the mytest1 table called " Customer " (originally defined as Integer) to a 10-character Text field:
ALTER TABLE mytest1 ALTER COLUMN Customer TEXT(10)

·    Use DROP COLUMN to delete a field. You specify only the name of the field. For example, the following statement drops the column named " Remarks " from the table called " mytest1 " . Note
that you can only delete one field at a time.

·    ALTER TABLE mytest1 DROP COLUMN Remarks
 
CREATE TABLE Statement (not included in filePro Lite)
Description: Creates a new table.

Syntax
CREATE TABLE table ( field1 type [( size )] [, field2 type [( size )] [, ...]] )
 
Parts - The CREATE TABLE statement has these parts:
Part Description
Table The name of the table to be created.
field1 , field2 The name of field or fields to be created in the new table. You must create at least one field.
Type The data type of field in the new table.
Size The field size in characters (Text and Binary fields only).
 

Remarks
Use the CREATE TABLE statement to define a new table and its fields and field constraints. If NOT NULL is specified for a field, then new records are required to have valid data in that field.
You can also use the CREATE INDEX statement to create a primary key or additional indexes on existing tables.
 
DELETE Statement  (not included in filePro Lite)
Creates a DELETE query that removes records from one or more of the tables listed in the FROM clause that satisfy the WHERE clause.
 

Syntax
DELETE [ table .*]
    FROM table 
    WHERE criteria
Parts - The DELETE statement has these parts:
Part Description
table The optional name of the table from which records are deleted.
table The name of the table from which records are deleted.
criteria An expression that determines which records to delete.
 
Remarks
DELETE is especially useful when you want to delete many records.
To delete an entire table from the database, you can use the DROP statement. Keep in mind If you use DROP that the entire table structure is lost. In contrast, when you use DELETE, only the data is
deleted. The table structure and all of the table properties, such as field attributes and indexes, remain intact.
A delete query deletes entire records, not just data in specific fields. If you want to delete values in a specific field, see Update Query to change the values to NULL.
Notes
After you remove records using a delete query, you cannot undo the operation. If you want to know which records were deleted, first examine the results of a SELECT query that uses the same
criteria, and then run the delete query.
Maintain backup copies of your data at all times. If you delete the wrong records, you can retrieve them from your backup copies.
 



DROP Statement (not included in filePro Lite)
Deletes an existing table, procedure, or view from a database, or deletes an existing index from a table.
 

Syntax
DROP {TABLE table | INDEX index ON table | PROCEDURE procedure | VIEW view }
 
Parts - The DROP statement has these parts:
Part Description
table The name of the table to be deleted or the table from which an index is to be deleted.
procedure The name of the procedure to be deleted.
view The name of the view to be deleted.
index The name of the index to be deleted from table.
 
Remarks
You must close the table before you can delete it or remove an index from it.
You can also use ALTER TABLE to delete an index from a table.
You can use CREATE TABLE to create a table and CREATE INDEX or ALTER TABLE to create an index. To modify a table, use ALTER TABLE.
 
INSERT INTO Statement  (not included in filePro Lite)
Adds a record or multiple records to a table. This is referred to as an append query.
Syntax
Multiple-record append query:
INSERT INTO target [( field1 [, field2 [, ...]])] [IN externaldatabase ]
    SELECT [ source .] field1 [, field2 [, ...]
    FROM tableexpression
Single-record append query:
INSERT INTO target [( field1 [, field2 [, ...]])]
    VALUES ( value1 [, value2 [, ...])
 
Parts - The INSERT INTO statement has these parts:
Part Description
target The name of the table or query to append records to.
field1 , field2 Names of the fields to append data to, if following a target argument, or the names of fields to obtain data from, if following a source argument.
externaldatabase The path to an external database. For a description of the path, see the IN clause.
source The name of the table or query to copy records from.
tableexpression The name of the table or tables from which records are inserted. This argument can be a single table name or a compound resulting from an INNER

JOING, LEFT JOIN, or RIGHT JOIN operation or a saved query.
value1 , value2 The values to insert into the specific fields of the new record. Each value is inserted into the field that corresponds to the value's position in the list:

value1 is inserted into field1 of the new record, value2 into field2 , and so on. You must separate values with a comma, and enclose text fields in
quotation marks (' ').

 
Remarks
You can use the INSERT INTO statement to add a single record to a table using the single-record append query syntax as shown above. In this case, your code specifies the name and value for each
field of the record. You must specify each of the fields of the record that a value is to be assigned to and a value for that field. When you do not specify each field, the default value or NULL is
inserted for missing columns. Records are added to the end of the table.
You can also use INSERT INTO to append a set of records from another table or query by using the SELECT ... FROM clause as shown above in the multiple-record append query syntax. In this case,
the SELECT clause specifies the fields to append to the specified target table.
INSERT INTO is optional but when included, precedes the SELECT statement.
If your destination table contains a PRIMARY key, make sure you append unique, non- Null values to the primary key field or fields; if you do not, the database engine will not append the records.
If you append records to a table with an AutoNumber field and you want to renumber the appended records, do not include the AutoNumber field in your query. Do include the AutoNumber field in the
query if you want to retain the original values from the field.
Use the IN clause to append records to a table in another database.
To create a new table, use the SELECT INTO statement instead to create a table.
To find out which records will be appended before you run the append query, first execute and view the results of a SELECT query that uses the same selection criteria.
An append query copies records from one or more tables to another. The tables that contain the records you append are not affected by the append query.
Instead of appending existing records from another table, you can specify the value for each field in a single new record using the VALUES clause. If you omit the field list, the VALUES clause must
include a value for every field in the table; otherwise, the INSERT operation will fail. Use an additional INSERT INTO statement with a VALUES clause for each additional record you want to create.
 
SELECT Statement (not included in filePro Lite)
Return information from the database as a set of records.
Syntax
SELECT [ predicate ] { * | table .* | [ table .] field1 [AS alias1 ] [, [ table .] field2 [AS alias2 ] [, ...]]}
    FROM tableexpression [, ...] [IN externaldatabase ]
    [WHERE... ]
    [GROUP BY... ]
    [HAVING... ]
    [ORDER BY... ]
Parts - The SELECT statement has these parts:
Part Description
Predicate One of the following predicates: ALL, DISTINCT, DISTINCTROW. You use the predicate to restrict the number of records returned. If none is specified,

the default is ALL.



* Specifies that all fields from the specified table or tables are selected.
Table The name of the table containing the fields from which records are selected.
field1 , field2 The names of the fields containing the data you want to retrieve. If you include more than one field, they are retrieved in the order listed.
alias1 , alias2 The names to use as column headers instead of the original column names in table .
Tableexpression The name of the table or tables containing the data you want to retrieve.
Externaldatabase The name of the database containing the tables in tableexpression if they are not in the current database.
 
Remarks
To perform this operation, the Microsoft® Jet database engine searches the specified table or tables, extracts the chosen columns, selects rows that meet the criterion, and sorts or groups the
resulting rows into the order specified.
SELECT statements do not change data in the database.
SELECT is usually the first word in an SQL Statement.
The minimum for a SELECT statement is:
SELECT fields FROM table
You can use an asterisk (*) to select all fields in a table. The following example selects all of the fields in the mymedia table:
SELECT * FROM mymedia
If a field name is included in more than one table in the FROM clause, precede it with the table name and the . (dot) operator. In the following example, the Title field is in both the mymedia table and the
mytest1 table. The SQL statement selects Title and Rated from the mymedia table and remarks from the mytest1 table:
SELECT mymedia.title, mymedia.rated, mytest1.remarks
FROM mymedia , mytest1
WHERE mymedia.title = mytest1.title
When a record set object is created, the table's field name is used as the Field object name in the Recordset object. If you want a different field name or a name is not implied by the expression used
to generate the field, use the AS reserved word. The following example uses the title Notes to name the returned Field object in the resulting Recordset object:
SELECT mytest1.Remarks
AS Notes FROM mytest1
 
SELECT...INTO Statement (not included in filePro Lite)
Creates a new Table from an existing table.
 
Syntax
SELECT field1[, field2[, ...]] INTO newtable [IN externaldatabase]
    FROM source

Parts - The SELECT...INTO statement has these parts:
Part Description
field1 , field2 The name of the fields to be copied into the new table.
Newtable The name of the table to be created. If newtable is the same as the name of an existing table, a trappable error occurs.
Externaldatabase The path to an external database. For a description of the path, see the IN clause.
Source The name of the existing table from which records are selected. This can be single or multiple tables or a query.
 
 
Remarks
You can use make-table queries to archive records, make backup copies of your tables, or make copies to export to another database or to use as a basis for reports that display data for a particular
time period. For example, you could produce a Monthly Sales by Region report by running the same make-table query each month.
 
Notes
You may want to define a primary key for the new table. When you create the table, the fields in the new table inherit the data type and field size of each field in the query's FROM source, but no
other field or table properties are transferred.
To add data to an existing table, use the INSERT INTO statement instead to create an append query.
To find out which records will be selected before you run the make-table query, first examine the results of a SELECT statement that uses the same selection criteria.
Make sure that you do not use a table name that already exists.
 
UPDATE Statement  (not included in filePro Lite)
Creates an update query that changes values in fields in a specified table based on specified criteria.
 
Syntax
UPDATE table 
    SET newvalue 
    WHERE criteria ;
Parts - The UPDATE statement has these parts:
Part Description
Table The name of the table containing the data you want to modify.
Newvalue An expression that determines the value to be inserted into a particular field in the updated records.
Criteria An expression that determines which records will be updated. Only records that satisfy the expression are updated.
 
Remarks
UPDATE is especially useful when you want to change many records. The following example will change the Format column values in mytest2 from " Tape " to " VHS " .
 UPDATE mytest2 SET Format=  VHS  WHERE Format =  Tape 
Notes



UPDATE does not generate a result set. Also, after you update records using an update query, you cannot undo the operation. If you want to know which records were updated, first examine the
results of a SELECT query that uses the same criteria, and then run the update query.
Maintain backup copies of your data at all times. If you update the wrong records, you can retrieve them from your backup copies.



XLSX MARKUP LANGUAGE
This new feature of filePro allows you to export data in an XLSX format to be opened directly by Microsoft Excel and others.
Follow this link to the full XLSX documentation.   https://fptech.com/fptech/pdf/xlsx_docs.pdf
The documentation, xlsxdoc.pdf, can also be found in your ~/appl/fp/docs folder
 



XL_OPEN()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_OPEN(file [, name])
 Start building an XLSX output file.

 Parameters -
  file : Path to the file to create. If no full path is given the
         generated file will be placed in the PFTMP or equivalent
         directory.
  name : The name for the default sheet that will be created. Defaults to
         Sheet1.
  
 If the filename does not end in ".xlsx" it will be added on creation.

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 Note: Only one XLSX file can be created at a time.



XL_SAVE()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_SAVE([password])
 Save the current XLSX file.

 Parameters -
  password : If specified, encrypt the XLSX output file using Agile
             encryption (AES128).
 
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 Note: Encrypted XLSX files cannot be opened with most third party programs
 such as LibreOffice and OpenOffice. They are fully supported by Excel
 however. The documents are saved in an encrypted CFB file.



XL_ADDSHEET()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 handle = XL_ADDSHEET([name])
 Add a new sheet to the XLSX document.

 Parameters -
  name : The name for the sheet to be created. Defaults to auto naming the
         sheet based on the Sheet1, Sheet2, ..., SheetN template.
  
 Returns a handle to a new sheet object on successs and "-1" on error.
 XL_ERROR() can be called to return the last error.



XL_ADDCELL()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_ADDCELL([data [, style [, sheet [, row [, col]]]]])
 Add a new cell to the XLSX document.

 Parameters -
  data  : Data to be inserted into the document. A cell starting with '='
          will be treated as a formula.
  style : Handle to style to be used for this cell. Use blank to use the
          default style.
  sheet : Handle to sheet to insert the cell on. Use blank, "0", or "-1"
          to use the default sheet.
  row   : Row to place the cell (0 indexed).
  col   : Column to place the cell (0 indexed).
  

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 Note: Using an empty or negative row/column value will cause the cell to be
 added using the auto counter in the sheet, incrementing the column value
 after the cell is added. Specifying a location will reposition the auto
 counter. Formulas can be used as part of the data as well by prefixing the
 string with '='.



XL_ADDCELL2()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_ADDCELL2([data [, style [, sheet [, cell]]]])
 Add a new cell to the XLSX document.

 Parameters -
  data  : Data to be inserted into the document. A cell starting with '='
          will be treated as a formula.
  style : Handle to style to be used for this cell. Use blank to use the
          default style.
  sheet : Handle to sheet to insert the cell on. Use blank, "0", or "-1"
          to use the default sheet.
  cell  : The Excel style cell to insert the cell. e.g. "A1" "D6" "F6".

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 Note: Using an empty cell number will cause the cell to be added using the
 auto counter in the sheet, incrementing the column value after the cell is
 added. Specifying a location will reposition the auto counter. Formulas can 
 be used as part of the data as well by prefixing the string with '='.



XL_FORMAT()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 handle = XL_FORMAT(format)
 Create a new format to use with the XLSX document.

 Parameters -
  format : Excel format string to use to format the a style. e.g.
           "$ #,###,nnn.nn"
           "% ##n.n"
           "m/d/yyyy"

 Returns a handle to a new format object on successs and "-1" on error.
 XL_ERROR() can be called to return the last error.



XL_COLWIDTH()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_COLWIDTH(width, firstcol, lastcol [, sheet])
 Change the default column width for a sheet between a range.

 Parameters -
  width    : Width of the column(s). e.g. "24" "12.5", "11"
  firstcol : Zero based column index or column letter to set from.
  lastcol  : Zero based column index or column letter to set to.
  sheet    : Handle to sheet to change the cell widths.

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.



XL_FONT()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 handle = XL_FONT(font, [size [, attr [, color]]])
 Create a new font to use with the XLSX document.

 Parameters -
  font  : Name of the font to use.
  size  : Point size of the font. e.g. "11" "8.42" "12", default "11.0"
  attr  : List of attributes to apply to this font, separated by commas.
          e.g. "bold,italic"
       Values:
        "bold"
        "italic"
        "underline"
        "strike"
        "unlocked"
        "hidden"
        "wrap"
        "shrink"
        "fill"
        "left"
        "center"
        "right"
        "justify"
        "top"
        "bottom"
        "vjustify"
        "vcenter"
  color : The RGB Hex value to set the font color.
          e.g. "000000" "ADD8E6"

 Returns a handle to a new font object on successs and "-1" on error.
 XL_ERROR() can be called to return the last error.



XL_BORDER()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 handle = XL_BORDER(borderstyle [, color])
 Create a new border to use with the XLSX document.

 Parameters -
  borderstyle : The style to use with this border. Must be one of the
       following values:
       "thin"
       "medium"
       "dashed"
       "dotted"
       "thick"
       "hair"
       "medium_dashed"
       "dash_dot"
       "medium_dash_dot"
       "dash_dot_dot"
       "medium_dash_dot_dot"
       "slant_dash_dot"
  color       : The RGB Hex value to set the border color.
                e.g. "000000" "ADD8E6"

 Returns a handle to a new border object on successs and "-1" on error.
 XL_ERROR() can be called to return the last error.



XL_FILL()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 handle = XL_FILL(bg [, fg [, fill]])
 Create a new fill to use with the XLSX document.

 Parameters -
  bg   : The RGB Hex value to set the background fill color.
         e.g. "000000" "ADD8E6"
  fg   : The RGB Hex value to set the foreground fill color.
         e.g. "000000" "ADD8E6"
  fill : The fill pattern to use, defaults to "solid" fill. Value must be
      one of the following.
      "solid"
      "medium_gray"
      "dark_gray"
      "light_gray"
      "dark_horizontal"
      "dark_vertical"
      "dark_down"
      "dark_up"
      "dark_grid"
      "dark_trellis"
      "light_horizontal"
      "light_vertical"
      "light_down"
      "light_up"
      "light_grid"
      "light_trellis"
      "gray_125"
      "gray_0625"

 Returns a handle to a new fill object on successs and "-1" on error.
 XL_ERROR() can be called to return the last error.



XL_ADD_DT()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_ADD_DT(date, time [, style [, sheet [, row [, col]]]])
 Combine two fields into a single spreadsheet datetime field and insert it as
 a new cell in the XLSX document.

 Parameters -
  date  : filePro date field.
  time  : filePro time field.
  style : Handle to style to be used for this cell. Use blank to use the
          default style.
  sheet : Handle to sheet to insert the cell on. Use blank, "0", or "-1"
          to use the default sheet.
  row   : Row to place the cell (0 indexed).
  col   : Column to place the cell (0 indexed).

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.



XL_ADD_DT2()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_ADD_DT2(date, time [, style [, sheet [, cell]]])
 Combine two fields into a single spreadsheet datetime field and insert it as
 a new cell in the XLSX document.

 Parameters -
  date  : filePro date field.
  time  : filePro time field.
  style : Handle to style to be used for this cell. Use blank to use the
          default style.
  sheet : Handle to sheet to insert the cell on. Use blank, "0", or "-1"
          to use the default sheet.
  cell  : The Excel style cell to insert the cell. e.g. "A1" "D6" "F6".

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.



XL_CHART()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 handle = XL_CHART(type [, title [, xname [, yname [, row [, col [, stylenum 
      [, sheet [, xoff [, yoff [, xscale [, yscale]]]]]]]]]]])
 Add a new chart to the XLSX document.

 Parameters -
  type     : Type of chart to create. Must be one of the following values.
       "area"
       "area_stacked"
       "area_stacked_percent"
       "bar"
       "bar_stacked"
       "bar_stacked_percent"
       "column"
       "column_stacked"
       "column_stacked_percent"
       "doughnut"
       "line"
       "line_stacked"
       "line_stacked_percent"
       "pie"
       "scatter"
       "scatter_straight"
       "scatter_stright_markers"
       "scatter_smooth"
       "scatter_smooth_markers"
       "radar"
       "radar_with_markers"
       "radar_filled"
  title    : The title for this chart.
  xname    : The title for the x-axis.
  yname    : The title for the y-axis.
  row      : Row to place the cell (0 indexed).
  col      : Column to place the cell (0 indexed).
  stylenum : Number of the built in Excel style to use. Must be between
       "1" and "48". The default style is 2. The value is one of
       the 48 built-in styles available on the "Design" tab in
       Excel 2007.
  sheet    : Handle to sheet to insert the chart on. Use blank, "0", or
             "-1" to use the default sheet.
  xoff     : X axis offset to place the chart, in pixels.
  yoff     : Y axis offset to place the chart, in pixesl.
  xscale   : Scale the chart along the x axis. e.g. "1", "0.5" "2". Value
             cannot be negative.
  yscale   : Scale the chart along the x axis. e.g. "1", "0.5" "2". Value
             cannot be negative.

 Returns a handle to a new chart object on successs and "-1" on error.
 XL_ERROR() can be called to return the last error.
 
 Note: The chart functions do not use the auto counter found in the sheets



 and instead will default to "0", "0" or "A1" when used for insertion.



XL_CHART2()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 handle = XL_CHART2(type [, title [, xname [, yname [, cell [, stylenum [, sheet 
       [, xoff [, yoff [, xscale [, yscale]]]]]]]]]])
 Add a new chart to the XLSX document.

 Parameters -
  type     : Type of chart to create. Must be one of the following values.
       "area"
       "area_stacked"
       "area_stacked_percent"
       "bar"
       "bar_stacked"
       "bar_stacked_percent"
       "column"
       "column_stacked"
       "column_stacked_percent"
       "doughnut"
       "line"
       "line_stacked"
       "line_stacked_percent"
       "pie"
       "scatter"
       "scatter_straight"
       "scatter_stright_markers"
       "scatter_smooth"
       "scatter_smooth_markers"
       "radar"
       "radar_with_markers"
       "radar_filled"
  title    : The title for this chart.
  xname    : The title for the x-axis.
  yname    : The title for the y-axis.
  cell     : The Excel style cell to insert the cell. e.g. "A1" "D6" "F6".
  stylenum : Number of the built in Excel style to use. Must be between
             "1" and "48". The default style is 2. The value is one of
             the 48 built-in styles available on the "Design" tab in
             Excel 2007.
  sheet    : Handle to sheet to insert the chart on. Use blank, "0", or
             "-1" to use the default sheet.
  xoff     : X axis offset to place the chart, in pixels.
  yoff     : Y axis offset to place the chart, in pixesl.
  xscale   : Scale the chart along the x axis. e.g. "1", "0.5" "2". Value
             cannot be negative.
  yscale   : Scale the chart along the x axis. e.g. "1", "0.5" "2". Value
             cannot be negative.

 Returns a handle to a new chart object on successs and "-1" on error.
 XL_ERROR() can be called to return the last error.
 
 Note: The chart functions do not use the auto counter found in the sheets
 and instead will default to "0", "0" or "A1" when used for insertion.





XL_CHARTSHEET()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 handle = XL_CHARTSHEET(type [, title [, xname [, yname [, stylenum]]]])
 Add a new chartsheet to the XLSX document. A chartsheet is a full chart that
 occupies its own sheet and cannot contain any cells.

 Parameters -
  type     : Type of chart to create. Must be one of the following values.
       "area"
       "area_stacked"
       "area_stacked_percent"
       "bar"
       "bar_stacked"
       "bar_stacked_percent"
       "column"
       "column_stacked"
       "column_stacked_percent"
       "doughnut"
       "line"
       "line_stacked"
       "line_stacked_percent"
       "pie"
       "scatter"
       "scatter_straight"
       "scatter_stright_markers"
       "scatter_smooth"
       "scatter_smooth_markers"
       "radar"
       "radar_with_markers"
       "radar_filled"
  title    : The title for this chart.
  xname    : The title for the x-axis.
  yname    : The title for the y-axis.
  stylenum : Number of the built in Excel style to use. Must be between
             "1" and "48". The default style is 2. The value is one of
             the 48 built-in styles available on the "Design" tab in
             Excel 2007.

 Returns a handle to a new chartsheet object on successs and "-1" on
 error. XL_ERROR() can be called to return the last error.



XL_SERIES()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_SERIES(chartnum, sheet, namerow, namecol, cfirstrow, cfirstcol, clastrow,
              clastcol, vfirstrow, vfirstcol, vlastrow, vlastcol)
 Add a series to a chart or chartsheet.

 Parameters -
  chartnum  : Handle to a chart or chartsheet to add series.
  sheet     : Handle to sheet to get values from. Use blank, "0", or "-1"
              to use the default sheet.
  namerow   : Series name row (0 indexed).
  namecol   : Series name column (0 indexed).
  cfirstrow : Categories first row (0 indexed).
  cfirstcol : Categories first column (0 indexed).
  clastrow  : Categories last row (0 indexed).
  clastcol  : Categories last column (0 indexed).
  vfirstrow : Values first row (0 indexed).
  vfirstcol : Values first column (0 indexed).
  vlastrow  : Values last row (0 indexed).
  vlastcol  : Values last column (0 indexed).

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.



XL_SERIES2()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_SERIES2(chartnum, sheet, namecell, cfirst, clast, vfirst, vlast)
 Add a series to a chart or chartsheet.

 Parameters -
  chartnum : Handle to a chart or chartsheet to add series.
  sheet    : Handle to sheet to get values from. Use blank, "0", or "-1"
             to use the default sheet.
  namecell : Series name Excel style cell. e.g. "A1" "D6" "F6".
  cfirst   : Categories first Excel style cell. e.g. "A1" "D6" "F6".
  clast    : Categories last Excel style cell. e.g. "A1" "D6" "F6".
  vfirst   : Values first Excel style cell. e.g. "A1" "D6" "F6".
  vlast    : Values last Excel style cell. e.g. "A1" "D6" "F6".

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.



XL_PROTECTSHEET()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_PROTECTSHEET(sheet, password)
 Add a password to restrict editing of a sheet.

 Parameters -
  sheet    : Handle to sheet to protect. Use blank, "0", or "-1" to use
             the default sheet.
  password : Password to use to protect this sheet.

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.



XL_PROTECTCHARTSHEET()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_PROTECTCHARTSHEET(cs, password)
 Add a password to restrict editing of a chartsheet.

 Parameters -
  cs       : Handle to chartsheet to protect.
  password : Password to use to protect this sheet.

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.



XL_ERROR()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_ERROR()
 Return the last error generated by the XLSX set of functions.

 Returns the last error string generated by the XLSX engine.



XL_SETPOS()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_SETPOS(row [, col [, sheet]])
 Set the auto counter position for a sheet.

 Parameters -
  row   : Row to move auto counter to (0 indexed).
  col   : Column to move auto counter to (0 indexed).
  sheet : Handle of sheet to set. Use blank, "0", or "-1" to use the
          default sheet.

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.



XL_SETPOS2()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_SETPOS2(cell [, sheet])
 Set the auto counter position for a sheet.

 Parameters -
  cell  : Excel style cell to set the auto counter to. e.g. "A1" "D6".
  sheet : Handle of sheet to set. Use blank, "0", or "-1" to use the
          default sheet.

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.



XL_NEXTROW()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_NEXTROW([sheet])
 Move the auto counter down a row for a sheet.

 Parameters -
  sheet : Handle of sheet to set. Use blank, "0", or "-1" to use the
          default sheet.

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.



XL_NEXTCOL()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_NEXTCOL([sheet])
 Move the auto counter one column to the right for a sheet.

 Parameters -
  sheet : Handle of sheet to set. Use blank, "0", or "-1" to use the
          default sheet.

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.



XL_STYLE()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 handle = XL_STYLE([font [, fill [, fmt [, btop [, bbot [, bleft 
                  [, bright]]]]]]])
 Add a new style to the XLSX document.

 Parameters -
  font   : Handle to font object to use.
  fill   : Handle to fill object to use.
  fmt    : Handle to format object to use.
  btop   : Handle to border object to use for top border.
  bbot   : Handle to border object to use for bottom border.
  bleft  : Handle to border object to use for left border.
  bright : Handle to border object to use for right border.

 Returns a handle to a new style object on successs and "-1" on error.
 XL_ERROR() can be called to return the last error.



XL_IMAGE()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_IMAGE(img [, row [, col [, sheet [, xoff [, yoff [, scalex [, scaley 
             [, flag]]]]]]]])
 Add a new image to the XLSX document.

 Parameters -
  img    : Path to image file to use.
  row    : Row to insert the image on (0 indexed).
  col    : Column to insert the image on (0 indexed).
  sheet  : Handle of sheet to insert image. Use blank, "0", or "-1" to use
           the default sheet.
  xoff   : X-axis offset for the image, in pixels.
  yoff   : Y-axis offset for the image, in pixels.
  scalex : Scale the image along the x-axis. e.g. "1", "0.5" "2". Value
           cannot be negative.
  scaley : Scale the image along the y-axis. e.g. "1", "0.5" "2". Value
           cannot be negative.
  flag   : Option of how to position image.
     "0" - Default positioning.
     "1" - Move and size image with the cells.
     "2" - Move but don't size image with the cells.
     "3" - Don't move or size the image with the cells.
     "4" - Same as "1" but wait to apply hidden cells.

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 Note: The image functions only support PNG, JPEG, and BMP files.



XL_IMAGE2()
 
Version Ref: 6.1 (USP 6.0.02)
 
Syntax:
 

 e = XL_IMAGE2(img [, cell [, sheet [, xoff [, yoff [, scalex [, scaley 
              [, flag]]]]]]]);
 Add a new image to the XLSX document.

 Parameters -
  img    : Path to image file to use.
  cell   : Excel style cell to insert the image. e.g. "A1" "D6" "F6".
  sheet  : Handle of sheet to insert image. Use blank, "0", or "-1" to use
           the default sheet.
  xoff   : X-axis offset for the image, in pixels.
  yoff   : Y-axis offset for the image, in pixels.
  scalex : Scale the image along the x-axis. e.g. "1", "0.5" "2". Value
           cannot be negative.
  scaley : Scale the image along the y-axis. e.g. "1", "0.5" "2". Value
           cannot be negative.
  flag   : Option of how to position image.
     "0" - Default positioning.
     "1" - Move and size image with the cells.
     "2" - Move but don't size image with the cells.
     "3" - Don't move or size the image with the cells.
     "4" - Same as "1" but wait to apply hidden cells.

 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 Note: The image functions only support PNG, JPEG, and BMP files.
 
 



XL_LASTCMD()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_LASTCMD()
 Get debug information about the last XLSX call.
 
 Returns the last evaluated command parse string.
 
 



XL_MARGINS()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_MARGINS([left, [right, [top, [bottom, [sheet]]]]])
 Set the worksheet print margins.

 Parameters -
  left   : Left margin in inches, e.g. "0.5", "1", "0.75". A blank or 
           negative value will use the default of "0.7".
  right  : Right margin in inches, e.g. "0.5", "1", "0.75". A blank or 
           negative value will use the default of "0.7".
  top    : Top margin in inches, e.g. "0.5", "1", "0.75". A blank or 
           negative value will use the default of "0.75".
  bottom : Bottom margin in inches, e.g. "0.5", "1", "0.75". A blank or 
           negative value will use the default of "0.75".
  sheet  : Handle of sheet to set the margins. Use blank, "0", or "-1" to 
     use the default sheet.
    
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 



XL_LANDSCAPE()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_LANDSCAPE([sheet])
 Set the worksheet to print in landscape mode.

 Parameters -
  sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
          the default sheet.
    
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 



XL_PORTRAIT()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_PORTRAIT([sheet])
 Set the worksheet to print in portrait mode.

 Parameters -
  sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
          the default sheet.
    
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 



XL_GRIDLINES()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_GRIDLINES(option [, sheet])
 Set if the worksheet should display gridlines when printed.

 Parameters -
  option : Which Gridlines to print. Cannot be blank. Must be one of the
     following values.
     "hide_all"
     "show_all"
     "show_screen"
     "show_print"
  sheet  : Handle of sheet to change mode. Use blank, "0", or "-1" to use
           the default sheet.
    
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 



XL_FITPAGES()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_FITPAGES([height, [width, [sheet]]])
 Fit the printed area to a specific number of pages both vertically and 
 horizontally.

 Parameters -
  height : Number of pages vertically. A value of "0" or blank will set 
           the height as necessary.
  width  : Number of pages horizontally. A value of "0" or blank will set 
           the height as necessary.
  sheet  : Handle of sheet to change mode. Use blank, "0", or "-1" to use
           the default sheet.
    
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 



XL_FREEZEPANE()
 
Version Ref: Version 6.2 (USP 6.1.02)
 
Syntax:
 

 e = XL_FREEZEPANE([row [, col [, sheet]]])
 Freeze part of an XLSX sheet.

 Parameters -
  row:   Row to split the cell (0 indexed)
  col:   Column to split the cell (0 indexed)
  sheet: Handle to sheet to freeze the cell on. Leave blank, "0", or "-1" to
         use the default sheet.
 
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 The split is specified at the top or left of a cell and uses zero based
 indexing. Therefore to freeze the first row of a worksheet it is necessary
 to specify the split at row 2.
 
 You can set one of the row and col parameters as zero if you do not want
 either a vertical or horizontal split.
 
 



XL_FREEZEPANE2()
 
Version Ref: Version 6.2 (USP 6.1.02)
 
Syntax:
 

 e = XL_FREEZEPANE2([cell [, sheet]])
 Freeze part of an XLSX sheet.

 Parameters -
  cell:  The Excel style cell to freeze the cell. e.g. "A1" "D6" "F6".
  sheet: Handle to sheet to freeze the cell on. Leave blank, "0", or "-1" to
         use the default sheet.
 
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 The split is specified at the top or left of a cell and uses zero based
 indexing. Therefore to freeze the first row of a worksheet it is necessary
 to specify the split at row 2.
 
 You can set one of the row and col parameters as zero if you do not want
 either a vertical or horizontal split.
 
 



XL_PAPERTYPE()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_PAPERTYPE(type [, sheet])
 Set the paper format for the printed output of a worksheet.

 Parameters -
  type  : The paper format to use with a printed worksheet. Must be one of
    the following values.
    "default"
    "letter"
    "tabloid"
    "ledger"
    "legal"
    "statement"
    "executive"
    "a3"
    "a4"
    "a5"
    "b4"
    "b5"
    "folio"
    "quarto"
    "10x14"
    "11x17"
    "note"
    "envelope"
    "envelope_9"
    "envelope_10"
    "envelope_11"
    "envelope_12"
    "envelope_14"
    "c"
    "d"
    "e"
    "envelope_dl"
    "envelope_c3"
    "envelope_c4"
    "envelope_c5"
    "envelope_c6"
    "envelope_c65"
    "envelope_b4"
    "envelope_b5"
    "envelope_b6"
    "monarch"
    "fanfold"
    "german_std_fanfold"
    "german_legal_fanfold"
  sheet : Handle of sheet to change type. Use blank, "0", or "-1" to use
          the default sheet.
    
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.



 
 



XL_CENTERH()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_CENTERH([sheet])
 Center the worksheet data horizontally between the margins on the printed
 page.

 Parameters -
  sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
          the default sheet.
    
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 



XL_CENTERV()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_CENTERV([sheet])
 Center the worksheet data vertically between the margins on the printed 
 page.

 Parameters -
  sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
          the default sheet.
    
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 



XL_PRINTACROSS()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_PRINTACROSS([sheet])
 Change the default print direction to across then down.

 Parameters -
  sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
          the default sheet.
    
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 



XL_SETHEADER()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_SETHEADER(string [, margin, [limage, [cimage, [rimage, [sheet]]]]])
 Set the printed page header.

 Parameters -
  string : The header/footer definition string. See below for format 
           options. Cannot be blank.
  margin : The margin in inches to use for the header/footer. A blank,
     "0", or negative value will use the default margin of "0.3".
  limage : Full path to an image to use in place of the left image 
           placeholder.
  cimage : Full path to an image to use in place of the center image 
           placeholder.
  rimage : Full path to an image to use in place of the right image 
           placeholder.
  sheet  : Handle of sheet to set header/footer. Use blank, "0", or "-1"
     to use the default sheet.
    
 Format Options -

Control Category Description
&L Justification Left
&C Center
&R Right
&P Information Page number
&N Total number of pages
&D Date
&T Time
&F File Name
&A Worksheet name
&Z Workbook path
&fontsize Font Font size
&"font,style" Font name and style
&U Single underline
&E Double underline
&S Strikethrough
&X Superscript
&Y Subscript
&[Picture] Image placeholder
&G Same as &[Picture]
&& Literal ampersand &

 Text in headers and footers can be justified to the left, center and right 
 by prefixing the text with the control characters &L, &C and &R.
 For example, "&LHello, World!", "&CHello, World!", "&RHello, World!"
 
 For simple text, if the justification is not specified the text will be 
 center aligned. However, you must prefix the text with &C if you use any
 other formatting.
 
 You are limited to 3 images in a header/footer.
 
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 Note: The image types supported are PNG, JPEG, and BMP files. There is a
 hard limit of 255 characters in a header/footer string, including control
 characters. Strings longer than this will not be written to the document.



 



XL_SETFOOTER()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_SETFOOTER(string [, margin, [limage, [cimage, [rimage, [sheet]]]]])
 Set the printed page footer.

 Parameters -
  string : The header/footer definition string. See below for format 
           options. Cannot be blank.
  margin : The margin in inches to use for the header/footer. A blank,
     "0", or negative value will use the default margin of "0.3".
  limage : Full path to an image to use in place of the left image 
           placeholder.
  cimage : Full path to an image to use in place of the center image 
           placeholder.
  rimage : Full path to an image to use in place of the right image 
           placeholder.
  sheet  : Handle of sheet to set header/footer. Use blank, "0", or "-1"
     to use the default sheet.
    
 Format Options -

Control Category Description
&L Justification Left
&C Center
&R Right
&P Information Page number
&N Total number of pages
&D Date
&T Time
&F File Name
&A Worksheet name
&Z Workbook path
&fontsize Font Font size
&"font,style" Font name and style
&U Single underline
&E Double underline
&S Strikethrough
&X Superscript
&Y Subscript
&[Picture] Image placeholder
&G Same as &[Picture]
&& Literal ampersand &

 Text in headers and footers can be justified to the left, center and right 
 by prefixing the text with the control characters &L, &C and &R.
 For example, "&LHello, World!", "&CHello, World!", "&RHello, World!"
 
 For simple text, if the justification is not specified the text will be 
 center aligned. However, you must prefix the text with &C if you use any
 other formatting.
 
 You are limited to 3 images in a header/footer.
 
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 Note: The image types supported are PNG, JPEG, and BMP files. There is a
 hard limit of 255 characters in a header/footer string, including control
 characters. Strings longer than this will not be written to the document.



 



XL_SETBACKGROUND()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_SETBACKGROUND(image [, sheet])
 Set the background image for a worksheet.

 Parameters -
  image : Full path to an image to use as the sheet background.
  sheet : Handle of sheet to set background image. Use blank, "0", or "-1"
    to use the default sheet.
    
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 Note: The image types supported are PNG, JPEG, and BMP files.
 
 



XL_SPLITPANE()
 
Version Ref: Version 6.2 (USP 6.1.02)
 
Syntax:

e = XL_SPLITPANE([vertical [, horizontal [, sheet]]])
  Divide a worksheet into horizontal or vertical regions.

  Parameters -
    vertical:   The position for the vertical split. e.g. "1", "12.5", "15"
    horizontal: The position for the horizontal split. e.g. "1", "12.5", "15"
    sheet:      Handle to sheet to freeze the cell on. Leave blank, "0", or "-1"
                to use the default sheet.
 
 
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
 
    This function divides a worksheet into horizontal or vertical regions known
    as panes. This function is different from the XL_FREEZEPANE function in that
    the splits between the panes will be visible to the user and each pane will
    have its own scroll bars.
 
    The parameters vertical and horizontal are used to specify the vertical and
    horizontal position of the split. The units for vertical and horizontal are
    the same as those used by Excel to specify row height and column width.
    However, the vertical and horizontal units are different from each other.
    Therefore you must specify the vertical and horizontal parameters in terms
    of the row heights and column widths that you have set or the default values
    which are 15 for a row and 8.43 for a column.
 
 



XL_HIDEZEROS()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_HIDEZEROS([sheet])
 Hide zero values in worksheet cells.

 Parameters -
  sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
          the default sheet.
    
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 
 



XL_SHOWROWCOL()
 
Version Ref: Version 6.1.00 (USP 6.0.03)
 
Syntax:
 

 e = XL_SHOWROWCOL([sheet])
 Show row and column headers on the printed page.

 Parameters -
  sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
          the default sheet.
    
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
 the last error.
 



Standard Computer Terms
Application - A solution you create with filePro to solve a business problem. Examples of applications are: accounting, payroll, inventory control, medical office system etc. Applications usually
consist of more than one filePro file joined by lookups and other functions to make the files more useful.
ASCII - American Society for Computer Information Interchange.
ASCII character set - A set of characters, 1 character per unique byte, i.e., 256 characters can be represented by one byte (8 bits in all the various combinations of 1's and 0's.).
Backup - Safety copy of data and/or programs.
Batch File - A file (DOS) whose text can be read by DOS as instructions and then executed. Batch files can be called from filePro menu options or run from the command line.
Batch Processing - Processing groups of selected records such as: posting data from invoice file to a summary file, archiving and purging inactive accounts, performing mass recalculations.
Binary - two states, off and on, 1 and 0.
bit - 1 Binary digit, a bit can either be on or off, either a 1 or a 0.
byte - 8 bits in a group. There are 256 combinations of 1's and 0's in a byte.
character - 1 byte. 256 characters can be defined with 1 byte.
Database - A collection of related information organized in files, records and fields. Separate files may share common information for the purpose of connecting records between files (see filePro
term "lookup").
Disk - Long term storage system for programs and data include hard disks (magnetic), optical disks (laser). The capacity in characters of these devices is expressed in gigabytes (or megabytes
[older drives]). Disks are also called drives (hard drive, compact disk drive). Nobody seems to know why.
Flat ASCII files are (by convention) comprised of only the first 128 characters that one byte can provide, i.e., the combinations of 1's and 0's that the first 7 bits can make up. Of these, only the
printable or human readable characters are normally found in a flat ASCII file (combinations 32 to 128). However, some of the lower combinations, such as carriage returns and line-feeds are also
present.
Adding the 8th bit produces characters 129 through 255. These are sometimes called the high ASCII set (above 128). They are "off the keyboard," meaning you can not generate them from the
keyboard. FilePro is capable of storing these high characters, but there is almost no reason to ever do so in a text database. The upper ASCII characters are displayed as symbols, pictures, etc. In
fact, different "symbol sets" can be overlaid on the higher ASCII set to produce different language characters, and special characters. If you see one of these funny characters in your data... there is
most likely a problem and your data has been corrupted somehow. Occasionally though, you will see some graphic character(s) representing carriage returns, line-feeds and combinations (new
lines) when you pull a structured file into a "non-filePro" file format. This is normal, and these characters do not mean the data is corrupted.
gigabyte - 1024 megabytes.
GUI - The abbreviation for Graphical User Interface. The term came into existence because the first interactive user interfaces to computers were not graphical; they were text-and-keyboard oriented
and usually consisted of commands you had to remember and computer responses that were brief.
kilobyte - 1024 bytes
megabyte - 1024 kilobytes
ODBC - Abbreviation for Open Database Connectivity. ODBC is Microsoft's strategic interface for accessing data in a heterogeneous environment of relational and non-relational database
management systems.
RAM - Random Access Memory. This is the memory in which the computer stores programs and data temporarily while you use them. It retrieves these programs and data from your disk storage.



filePro Terms
Action - On processing tables, operations such as lookups, string manipulation, restarts, requests for input from the user, messages, screen switching and math formulas.
Action line - The " Then: " line on a processing table or a line on a filePro menu to direct filePro what action to take.
Alien File - A non-filePro file from which data can be read or updated.
Alias - A name assigned to a field or lookup on a processing table so that the field or lookup can be referred to by another name. This is useful for lookups for shortening the lookup name e.g. lookup
tmp = temporary_file where tmp is the alias.
Associated Fields - A "Real Field" that has a group identifier e.g. "A)", "A1)", etc. to provide a means of associating related data.
Box Functions - Simple operations for defining outlined boxes on a screen or report format.
Browse - Allows filePro to display as many as 18 records on the screen at one time. The user can then select a record to work on.
Browse Lookup - Allows the user to specify a browse to be performed on a lookup file or other files. Fields from the records selected are presented in a window on the current data entry screen.
Choice - A menu option.
Codes - Abbreviations used to stand for certain processes. See Print codes
Condition - The "If: " line in a processing table that allows you to test for values. If the condition listed ("If") line is "TRUE", then the action described on Action ("Then:") line is performed. If the
condition is not met e.g. is "FALSE", the action is not performed. If the "If:" line is left blank, the condition is "TRUE" by default.
Cross Reference - A report that lists all lookup statements, fields and line information for a processing table. Refer to "Define Processing".
Date Expansion - Typing in a single character "/" in a filePro date field will expand to today's date.
Default - A specific value established by a program or process if the value is left blank or not entered.
Default Report - A report generated by filePro when leaving the "Define File" option of the filePro Main Menu.
Default Responses - A group of responses to prompts in filePro that application uses automatically.
Dummy Fields - In-memory variables that are used for temporarily storing, processing, displaying, and/or printing data. These can be either "SHORT" or "LONG" variable names. "A"-"Z", "AA"-"ZZ"
can be used for "SHORT" variable names. Up to 64 alphanumeric characters can be used "LONG" variable names.
Edits - Specifies the type of data that a field may contain to improve accuracy for data entry or to save time. FilePro includes system edits to ensure proper dates, time, etc. and allows the
programmer to create user edits.
Field - A field is a set of related characters: a category or type of information. Fields are the blanks you fill in when entering data. Examples of fields are: customer number, last name, first name,
address, city, state, ZIP.
File - A set of related records. Examples of files are: customer information, products and invoices.
fPclient - The client side of the filePro Server/Client software that allows you to implement a GUI version of filePro e.g. fileProGI.
fPServer - The server side of the filePro Server/Client software that provides for a GUI version of filePro.
Fuzzy Search - Enables you to search for a record in filePro and retrieve "inexact" matches to your search value.
Index - A table used for rapid access to records within a file. Indexes are also used to merge file information using lookups.
Lookup - A filePro function that provides for merging file data.
Menu - A list of options you can use. Menus for complex applications may have sub-menus to organize the application. Examples of menus include Accounting Options, Payroll options, Inventory
Control options and other options to allow quick access and control parameters required to properly execute your programs.
Pop-up Screen - A screen from another file that is displayed as a window in the current file. Pop-up Screens allow maintenance to other files without exiting a current screen.
Processing - A set of filePro instructions to tell filePro how to handle data entry, data manipulation and data output. A sequence of these instructions is called a processing table.
Real Fields - Fields where the values are permanently stored to disk. These fields are established with the "Define Files" option of the filePro Plus main menu, and are retrieved using a field number
which is assigned when defining the file.
Record - A set of related fields. Examples of records are: information about a single customer, information about a single item, etc. Records are grouped into a file in filePro so that information is
stored for more than one customer and more than one item.



A_AVG()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

value = A_AVG(array [, array2 [, array3 [, ... [, arrayN]]]]) 
 Find the avereage of all of the values in the passed in arrays.

Example:
array1["1"]="5"
array1["2"]="7"
array2["1"]="30"

value = A_AVG(array1, array2) ' value will contain "14"

Note: This method supports multi-dimensional arrays.



A_MAX()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

value = A_MAX(array [, array2 [, array3 [, ... [, arrayN]]]]) 
 Find the maximum value between the passed in arrays.

Example:
array1["1"]="5"
array1["2"]="7"
array2["1"]="30"

value = A_MAX(array1, array2) ' value will contain "30"

Note: This method supports multi-dimensional arrays.



A_MIN()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

value = A_MIN(array [, array2 [, array3 [, ... [, arrayN]]]]) 
 Find the minimum value between the passed in arrays.

Example:
array1["1"]="5"
array1["2"]="7"
array2["1"]="30"

value = A_MIN(array1, array2) ' value will contain "5"

Note: This method supports multi-dimensional arrays.



A_TOT()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

value = A_TOT(array [, array2 [, array3 [, ... [, arrayN]]]]) 
 Total all of the values in the passed in arrays.

Example:
array1["1"]="5"
array1["2"]="7"
array2["1"]="30"

value = A_TOT(array1, array2) ' value will contain "42"

Note: This method supports multi-dimensional arrays.



ABS()
 
Syntax:

Then: a = ABS(n)
 
Version Ref:   1.1
Description:
Returns the absolute value of a number.
Examples:

Then: aa="-6"
        Then: ab = abs(aa)
 
The contents of variable "ab" is "6".



ACCESS()
 
Syntax:

Then: N=ACCESS(filename,type)
 
Version Ref:  4.8
Description:
ACCESS allows you to check whether a file has a particular type of access privilege.
Type is any combination of R=Read, W=Write, and X=Execute permissions.
 
Return Value 
0 if you have all the specified access permissions to the file.
Otherwise, a negative value is returned. This value is the negative of the system error number.
 
Examples:

Then: pw = access(/etc/passwd,rw)
 
Note: When running in a setuid environment (as with filePro), ACCESS uses the real user id to determine access permission and not the effective user id. SCO UNIX includes the effective user id, but this
function is not available for all *NIX systems. Refer to your *NIX documentation for details.



ACOS()
 
Syntax:
 xx = ACOS(n)

 
Version Ref:  4.8
Description:
Trig Function to provide angle given in radians.
 
Examples:
 

Then: radian_value = ACOS(90)



ACOSH
 
Syntax:
 xx = ACOSH(n)

 
Version Ref:  5.0
Description:
Hyperbolic Trig Function to provide angle given in radians.
 
Examples:
 

Then: radian_value_hyperbolic = ACOSH(90)



ADDMONTH()
 
Syntax:

Then: xx = ADDMONTH(date,months)
       Then: xx = ADDMONTH(date)

 
If "months" is not specified, one month is added.
Return value is a date field, the same edit type and length as date.

NOTE: If the resulting date would be past the end of the month, the last day of the month is returned.
The number of months to add can be negative to go backwards.

 
Version Ref:  4.8
Description:
Adds a specified number of months to a date.
 
Examples:
Show the date two months from now.
 
      Then: msgbox "Two months from today is " & addmonth(@td,"2")
 
Warn two months before the due date. Assuming "startdate" is the starting date, and "duration" is the number of days.
 
        If: @td gt addmonth(startdate + duration,"-2")
      Then: msgbox "Less than two months before due date."



ARCHIVE (ver 6.0.00)
Lookup command to create 'archive' instead of 'copy' to archive (copy) records and maintain all system variables. @CD, @CB, etc.



ASC()
 
Syntax:

Then: a = ASC(n)
Then: a = ASC(exp)

 
To return any character other than the first, use MID with ASC:
 
       Then: asc(mid(f, "s", "1" ))
 
"mid" is the MID command
"f" is the field number or letter(s)
"s" is the character to convert (the starting position)
"1" is the number of characters to convert (only one is allowed)
ASC can be used on all processing tables.
 
Version Ref:  3.x
Description:
Converts character to ASCII code.
 
Examples:
In a non-filePro Plus file, you wanted to perform one operation if the first character of the non-filePro Plus field 7 is a NULL (ASCII 0), and something else if it is CTRL A (ASCII 1). Write the tests as
follows:
         If: asc(7) eq "0"
       Then: [do one thing]
         If: asc(7) eq "1"
       Then: [do something else]



ASIN()
 
Syntax:
       Then: xx = ASIN(n)

 
Version Ref:  4.8
Description:
Trig Function to provide angle given in radians.
 
Examples:
 

Then: radian_value = ASIN(90)



ASINH()
 
Syntax:
       Then: xx = ASINH(n)

 
Version Ref:  5.0
Description:
Hyperbolic Trig Function to provide angle given in radians.
 
Examples:
 

Then: radian_value_hyperbolic = ASINH(90)



ATAN()
 
Syntax:

Then: angle=ATAN(n)
 
Version Ref:  4.8
Description:
Trig Function to provide angle given in radians.
 
       Then: result=ATAN(y,x)
 
Returns the arctangent of slope (y/x) in radians.



ATANH()
 
Syntax:

Then: angle=ATANH(n)
 
Version Ref:  5.0
Description:
Hyperbolic Trig Function to provide angle given in radians.
 
       Then: result=ATANH(y,x)
 
Returns the hyperbolic arctangent of slope (y/x) in radians.



AVG()
 
Syntax:
       Then: a=AVG(n)
       Then: a=AVG(exp)
 

Finds average at subtotal and grand total levels.
 
Version Ref:  3.x
Description:
A system function used in output processing to find averages.
 
Examples:
To obtain average sales per sales representative if "Total Sales" is field 22, use the following syntax:
 
       Then: A=AVG(22)
 
To see the average, put field A on a subtotal and or total line on the report format.
 
Restrictions:
May not be used on INPUT processing. AVG must always be to the right of the equal sign. Averages are calculated at the subtotal and total breaks. The averaging operation is done only if the processing
element containing the AVG function is encountered.



BACKGROUND
 
Syntax:
       Then: BACKGROUND ON
       Then: BACKGROUND OFF
 
Description:
Turn on/off ability to enter background via "!G".
 
Note: You cannot turn on if PFBACKGROUND if PFBACKGROUND=OFF. (BACKGROUND ON will be ignored.)



BASE()
 
Syntax:
       Then: xx=BASE(expr,inbase,outbase)
       Then: xx=BASE(expr,inbase)
 

where "expr" is the number specified in "inbase"
"outbase" is the output base.
If outbase is not specified, 10 is used.

 
Return value is the result of converting expr from inbase to outbase.
 
NOTES : Inbase and outbase must be between 2 and 36, inclusive. Only the integer portion of all numbers is used.
 
Version Ref:  4.5
Description:
Converts between different bases.
 
Examples:
A simple decimal-to-hexadecimal converter.
 

Then: input popup no(8,.0) " Enter a number: "
   If: no ne ""

Then: msgbox no < " decimal is " < base(no, " 10 " , " 16 " ) < " hexadecimal. "



BEEP
 
Syntax:
      Then: beep
 
Version Ref:  3.x
Description:
Beep makes a PC or terminal speaker beep once.
 
Examples:
 
Make a sound alerting the user to some condition, i.e., overshooting a credit limit.
 
        If: 3 gt cl
      Then: beep;show "Customer is over credit limit."
 
Make the beeper to go off at the grand-total point of a report and warn the operator that the report was almost finished.
@wgt    If:
      Then: beep



BLOB
 
Syntax:

Then: BLOB xx delete
Then: BLOB xx export
Then: BLOB xx import
if: BLOB
if: NOT BLOB

 
Version Ref:  5.0
Description:
Used to manage Binary Large Objects (BLOBS), which include such items as sound clips, pictures or word processor documents. The items are stored within a filePro record as a variable length field based on
the size of the object. The objects are retrieved using external programs to display, edit, print, or to otherwise manipulate them.
 
Note:
Length and type must be defined as (16,BLOB).
 
Examples:
 
BLOB commands:
 
  BLOB field IMPORT filename
 
  Imports contents of "filename" into the specified BLOB field.
 
  BLOB field EXPORT filename
 
  Exports the specified BLOB field into "filename".
 
  BLOB field DELETE
 
  Deletes the specified BLOB field.
 
BLOB Conditions:
 

If: BLOB
 
If: NOT BLOB

 
Allows you to determine whether the most recent BLOB command succeeded or not.



BOM()
 
Syntax:
       Then: xx=BOM(date_expr)
 
Version Ref:  4.5
Description:
Returns the beginning of a month for any date expression. If the date expression is left blank, returns the beginning of the current month.
date_expr means that the field has to be of a "date" edit type.  It cannot be uncast.
 
Examples:

Then: payroll_month_began = BOM(payroll_date)
 

Returns the 1st day of the month for the payroll_date variable.
 
Then: current_payroll_began = BOM()

 
 Returns the 1st day of the current month. 



BOQ()
 
Syntax:
       Then: xx=BOQ(date_expr)
Version Ref:  4.5
Description:
Returns the beginning of a quarter for any date expression. If the date expression is left blank, returns the beginning of the current quarter.

 
Examples:

Then: payroll_Qtr_began = BOQ(payroll_date)
 

Returns the 1st day of the quarter for the payroll_date variable.
 
Then: current_payroll_qtr = BOQ()

 
Returns the 1st day of the current quarter. 



BOY()
 
Syntax:
       Then: xx=BOY(date_expr)

 
Version Ref:  4.5
Description:
Returns the beginning of a year for any date expression. If the date expression is left blank, returns the beginning of the current year.

 
Examples:

Then: payroll_year_began = BOY(payroll_date)
 

Returns the 1st day of the year for the payroll_date variable.
 
Then: current_year_began = BOY()

 
Returns the 1st day of the current year. 



BREAK
 
Syntax:
       Then: BREAK ON
       Then: BREAK OFF
 
Version Ref:  3.x
Description:
BREAK turns the <BREAK> key OFF and ON during processing. Use BREAK OFF when you don't want the user to break out of the current operation.
IMPORTANT: Don't add the BREAK statements to your tables until the tables have been debugged. Otherwise, on DOS systems, you'll have to reboot your computer to stop your processing. On UNIX/
XENIX systems, you'll have to use the emergency BREAK key, either <CTRL> <\> or <CTRL> <7>,to get out of the operation. Exiting this way may turn off the ECHO function, the cursor, <CTRL> <D>
and <BACKSPACE>.
 
Examples:
If your program posts financial data from a sales file to a client file, you don't want the user to be able to cancel the operation before all the data from a particular record is correctly posted:
 
       Then: lookup client k=1 i=a -nx
         If: not client
       Then: goto subr
       Then: break off; sales (l0)=2; sales (11)=3
       Then: write; break on
 
Note: BREAK cannot be used on automatic processing tables.
 
Release 5.0.14: If BREAK OFF is executed in a CALL/CHAIN process, it did not remain off upon returning prior to release 5.0.14. It now remains off upon returning. Also, it is restored to ON if you go to a
new record.



BUSYBOX
       BUSYBOX
       BUSYBOX "my message"
       BUSYBOX("10","10" )
       BUSYBOX("10","10") "my message"
Example:   BUSYBOX("10","10") "Calling your mother."

This is for times when filePro is processing under the hood and is a way to let the user know filePro is doing something and not ready for use. Think of it when
scanning millions of records with a browse lookup with drop processing. A user might think the process is frozen or crashed if nothing is on the screen showing that it
is working. The important thing about this new command would be that the instant filepro is waiting again for any keystroke, the show working display must come
down automatically as there is no way for the programmer to know when to take it down in a browse lookup situation.
DO NOT use this command within any loop as it will execute over and over.  Put it in your code once prior to when your process is about to busy for an extended function.
 



CALL
 
Syntax:

Then: CALL "name"
Then: CALL "path-to-prc-table"
Then: CALL NOAUTO
 
Name = processing table in the current filePro file
path = full path to processing table in any filePro file

 
Version Ref:  4.0  (not included in filePro Lite)

4.8 Enhancement - Added CALL path
5.0 Enhancement - Added CALL NOAUTO
 

Version Ref: 6.0.02  (not included in filePro Lite)
Will now accept flags -RW, etc. same as CLERK to pass data/parameters to the CALLed table.

 
Description:
CALL calls another processing table as a subroutine. When the called processing is done, control returns to the original processing table to the next statement after the CALL
statement.
CALL "path" allows you to call a processing table in another filePro file or even in a library of processing tables by identifying the specific path e.g. "c:\filepro\fpcust\test.prc".
CALL NOAUTO ignores the dummy fields defined in automatic processing. This allows you to re-use field labels as defined in the CALLed processing table.
CALL is only one level deep; you cannot call another processing table from a called table (or CHAIN from a called table). The called processing table uses the token area reserved
for printing a form from Inquire, Update, Add.
Dummy fields
Called processing tables have their own set of dummy fields. It cannot use dummy fields defined in the original (calling) processing unless the calling processing is automatic
processing. (Dummy fields defined in automatic processing are available to all other types of processing.) When control returns to the calling processing, the original dummy fields
and values are restored.
This function can be useful in modularizing code. Single tables can be "called" into multiple applications. In other words, it is easier to develop a "library" of tables that perform
various functions, and CALL these functions, as needed, from into your other applications.
 
Note: The CHAIN command cannot be used in called processing tables.
 
Examples:
The key to using CALL effectively, is understanding how CALL tables work with dummy variables. The easiest way to learn this functionality is by setting some variables and
tracking their values from the INPUT table to the CALL table and back again.
The only rule of thumb is this: All variables are cleared upon entry to a CALL table EXCEPT global variables, which have been defined, on the current AUTOMATIC table. Variables
defined in this manner will pass their values between the CALL and INPUT table, all others will only keep their values in normal filePro fashion.
The following code will demonstrate this clearly.
The AUTOMATIC table can be critical to running sophisticated CALL tables.
       Then: cc(3,,g)
The global variables defined on the AUTOMATIC table will have their values passed to any CALLED table. If these variables are assigned values on a CALL table, the values will
be available to the INPUT table. No other variables, (even global variables defined on the INPUT table) will have their values passed between INPUT and CALL tables.
The FIRST time this code is run by pressing the T key, the variables aa, bb and cc will all be empty. After that, successive presses of the T key will show that the CALL table has
passed a new value back to the INPUT table. These values can be tested in various ways, one place for this test might be @entsel as shown in the code on lines 7 to 10.
 

Then: end
@keyT    If:

Then: show "@aa=" { aa { ", bb=" { bb { ", cc=" { cc
Then: aa(3)="111" ; bb(3,,g)="222" ; cc="333"
Then: show "@On the input table aa=" { aa { ", bb=" { bb { ", cc=" { cc
Then: call "fred"
      If: 'this end is superfluous, it will never be executed
Then: end

 
@entsel If: aa eq "123"

Then: show "@The call table will not pass this variable back to INPUT."
If: bb eq "123"
Then: show "@The call table will not pass this variable back to INPUT."
If: cc eq "123"
Then: show "@GLOBAL variables defined on the AUTO table will be passed!"
Then: end

 
The CALL table itself in this example does nothing but assign values to three different variables, a regular variable, a global variable, and a global variable defined on the
AUTOMATIC table.
 

Then: show "@Begin call table, aa=" { aa { ", bb=" { bb { ", cc=" { cc
Then: show "@ Now set aa, bb and cc equal to 123"



Then: aa="123" ; bb="123" ; cc="123"
Then: end



CEIL()
FLOOR()
INT()
ROUND()  (Added Version 6.0.00)
 
Syntax:
       Then: xx=CEIL(num_expr)
"num_expr" is the given number.
"xx" is the resulting value.
Return value is a field of the same edit type and length as num_expr.
NOTE: If the given number is already an integer, the original number is returned.
 
Version Ref: 4.5
Description:
Performs the ceiling function, which given any number, returns the next greater integer.
 
Examples:
Show the difference between FLOOR(), CEIL(), INT(), and converting to an integer:
Try the example with the numbers: -5.6 -5.5 -5.4 5.4 5.5 5.6 and note the differences among the functions.
 
       Then: input popup xx(10,.5) "Enter a number: "
        If: xx = ""
       Then: end
       Then: yy(10,.0) = xx
       Then: msgbox xx & "\nFLOOR:" < FLOOR(xx) & "\nCEIL:" < CEIL(xx)&       "\nINT:" < INT(xx) & "\nrounding:" < yy
 
ROUND(value [, place])
Valid 'place' values are:  ... -3, -3, -1, 0, 1, 2, 3 ...
examples:

aa=round("123.456")         'aa eq 123
aa=round("123.456","1")   'aa eq 123.5
aa=round("123.456","-1")  'aa eq 120
 



CHAIN
 
Syntax:
       Then: chain "name"
       Then: chain "path-to-prc-table"
name=processing table in the current filePro file
path = full path to processing table in any filePro file
 
Version Ref:  3.x (modified in 4.8 to add CHAIN path )  (not included in filePro Lite)
Description:
CHAIN lets you load a new processing table from within a processing table. CHAIN is designed to let you develop applications for, or transfer applications to, systems with very limited memory. Use CHAIN
only if your processing table is too large to fit into memory all at once. You can list a CHAIN statement on an automatic processing table for conditional access of a particular table. The chosen table will be
executed when you go into update mode. Keep in mind that CHAIN does not return processing to the original table when the new table is finished. If you want to return to the original table, you must CHAIN
back.
CHAIN can be used on input processing tables and on automatic processing tables for Inquire, Update, Add operations only. Loading new processing tables takes time. Avoid chaining whenever possible to keep
from slowing down the user. When chaining to other tables, remember that any files you've been using for lookups remain open, unless you close them with CLOSE.
The CHAIN command cannot be used from a called processing table.



CHDIR
 
Syntax:
       Then: CHDIR directory
 

where "directory" is the name of the directory.
 
Note: Under MS-DOS, specifying a drive will also make that drive current.
Under MS-DOS, you will be left in the specified directory upon exiting filePro. Under Unix systems, you will be left in your original directory upon exit from filePro.

 
Version Ref:  4.5
Description:
Changes the current directory.
 
Examples:
Run a program from a required directory, and then return to the previous directory.
       Then: xx = GETCWD()
       Then: CHDIR "/appl/otherapp" ; system "run-app"
       Then: CHDIR xx
 
Without the CHDIR command, the following processing would work under MS-
 
DOS, but not Unix:
       Then: SYSTEM "cd \ appl\ otherapp" ; system "run-app"
 
And the following would work under Unix, but not MS-DOS:
       Then: SYSTEM "cd /appl/otherapp ; run-app"



CHR()
 
Syntax:
       Then: a=CHR(n)
       Then: a=CHR(exp)
 

where "n" is the decimal ASCII code (a literal) you want converted to its character equivalent, and "exp" is an expression.
 
Version Ref:  3.1
Description:
Converts ASCII code to character.
 
Examples:
To export ASCII code 7, bell, as part of a field:
       Then: aa=chr("7"){5



CLEAR
 
Syntax:
 Then: CLEAR array
 Where "array" is the array name.
 
Version Ref:  4.1
Description:
Sets each element of an array to blank; this includes alias arrays.



CLEARB
 
Syntax:
       Then: CLEARB
 
Version Ref:  4.1
Description:
CLEARB removes a browse lookup window remaining on the screen. Since you can create a browse lookup window that remains on the screen indefinitely, using the "show = keep" or "show = only"
parameters in the browse lookup statement, the CLEARB command gives you a way to remove it.



CLEARP
 
Syntax:
       Then: CLEARP
 
Version Ref:  4.1
Description:
This command removes a popup and cleans up the screen. It is a good idea to always use this command after a popup.
 
Examples:
Then: end
@keyV    If:
       Then: lookup cust = customer k=2 i=a -nx
         If: not cust
       Then: errorbox "Customer Not On File!" ; end
       Then: popup cust,"bal" ; show "@" ; clearp ; end
The above code puts screen "bal" from the "customer" file on the screen and keeps it there until the user presses ENTER (the show "@" does this). Once ENTER is pressed, the CLEARP command clears the
popup from the screen.
 
NOTES: The ERRORBOX in the above code clears itself from the screen when the user presses ENTER. This is the nature of how ERRORBOX works, but not so with POPUP.
The quotes are necessary around the screen name "bal", but there are no quotes needed around the filename (or filename alias) in the POPUP command. If a single character screen name is used, no quotes are
required. You can substitute a screen name that is contained in a variable by enclosing the variable in parentheses.
         If:
       Then: aa="test"
         If:
       Then: popup -,(aa) ; show "@" ; clearp ; end
 
The above code will display screen "test" in the current file.



CLOSE
 
Syntax:
       Then: close
       Then: close filename
Use CLOSE by itself to close all files except the current file.
Use CLOSE filename to close an individual file, where "filename" is a lookup file name, or an export file name. CLOSE can be used on all processing tables.
 
Version Ref:  3.x (not included in filePro Lite)
Description:
Use CLOSE when doing lookups to avoid exceeding your operating system's open-file limitations.
NOTES: Different operating systems have varying abilities with regard to how many files can be opened at one time by one user. If you reach this limit (older XENIX systems, MS-DOS are usually 20 files
open per user, with 3 files being reserved for use by the o/s itself; Unix systems usually are set to 60 to 100+ files open simultaneously by one user), then you may have to CLOSE some files that filePro does
not need at a particular moment to accomplish the task at hand. When done, other files can be closed and previous ones opened again. In general, however, filePro will automatically handle the closing and
opening of files for you.
Every individual file is counted toward the operating system limits. That is, in filePro's case, the "map", the "indexes", the "key" and "data" files (if there is anything in the data file which is usually not used
any more), among others. These can mount up very quickly if you are doing a lot of lookups to files with lots of indexes. Still, the maximum number of open files is a hard limit to reach these days. You will
more than likely not need these CLOSE functions.
 
Version 5.8.03.24 and higher was raised to 512 open files.
Technical Notes:
Open files will include a minimum of three files used by the operating system for screen and keyboard operation.
 
Restrictions:
Remember that you cannot access fields from a file once it's closed.



CLOSE()
 
Syntax:
       Then: aa=CLOSE(handle)
 
"handle" is the file handle returned by OPEN() or CREATE().
Return value - 0 if successful; Negative if failed.
Note: Once a file is closed, it can no longer be accessed through that handle. If you need to access the file again, you must call OPEN() to get a new handle.
 
Version Ref:  3.x (not included in filePro Lite)
Description:
Closes an opened file.



CLOSEDIR()
 
Syntax:

Then: N=CLOSEDIR()
 

Version Ref:  4.8  (not included in filePro Lite)
Description:
Closes the OPENDIR(), NEXTDIR() session.
 



CLS
 
Syntax:

Then: CLS
Then: CLS(s)
Then: CLS(s,n)
CLS               Clear entire screen.
CLS(s)          Clear screen from line "s".
CLS(s,n)       Clear screen from line "s" for "n" lines.

 
Without parameters, the command clears the entire 24-line Inquire, Update, Add screen, and lines 3-24 of the Request Output screen. The syntax is:
      Then: cls
 
To clear from a particular line to the bottom of the screen, use this syntax:
      Then: cls(s)
 
where "s" is an expression that designates the number of the line from which to start clearing. The value "s" is really an expression. In other words, the program can use the value of a literal (a real number
from 1 to 24), a filePro field (real or dummy that contain a number from 1 to 24), or any expression that resolves to a number from 1 to 24 for a starting point. (Use quotation marks for Literals.)
To clear only particular lines, give the starting line and the number of lines to clear:
      Then: cls(s,n)
 
where "s" is the starting line and "n" is the number of lines to clear from the starting line. The "n" value is also an expression whose value should be limited by how many lines are available to clear from the
line designated by the "s" value.
 
Version Ref:  3.x
Description:
CLS is used to clear the screen during Inquire, Update, Add and Request Output operations
 
Examples:
To clear lines 5 through 14:
      Then: cls("5","10")
Suppose field "aa" has a value of 5. You could clear the screen from line 5 to line 14 as follows:
      Then: cls(aa,"10")
NOTE: As with all filePro expressions, quotation marks are required for Literals. The parameters s and n are expressions. If you use literal values, they must have quotes (as always).



COMPARE()
 
Syntax:
       Then: xx=COMPARE(expr1,expr2)

"expr1" and "expr2" are the two values to compare.
 
Return values:
-1 if expr1 is less than expr2.
 0 if expr1 equals expr2.
 1 if expr1 is greater than expr2.
 
Version Ref:  4.5
Description:
Compares two values, with case sensitivity.
 
Examples:
Ask for a password and require the case to be correct.
         If:
       Then: inputpw popup pw "Enter password: "
         If: compare (pw,password) ne "0"
       Then: errorbox "Incorrect password" ; end



COPY/COPYIN
 
Syntax:
       Then: COPY filename
       Then: COPY lookupname TO lookupname
       Then: COPYIN filename
       Then: COPY lookup1 TO lookup2
v6.2 (6.1.02 USP)
       Then: COPY array
       Then: COPYIN array
       Then: COPY array TO lookup
       Then: COPY lookup TO array
       Then: COPY array1 TO array2
Once you have used a lookup statement to open a record in another file (or your current file), any of the first three of these commands can be used. The COPY command copies the entire current record to
the looked-up record. (The maps of each file must match each other exactly with respect to field lengths and edit types. The destination map can be bigger than the source map as long as the fields match
between files from the beginning of each file to the point where the destination map adds more fields.) The fields are copied one for one so that the destination record becomes a duplicate of the current record
(COPY) or the current record becomes a duplicate of the source record (COPYIN). If you have used lookup to open two files simultaneously, you can use the fourth syntax shown above to COPY a record
from one lookup to the other or vice versa.
 
Note: It is prudent to do a WRITE immediately after COPY or COPYIN to ensure that the record has been completely copied and the transaction has been handed to the O/S. COPY has great usefulness when
creating archive files since it will copy an entire record with only one command. You don't have to do it field by field.
 
NEW in Version 6.0 and higher:  ARCHIVE
 
Automatic indexes are automatically updated, if need be, when COPY or COPYIN is used.

 
Version Ref:  3.x (modified in version 4.5 to add copy one lookup to another)
Description:
COPY works in conjunction with the LOOKUP command, to copy all fields in the current record to a record in a looked-up file, or COPY all fields from one lookup to another lookup.
COPYIN works in conjunction with the LOOKUP command, to copy all fields in a looked-up record to the current record.
 
Restrictions:
COPY and COPYIN are not available on Automatic processing tables.
 
Examples:
Then: lookup arch = oldinvoices r=free -e
       Then: copy arch ; write arch ; delete ; end
The processing above gets a free record in the archive file, copies the current record to the free record in the other file, writes the other file (just for good measure, really not needed), then deletes the current
record from the current file. (The DELETE command is really only executed after the END statement of a processing table is executed, but it certainly does happen. This record will now only be found in the
"oldinvoices" file.)



COPY()
v6.2 (6.1.02 USP) n = COPY(array1, array2 [,src [,dest [,len]]])
  - Copy data between arrays. Returns the number of elements copied from array1 to array2.

Syntax
array1
 -Array to copy from.
array2
 -Array to copy to.
src
 -The array index to start copying from array1.
dest
 -The array index to start copying to in array2.
len
 -The number of elements to copy from array1 to array2.
NOTE: If no optional parameters are provided COPY() will copy as many items from array1 that will fit into array 2. Parameters src and dest default to the first index of each array. Parameter len
defaults to the entire array length.

Example
Processing:

  Then: DIM fruit(3)
  Then: DIM food(3)
  Then: fruit["1"]="Apple"; fruit["2"]="Orange"; fruit["3"]="Pear"
  Then: x=COPY(fruit,food,"1","1","2")
    (The food array will contain "Apple", "Orange", and "")
 



COS()
 
Syntax:
       Then: result=cos(angle)
 
Version Ref:  4.8
Description:

Trig Function to provide angles given in radians. Returns the COSINE of an angle.
 
Examples:

Then: radian_value = COS(90)



COSH()
 
Syntax:
       Then: result=cosh(angle)
 
Version Ref:  5.0
Description:
Trig Function to provide the hyperbolic angles given in radians. Returns the hyperbolic COSINE of an angle.
 
Examples:

Then: radian_value = COSH(90)



CREATE()
 
Syntax:

Then: handle =  CREATE(filename [,mode] )

"handle" is the file handle.
"filename" is the name of the file to create.
"mode" represents the permissions given to the file that gets created.  For convenience, if the number starts with a zero, the rest of the number is treated as octal.  The binary
value    corresponds to the 9 bits in the Linux directory listing "rwxrwxrwx".  Note that Windows systems only use the top two bits of the value.  The rest are ignored.

NOTE: For compatibility purposes with Unix systems, you may also specify the name of this command as CREAT e.g. CREAT(filename).
 
Version Ref: 4.5 (not included in filePro Lite)
Version Ref: 5.7.04 "mode" parameter was added
  5.0.5 CREAT() added as alternative to CREATE()
Description:
Creates a new file, and opens it.



        New function to get error code for ENCRYPT()/DECRYPT()
        failure.    Version Ref: 5.8 (not included in filePro Lite)
            status = CRYPTERROR( [format] )
        If "format" is omitted, or zero, then the value is returned as a numeric error number, or zero for "no error".  If "format" is "1", then the value is returned as a string.  Other values for "format" are
undefined.  (If ENCRYPT/DEcrypt fails, a null string -- "" -- is returned.)
 



CURSOR
 
Syntax:

Then: CURSOR ON
Then: CURSOR OFF
Then: CURSOR DEFAULT

 
Version Ref:  5.0
Description:
Forces the cursor on/off, or restores the default behavior.
 
Example:
 CURSOR OFF
 xx = LISTBOX(array)
 CURSOR DEFAULT
 
NOTE:
filePro will not automatically restore the default cursor behavior. If you CURSOR OFF without ever executing CURSOR DEFAULT, the cursor will remain off until you exit *clerk or *report.



CURSOR PATH
 
Syntax:

Then: CURSOR PATH ON
Then: CURSOR PATH OFF

 
Version Ref:  5.0.6
Description:
Allows you to turn off forced cursor path in fileProGI. Default is ON meaning that fileProGI enforces screen cursor path
 
Note: Same as MOUSE PATH



DACOS()
 
Syntax:

Then: result = DACOS(xx)
 
Version Ref:  4.8
Description:
Trig Function to provide Arccosine of an angle in degrees.

 
Examples:

Then: angle_in_degrees = DACOS(90)



DASIN()
 
Syntax:

Then: result = DASIN(xx)
 

Version Ref:  4.8
Description:
Trig Function to provide Arcsine of an angle in degrees.

 
Examples:

Then: angle_in_degrees = DASIN(90)



DATAN()
 
Syntax:
       Then: result = DATAN(y,x)
 
Returns the arctangent of (y/x) in degrees.
 
       Then: result = DATAN(n)
 
Trig Function to provide the arctangent of tangent value (n).

 
Version Ref:  4.8
Description:
Trig Function to provide Arctangent of an angle in degrees.

 
Examples:
 

Then: angle_in_degrees = DATAN(90)
Then: angle_in_degrees = DATAN(90,30)



DCOS()
 
Syntax:
 Then: result = DCOS(xx)
 
Version Ref:  4.8
Description:
Trig Function to provide the cosine of an angle in degrees.

 
Examples:

Then: angle_in_degrees = DCOS(90)



DEBUG
 
Syntax:
       Then: DEBUG ON
       Then: DEBUG OFF
 
Version Ref:  3.x
Description:
Turns the runtime debugger on or off from within a processing table.
 
Examples:
One way to use the command is to set a flag. For example, if you type "Y" in a debug-on yes/ no field, the program turns it on:
 
@wef12   If:
       Then: input db(1,yesno) "Debugger on?"
         If: db eq "Y"
       Then: debug on
       Then: end
 
IMPORTANT: The debugger will continue to operate until you turn it off. For example:
 
@wef13   If:
       Then: debug off; end
Test certain parts of a "live" system. in such a way that only you see the debugger, others work normally.
 
@wlf14   If: @id eq "root"
       Then: debug on
Turn on the debugger if a value is not "right".
         If: aa ne "right value"
       Then: debug on
 
Version 6.0.00
debug now will accept long variables as break points.

     The scope of a longvar is different from a normal dummy field. Technically, longvar is not at a true global scope, and isn't available in the automatic processing table.  Declaring it 'g' only will work  across records, but not tables, declaring it GLOBAL will fix that, but it has to be matched with an 

EXTERN in the other prc table.

      There are also enhancements to debug:
              DEBUG ON FIELD PA
              DEBUG ON FIELD Invoice_Total
              DEBUG ON LINE 1211



DECLARE
 
Syntax:

DECLARE LOCAL The variable is visible only to the current prc table.
DECLARE GLOBAL Makes the variable visible to other prc tables.
DECLARE EXTERN Refers to a variable DECLARED GLOBAL in another table.
DECLARE Same as DECLARE LOCAL.
 
Version Ref:  4.8  (not included in filePro Lite)
Description:
Declare global and local dummy variables with LONG names of up to 64 characters. Only applies to Define Processing. DECLARE variables are not supported on Screens or Output Formats. A declared
variable can hold up to 32127 characters.
 
Caution: Avoid the use of reserved words such as "select", "max", etc. as variable names since these are functions and will not be properly interpreted as variable names. Although the processing will pass the
syntax check, it will produce unwanted results.
 
Note: The meaning of GLOBAL when used with DECLARE is different than the meaning of the global ",g" flag used when specifying a field's type and length. The global ",g" tells filePro that the value of the
field spans record to record. DECLARE GLOBAL tells filePro the field spans processing tables.
 
DECLARE variables can be used anywhere in processing that the classic 2-letter dummy fields could be used. If one table has DECLARE GLOBAL, and another table has the same name using DECLARE
LOCAL, each table uses its own copy of that name.
 
Example:
       Then: DECLARE GLOBAL LastName(20,*,g), FirstName(20,*,g)
       Then: DECLARE LOCAL YTDSales(10,.2)
 
Added Version 6.0.01

Added new DECLARED function to check if an array or longvar is defined, meaning it is either declared LOCAL or GLOBAL or is declared EXTERN but has a matcing GLOBAL definition.
x=DECLARED(var) Where var is either a longvar or an array. Where x is the return value. Returns 0 if the variable is not fully defined. Returns 1 if the variable is fully defined.

 
Added Version 6.1.01

Added the ability to assign directly to a longvar when declaring.
Example: 

       Then: DECLARE LastName(20,*,g)="John"



ENCRYPT / DECRYPT (not included in filePro Lite)
 

Syntax
 

result = ENCRYPT(data,method,key [ ,nonce ] )
result = DECRYPT(data,method,key [ ,nonce ] )
 

where
 

data the data string to be encrypted.
method the encryption method used e.g. Blowfish, RC2, AES, etc.
key the character sequence used as the primary base to encrypt or decrypt the "data" field.
nonce the encryption mode used by filePro. If nonce is not specified, filePro generates one.



DECODE
(not included in filePro Lite)

v5.7.0 str = DECODE(str,exp)
  - Converts the text found in the string in exp by method str. The resulting str is returned. Method str must be either "ROT13" or "BASE64"

Used to restore ENCODED() data to it's original form.
v6.2 (6.1.02 USP)
Enhanced: Enhanced: Method str can now also be "URL" for URL percent encoding.

Example
Processing:

  Then: a = "guvf vf n grfg"
  Then: x = DECODE("ROT13",a)  ' x contains "this is a test"
  Then: a = "dGhpcyBpcyBhIHRlc3Q="
  Then: x = DECODE("BASE64",a) ' x contains "this is a test"
  Then: a = "this%20is%20a%20test"
  Then: x = DECODE("URL",a)    ' x contains "this is a test"
 

The ROT13 method is a simple letter substitution cipher, a=n, b=o, c=p, d=q, ..., m=z, n=a, ..., y=l, z=m All numbers and symbols remain unchanged. 

The BASE64 method (also known as MIME) was devoloped to allow binary data to be transfered over media that are designed to deal with text data. 

The URL method (also known as percent-encoding) is a method to encode data in a uniform resource identifier (URI) using only the US-ASCII characters leagal within a URI.



DELETE
 
Syntax:
       Then: DELETE
       Then: DELETE filename
 
Version Ref:  3.x
Description:
The DELETE command is actually executed AFTER the END statement of the processing table. You could put a DELETE statement as the very first thing on a processing table, then execute hundreds of
lookups, calculations, etc., and they would all happen. When the END statement (or the end of the processing table) is reached, the DELETE of the current record takes place.
IMPORTANT: To delete records in another file, you must first do a lookup to the particular record that you want to delete and then execute the "DELETE filename" command where filename is the name of
the lookup.
 
       Then: lookup arch=oldinvoices k=1 i=a -nx
         If: not arch
       Then: end
       Then: delete arch ; end
 
Be very sure to use the looked-up file's name (or alias) along with the DELETE command or you will inadvertently delete the record you are standing on in the current file!
 
Technical Note:
Deleting a filePro record with the DELETE command does not reclaim the disk space used by the deleted record. Instead, the record is marked as available for use. In other words, a file comprised of 100
records taking up 100Kb of disk space will stay 100Kb in size even after 30 records are deleted from it. On Unix systems, deleted records are placed on a free-chain. This means available empty (deleted)
records are marked with pointers dictating which record will be obtained next when a free record is called for by filePro. This free-chain appends the last deleted record to the end of the free-chain list so that
it will be used first when obtaining a free record.
 
To actually reclaim the disk space taken up by deleted records, a special processing must be run (see compressing files). This processing is usually a third party program specially designed to perform this
function. The same results can be obtained from within filePro by copying all the used records in a file to a second (or spin off file), and then renaming this file with the original name of the first file. (This
can be easily done with fpCopy.)
 
Restrictions:
DELETE is available for input and output processing.



DIM
 
Related Commands
CLEAR
SET
 
Syntax:
       Then: DIM array[n]
 
Defines an array of "n" fields.
 
Version Ref:  3.x
Description:
DIM (dimension) defines arrays for use in repetitive operations and with MENU (see the MENU command for details). You can also use DIM to match an array to a list of real, dummy, or lookup fields.
Mapping array fields to real fields is another way to give fields aliases. It is also a way to override the real fields' types and lengths with arrays, you can create fields with more than one length and edit within a
single file.
 
IMPORTANT:  In the below examples note that the brackets [ ] can be used only for the number of array elements where as parentheses ( ) must be used for the length and edit of the array.  DIM
array[n](l,e)
Examples:

Then: DIM cats[5]
 
Dimensions (or builds) an array of 5 elements called "cats". The five array elements are referred to as cats["1"], cats["2"], cats["3"], cats["4"] and cats["5"]. They can also be referred to as cats[n] as long as n
has a value between 1 and 5. For any size array (any number of elements), the subscript value [n] can NOT be less than or equal to 0 and can not be higher than the highest element number. If this happens, a
fatal error will occur and the processing table will exit you from the program with the error message "array index out of range."
 
IMPORTANT: A non-literal number is used to actually dimension an array. In the example shown above, the number 5 in DIM cats[5] does NOT mean the contents of field 5. This is the only place
throughout all of filePro where a 5 not surrounded by quotes does not mean the contents of field 5. Be very aware of this, as it will cause you great difficulty if you use this index subscript improperly. After an
array is defined (the actual DIM statement itself), you should never use a non-quoted number as a subscript for that array. You should always use a literal or a dummy field. If you use a number not surrounded
by quotes, filePro will use the value found in that field and substitute it for the array index, and it had better be within the boundaries of the array size or you will be dumped out of the processing table. There
are rare, very rare times when you might want to use a real field as the subscript of an array. Just be aware of how this will work if you do ever do it.
 
The fact that the subscript (or index) of the array can be an expression is the feature which makes arrays so valuable. You can start a variable equal to "1" and use it as the index, do something with that
element of the array, increment the variable by "1" and do something to or with the next element of the array. You can repeat this loop for as many elements as there are in the array, being careful not to go
past the highest element number. Looping through arrays in this fashion is a powerful programming construct that you will use often to reduce the number of lines of code you must write.
 
Other DIM formats

Then:  DIM array[n](l,e)
 
Array of "n" fields with length "l" & edit "e"
 
Examples:
 

Then: DIM prods[3](5,.2)
 
Array of 3 fields, making them all 5-character, two-decimal-place numbers.

 
Then: DIM array((l,e)(l,e)... )

 
Array with fields each having individual length "l" and individual edit type "e". Has as many terms as you specify.
 
Example:
 
       Then: dim fred((8,.2) (1,yesno) (8,mdy/ ))
 
The example above creates a three-field array, the first of which is an eight-digit decimal number, the second of which is a one-character "yesno" field, and the third of which is an eight character date field.
 
NOTE: When you use this option, you may run out of space on a line before you come to the end of your assignments. You can continue from line to line, however, by breaking the line of assignments
between sets of parentheses, and by making sure that you don't add the final outside parenthesis until you're done with the list:
 
       Then:  DIM ants((10,*)(5,sex)(8,mdy/)
 

Then: (12,*) (8,mdy/) (20,allup) )
 

Then:  DIM address((30,uplow)(30,uplow)(15,uplow)(2,state)(5,zip))
 

Then: DIM array[n]:m
 
Array of n fields starts with its field 1 at the file's field number "m".
 
       Then: dim items[10]:44
 
The code shown above builds a ten-element array that starts at field 44 of the current file (the file in which the processing resides). This means that the array elements "overlay" or are congruent with fields
44 through 53. Referring to or assigning to field 45 is the very same thing as referring to or assigning to items["2"]. Field 47 is equivalent to items["4"], etc.

 
DIM array[n]:lookup(m)

 
Maps to (overlay) a looked-up file's fields.



       
Then: dim phones[4]:CLIENTS(3)

 
A 4-field array taken from a lookup named CLIENTS starting at field 3 in CLIENTS. The elements (fields) of this array would coincide with fields 3 through 6 of the CLIENTS file. Changing any of the fields
in this array will change the coinciding field in the CLIENTS file.
 
The following statement would change field 5 in the CLIENTS file to this phone number.
 
     Then: phone["3"]="(201) 427-3311"
 
Commands used with Arrays

clear array
 
Sets each element of "array" to blank.
      Then: clear phones <- clears the array named "phones".
 
v6.1 ( 6.0.02 USP )
EXTERN and GLOBAL arrays

DIM GLOBAL name(size)
DIM EXTERN name

Only non-aliased arrays can be declared GLOBAL/EXTERN. Functions similar to GLOBAL/EXTERN longvars.
 
v6.1 ( 6.0.02 USP )
Added new array size function to get the size of an array. Can be used with GLOBAL, EXTERN, LOCAL, and SYSTEM arrays.

x=ARRAYSIZE(array)
Where array is the name of the array.
Where x is the returned size of the passed array.

 
v6.1 ( 6.1.01 USP )
Added initial support for multi-dimensional arrays.

DIM array[n1,n2,...,n8](l,e)
Multi-Dimensional array of fields with length "l" & edit "e". Array edit is optional.

Example:
dim array(2,2)
array["1","1"]="John"
array["1","2"]="Smith"
array["2","1"]="Sarah"
array["2","2"]="Jane"

Existing array functions can also use multi-dimensional arrays by referencing one of an array's sub arrays.
Example:
CLEAR array["1"]



DISPLAY
 
Syntax:
      Then: DISPLAY
      Then: DISPLAY exp
 
DISPLAY              refreshes all fields on the current screen to their current value.
DISPLAY exp       switches to screen "exp" and shows most current field values.

 
Version Ref:  1.x
Description:
DISPLAY is similar to SCREEN, except that instead of putting the user in update mode, DISPLAY simply shows effects of processing up to that point. DISPLAY is especially useful with "when entering field"
and "when leaving field" processing.
DISPLAY, by itself, will refresh all the fields (real, dummy, and system maintained) to their current values; the screen backdrop itself will not be redrawn, but all field data on the screen will be refreshed to its
current value. In other words, if no argument is given to the DISPLAY command, the program redisplays only the visible fields and leaves all other screen text and messages unchanged.
DISPLAY "exp", will do the same thing, but cause the specified screen (whatever "exp" resolves to), to also be freshly displayed. In other words, the current values of all fields will not just pop in on the
existing screen backdrop, the whole screen will be redrawn.
IMPORTANT: DISPLAY is a most necessary command for interactive processing. For instance, if you add two fields together in an @wlf process, the operation will take place. If the result of the calculation
(dummy field, or real field) is on the screen, the user will see no change in this field until you issue a DISPLAY statement to bring it to its current value.
 
Restrictions:
DISPLAY can be used on input processing tables only.
 
Examples:
@wlf4   If:
      Then: 4="OPERATOR" ; end
 
will appear to do nothing from the user's viewpoint...although it did happen, field 4 was changed.
@wlf4   If:
      Then: 4="OPERATOR" ; display ; end
 
accomplishes the desired result. As soon as the operation is finished, the user is made aware of it. If field 4 is on the screen, the user will see immediately that it is now equal to "OPERATOR".
To display the current screen:
 
      Then: display
 
To switch to another screen:
 
      Then: display s
 
where "s" is the screen number or letter.
 
To switch to a named screen:
 
      Then: display "name"
 
Make sure you enclose the screen name in quotes if it is a literal name.



DLEN()
 
Syntax:
       Then: a=DLEN(exp)
 
Version Ref:  4.1
Description:
Returns the display length of a string. This function is useful for aligning or centering data on the screen.
 
Examples:
       Then: aa=3<4 ; show "@ the display length of aa is" < dlen(aa)
 
Note: If you want the display length of a cast dummy variable, in other words, one that has been given a length and edit type, you must do a small trick to find the real display length. Otherwise, DLEN will
return the predefined length of the field, regardless of what data is in the field. To fix this, put nulls around the field and take the DLEN of that expression.
 
       Then: aa(5,.0)="12"/"3" ; show "@ incorrect display length is" < dlen(aa)
       Then: show "@ correct display length is" < dlen(""{aa{"")
 
Instead of displaying 5 as the display length, surrounding the variable with nulls gives a correct result.
 
Note: DLEN() had an undocumented limit of 255 characters on the input string prior to release 5.0.12. The input is now unlimited, and the output is limited to 4095.



DOEDIT()
 
Syntax:
       Then: xx=DOEDIT(val_expr,edit_expr)
       Then: xx=DOEDIT(val_expr,edit_expr,len_expr)
 
"val_expr" is the value to be passed through the edit.
"edit_expr" is the name of the edit to apply.
"len_expr" is the length of the resulting value.
If len_expr is not specified, the length of val_expr is used.
Return value is a field of edit type edit_expr and length len_expr, if specified. Otherwise, the length is the same as
val_expr.
 
Note: If "edit_expr" is not found, then it is treated as a NOEDIT.
 
Version Ref:  4.5
Description:
Performs an edit on a value, and returns the result.
 
Examples:
Right justify and zero-fill field "partno", a (10,*) field.
The old method:
 
       Then: xx(10,rj) = partno ; xy(10,rj0) = xx ; partno = xy
The new method:
       Then: partno = doedit(doedit(partno,"rj"),"rj0")
Note how the two fields that were previously needed exclusively for this conversion, can be eliminated by using DOEDIT.



dokey
 
Tells filePro to execute the keystroke as if the
user pressed it (similar to PUSHKEY).  Only the first
character is used, and it need not be the same as the
current @key event. DOKEY does an implicit END after
running the default behavior.
DOKEY does not interfere with PUSHKEY, and in fact, they can
be used in conjunction.
Example:
@keyB if:  ' to trap "B" and then load the "mybrowse" browse format
    then:  pushkey "flmybrowse[ENTR][ENTR]" ; DOKEY "B"
The pushkey does a F-File, L-Load, mybrowse,  Enter  to select
the browse, and then  Enter  to execute the browse.
Example:
    @keyX
        then:  mesgbox "Are you sure you want to exit?","","YN"
          if:  @bk eq "Y"
        then:  DOKEY "X" 'Note that DOKEY does an implicit END
        then:  mesgbox "Exit cancelled"
        then:  end



DOM()
 
Syntax:
  Then:  a=DOM(date_expr)

 
Version Ref:  4.1
Description:
Returns the day of month for a date expression.
 
Examples:

Then: da = DOM(aa)
Then: show "You were born on a " < DOM (bd,"2")



DOQ()
 
Syntax:
  Then:  a=DOQ(date_expr)
 
Version Ref:  4.1
Description:
Returns the day of the quarter for a date expression.
 
Examples:

Then:  da = DOQ(aa)
Then:  show "Your payroll period started on a " < DOQ (bd,"2")



DOW()
 
Syntax:
       Then: a=DOW(exp1,exp2)
If exp2 is "1", returns the 3-letter abbreviation.
If exp2 is "2", returns full day name.
If exp2 is "0" or omitted, returns 1-7 where 1=Sun.
 
Version Ref:  4.1
Description:
Returns day of week for a date expression.
 
Examples:

Then:  da = DOW(aa)
Then:  show "You were born on a " < DOW (bd,"2")



DOY()
 
Syntax:
  Then:  a=DOY(date_expr)
 
Version Ref:  4.1
Description:
Returns the day of the year for a date expression.
 
Examples:

Then:  da = DOY(aa)
Then:  show "You were born on a " < DOY (bd,"2")



DROP
 
Syntax:

DROP  
DROP ALL BEFORE
DROP ALL AFTER
DROP ALL

 
Version Ref:  4.1
Description:
Causes current record to be left out of browse lookup box. (Used with PRC option in lookup). DROP ALL Allows all remaining records in a file to be quickly dropped from a browse window.
 
Example: 
   If: balance lt "400.00"
 Then: DROP; end



DSIN()
 
Syntax:

Then:  result = DSIN(xx)
 

Version Ref:  4.8
Description:
Trig Function to provide the sine of an angle in degrees.

 
Examples:
 

Then: angle_in_degrees = DSIN(90)



DTAN()
 
Syntax:
 Then:  result = DTAN(xx)

 
Version Ref:  4.8
Description:
Trig Function to provide the tangent of an angle in degrees.

 
Examples:
 

Then: angle_in_degrees = DTAN(90)



DTOR()
 
Syntax:
       Then:  result = DTOR(angle)
 
Version Ref:  4.8
Description:

Trig Function to convert degrees to radians.
 

Examples:
Then: angle_in_radians = DTOR(90)



EDIT()
 
Syntax:
       Then: a=EDIT(n)
 

n is equal to a real, dummy or system maintained field.
 
Version Ref:  3.x
Description:
Returns the edit-type of a field.
 
Examples:

TT(10,EDIT(3))
 
Assigns dummy field TT with length 10 & the same edit type as field 3.
When you use EDIT with LEN, you can assign both the length and the edit type of one field to another.
       Then: aa(len(3),edit(4))
Assigns the length of filed 3 and the edit type of field 4 to dummy variable aa. If you ever change the length of field 3 or the edit type of field 4, aa's length and edit type will change as well.
 
Restrictions:
EDIT can be used on all processing tables on both condition and action lines.



ENCRYPT / DECRYPT (not included in filePro Lite)
 

Syntax
 

result = ENCRYPT(data,method,key [ ,nonce ] )
result = DECRYPT(data,method,key [ ,nonce ] )
 

where
 

data the data string to be encrypted.
method the encryption method used e.g. Blowfish, RC2, AES, etc.
key the character sequence used as the primary base to encrypt or decrypt the "data" field.
nonce the encryption mode used by filePro. If nonce is not specified, filePro generates one.



ENCODE
(not included in filePro Lite)

v5.7.0 str = ENCODE(str,exp)
  - Converts the text found in the string in exp by method str. The resulting str is returned. Method str must be either "ROT13" or "BASE64"
v6.2 (6.1.02 USP)
Enhanced: Enhanced: Method str can now also be "URL" for URL percent encoding.

Example
Processing:

  Then: a = "this is a test"
  Then: x = ENCODE("ROT13",a)  ' x contains "guvf vf n grfg"
  Then: x = ENCODE("BASE64",a) ' x contains "dGhpcyBpcyBhIHRlc3Q="
  Then: x = ENCODE("URL",a)    ' x contains "this%20is%20a%20test"
 

The ROT13 method is a simple letter substitution cipher, a=n, b=o, c=p, d=q, ..., m=z, n=a, ..., y=l, z=m All numbers and symbols remain unchanged. 

The BASE64 method (also known as MIME) was devoloped to allow binary data to be transfered over media that are designed to deal with text data. 

The URL method (also known as percent-encoding) is a method to encode data in a uniform resource identifier (URI) using only the US-ASCII characters leagal within a URI.



END
 
Syntax:
       Then: end
 
Version Ref:  3.x
Description:
END means "stop processing here; do not continue down the table." It's not needed at the end of the processing table - processing ends automatically when it runs out of elements.
 
Note : Use RETURN instead of END to quit a subroutine started with the GOSUB command.



EOM()
 
Syntax:
       Then: xx=EOM(date_expr)
 
Version Ref:  4.5
Description:
Returns the end of a month for any date expression. If the date expression is left blank, returns the end of the current month.
date_expr means that the field has to be of a "date" edit type.  It cannot be uncast.

 
Examples:

Then: payroll_month_ends = EOM(payroll_date)
 Returns the last day of the month for the payroll_date variable.

Then: current_month_ends = EOM()
 Returns the last day of the current month. 



EOQ()
 
Syntax:
       Then: xx=EOQ(date_expr)
Version Ref:  4.5
Description:
Returns the end of a quarter for any date expression. If the date expression is left blank, returns the end of the current quarter.

 
Examples:

Then: payroll_qtr_ends = EOQ(payroll_date)
 

Returns the last day of the quarter for the payroll_date variable.
 
Then: current_quarter_ends = EOQ()

 
 Returns the last day of the current quarter. 



EOY()
 
Syntax:
       Then: xx=EOY(date_expr)

 
Version Ref:  4.5
Description:
Returns the end of a year for any date expression. If the date expression is left blank, returns the end of the current year.

 
Examples:

Then: payroll_year_ends = EOY(payroll_date)
 
Returns the last day of the year for the payroll_date variable.

 
Then: current_year_ends = EOY()

 
Returns the last day of the current year. 



ERRNAME()
 
Syntax:

Then: xx = ERRNAME(num_expr)
 

where "num_expr" is the system error number.
Return value is a text field, the length is the same as the length of the error message text.

 
Note: System error messages are highly system dependent, and you should not rely on the same error having the same text description on different machines. This function's purpose is to allow some feedback
to the user in case of an error.
 
Version Ref:  4.5
Description:
Returns the name of the specified system error.
 
Examples:

Then: h = open("/tmp/file.dat")
If: h lt "0"

Then: errorbox "Cannot open file. Error is " < ERRNAME(h)



 ERRORBOX
 
Syntax:
      Then: ERRORBOX(row,col) message,prompt,keylist
 
Version Ref:  4.1
Description:
The ERRORBOX processing command lets you display an error message in a popup window on the screen. It will display a string "message" in a popup window at a designated position on the screen until the
user presses ENTER or a key from a specified list. The key pressed by the user can be captured and acted upon appropriately.
Row and Column
If row and column are supplied, the upper left corner of the window appears at the row and column coordinates. If row and column are not supplied, the window is centered on the screen. The upper-left corner
of a screen is row,col ("1","1").
 
Width and Height
The longest line of text determines the width of the window. The number of text lines determines the height of the window.
Message
The message to appear in the window is a string expression. You can add additional lines to this message by placing a "\n" at the point where you want a new line to begin. All of the SHOW codes are available
to ERRORBOX. For example:
      Then: errorbox "Text line 1\nText line 2"
Prompt
Prompt is the prompt you want to appear telling the user what keys can be used to remove the window (and/or take certain actions) to continue. The prompt appears in the lower-right corner of the window.
If prompt is not specified, then the default prompt of "Press ENTER" is used.
Keylist
Keylist is the list of keys, in addition to ENTER, that will remove the window. These keys can be trapped and acted upon with further processing. If keylist is not specified, the ENTER key is the default for
removing the window.
NOTES:
ENTER is the special key defined as ENTR. ERRORBOX will display whatever is set as the keylabel for this key.
After the message box is executed, @BK is set to the keystroke entered.
The arguments to ERRORBOX (row/col, the message, the prompt and the keylist) can be variables. If they are variables (or real fields), you must NOT put quotes around them. If they are literals, such as the
keylist below (SLN), then they must be in quotes. Case is not significant (except if the key is a shifted key such as "@", then a 2 will not work, only a shifted 2 "@" will work).
ERRORBOX is exactly the same thing as MSGBOX except for the colors which are assigned to it. The colors for ERRORBOX are ERRORNORMAL and ERRORINVERSE. This environmental variables allow
you to give a consistent look and feel to your programming by showing "errors" in one set of colors and "messages" (or navigational questions) in another set of colors.
 
Examples:
         If: 4 ne "0"
       Then: end
       Then: o="NO money on this record. Save it, Delete it, or Fix it?"
       Then: m="(s/d/f)==>"
       Then: errorbox("10","5") o,m,"SDF"
         If: @bk eq "S"
       Then: end
         If: @bk eq "D"
       Then: delete ; end
         If:      '<=== the F key in keylist will default here, so will ENTER.
       Then: restart
         If: exists(fn) gt "0"..
       Then: errorbox "File already exists!\nContinue?",
             "Press \rY\r or \rN\r", "YN"
         If: @BK eq "Y"
       Then: gosub mkfile



ESCAPE
 
Syntax:
  Then : ESCAPE
 
Version Ref:  3.x
Description:
ESCAPE, in effect, presses <ESC> for the user, and saves the data on the current record. ESCAPE is used only with when-processing.
 
Examples:
 
@wefn     If:
        Then: escape
 
 
@wlf6    If: aa le "5"
       Then: escape
 
NOTE: ESCAPE can be only be used with @when processing.



EXISTS()
 
Syntax:
       Then: EXISTS(filename)
 

Return Values:
"1" if the file exists,
"0" if the file does not exist
a negative number if a system error occurs

 
Note: "fn" can be a file name as well as a directory path.

 
Version Ref:  4.1
Description:
Checks for the existence of a file on the system, where filename is an expression that resolves to either a relative or full pathname.
This command is valuable if you need to make sure a file already exists before you do a particular task, otherwise the task may go into an error condition. This function allows you to avoid such situations. It is
also valuable when used as a configuration tool. For example, by placing certain files in a user's environment, you can run processing based on their existence.
 
Examples:
       Then: fn="/"&dp&"/"&4
         If: exists(fn) le "0"
       Then: msgbox "File does not exist." ; goto loop



EXIT
 
Syntax:
       Then: EXIT num_expr

"num_expr" is the program's exit value.
 
NOTE: The exit value must be between 0 and 255, inclusive. Standard practice is to use zero as a success indicator, and other values to indicate failure.
 
Version Ref:  4.5
Description:
Terminates running of the filePro program and sets the exit value.
EXIT records the data up to the point in the table at which it is encountered and takes the user completely out of Inquire, Update, Add or Request Output.
When used in Request Output, all records that have been processed before the EXIT occurs are printed.
Note: The current record is written out first as is.
Retrieving the exit value
EXIT is used in conjunction with a batch files or script files.
MS-DOS, the programs exit value can be checked by using the "IF ERRORLEVEL" batch command.
Unix, you can use "if dclerk ..." to check for success or failures, or you can check "$?" for specific values.
Indicate & test failure.
 
Example:
Assume the following code is on a report that is at the head of a long group of reports. You only want to run the rest of the reports if this one runs correctly. The menu script might look something like this.
Remember - the filePro code shown is really on "report1" and returns to the environment a good or bad status. The "if $?..." line is how you test whether this report failed or not. If it fails, i.e., if the exit
value is not 0, the "exit" command (this time the Unix shell's version of exit) takes you completely out of the script and the following reports do not get executed. Otherwise, the test falls through, and the
reports run.
 

/appl/fp/dreport firstfile -f report1 -a ...

       Then: rn(1,.0)="1"
       Then: lookup control r=rn -nx
         If: not control
       Then: errorbox "Cannot read control file!" ; exit "127"
       Then: exit "0"

f $? != "0" && exit

/appl/fp/dreport otherfile -f otherreport2
/appl/fp/report thatfile -f otherreport3
/appl/fp/dreport samefilefile -f otherreport4



EXP()
 
Syntax:
       Then: result = EXP(n)

 
Version Ref:  4.8
Description:
Exponent function (e^n)
Examples:

Then: na="4.6051702"
XX=exp(na)

Returns the natural antilog value of "100"



EXP10()
 
Syntax:
       Then: result = EXP10(n)
 
Version Ref:  4.8
Description:
Base 10 exponent (10^n)
 
Examples:
When na="2.00000"
XX=exp10(na)
Returns the base10 antilog value of "100"



EXPORT (not included in filePro Lite)
 
Syntax:
       Then: export type filename options

filename can be an expression by assigning it as an alias as in:
       Then: export type aaa=(exp) options

 
Version Ref:  4.8 (enhanced)  (not included in filePro Lite)
Description:
EXPORT creates spin-off files to be used with other programs. EXPORT can create two types of files, ASCII files or application specific files:
 
Structured ASCII (Fixed length ASCII):
       Then: EXPORT ASCII name -X [-A]
 
Delimited ASCII:
       Then: EXPORT ASCII name R=r F=f O=o C=c [-A]
 
where "r", "f", "o", "c" are delimiters for the ASCII file and optional flag [-A] allows you to append to the end of a file. If the [-A} flag is used and the file does not exist, filePro will create it.

 
"R" is the record indicator.
"F" is the field separator.
"O" is opening field delimiter. <-- Not often used.
"C" is closing delimiter. <-- Not often used.
-A means to append the exisitng file.

 
Example:
 
 Then: EXPORT ASCII test=test.txt R=̂ J f=\  ̂-A
 
The above would append a file named "test.txt" in your current directory containing a "linefeed" character at the end of each record with and a " "̂ between each data field. Notice the different use of " "̂
symbol. In the first case it is used as a control character to send a "linefeed" and in the second case it is considered as a literal " "̂ since it is preceeded with a "\" backslash. Also notice that the "O" Opening
and "C" Closing delimiters are not used in the above example. These are also optional and seldom used.
 
IMPORTANT: You may use a few special codes with the delimited ASCII format as delimiters or field separators:

\r for carriage return
\f for form feed
\n for new line
\t for tab

You can also use punctuation characters, ASCII codes, and control codes as delimiters and separators. Use the caret (  ̂) followed by a letter to indicate a "CTRL" character e.g. Ĵ, ^L, ^M, etc. Refer to the
"Character Table" in "Define Processing" help for "CTRL" characters. In cases where you want to use the caret " "̂ as a literal, remember to preceed it with a backslash e.g. \ .̂
 
Note: -A flag is only available for the "EXPORT ASCII" function.
Specialized Export Formats:
       Then: EXPORT DIF name
       Then: EXPORT MULTI name [ R=n | C=n ]
       Then: EXPORT WORD name
       Then: EXPORT WordPerfect name
 
       Then: name(1)=aa ; name(2)=ab ; ... ; name(n)=zz
 
Using EXPORT requires a minimum of two statements: the first defines the name of the spin-off file (sometimes called a merge file); the second (and additional statements, if necessary), tells the program
which fields in the exported file are to accept the data.
Each "EXPORT" definition must be alone on its "Then" line. Use at least three characters for the filename, and don't start with a number.
Each field assignment specifies the data to be put into the fields of the exported file.
       Then: mergename(n)=exp
where "mergename" is the filename (or alias of the exported file), "n" is the specific number designating the desired field in the exported file, and "exp" is the supplied data. Note that you can assign results of
text and math formulas to merge fields and that you can use literals. For example:
       Then: mergename(2)="Show me";mergename(4)=3;mergename(8)=aa+bb
You can, of course, put more than one assignment per line (separate them with semicolons), and use more than one line.
 
Structured ASCII (Fixed length ASCII)
       Then: EXPORT ASCII name -X
Creates an ASCII file called "name" in structured format.
This is a very useful export format. The entire field is placed in the export file. No field separators are required because each field takes up exactly its length in characters whether there is data in the field or
not. The record delimiter is a new line by default. This format is becoming more and more of a standard means for exchanging files between systems and applications.
 
NOTE: Structured ASCII files can be immediately read by filePro. All that is needed is the layout of the field structure, i.e., the map of the file. This list of fieldnames, lengths, and data types is simply entered
into filePro as an "alien" file under Define Files. The structured ASCII file is set as the "Data File Name", and it can then be instantly read and written to by filePro programs. Indexes can be built on the alien
file as well. (There are only two important differences between alien files and regular filePro files. Regular filePro files have a 20 byte header at the beginning of each record that holds system maintained
information such as record creation date, created by, etc. Secondly, an alien file can not "reclaim" deleted record space by adding such records to a "freechain" of available records [a multi-user function].)
IMPORTANT: Make sure to consider the record delimiter when using an alien file. This is usually one or two characters that are not mentioned in the file layout (or map). If your records look like scrambled
eggs when you go into Inquire, Update and Add on an alien file, try adding a one-character field to the end of the map. DO NOT RESTRUCTURE THE FILE WHEN PROMPTED! Try viewing the file again
in IUA. If it still doesn't look right, try changing the one character field at the very end of the map to a length of 2 characters. Again, DO NOT RESTRUCTURE THE FILE WHEN PROMPTED! This
should clear things up and the file will look okay. This last field does not ever have to be shown on the screen or used anywhere. It is a place holder and simply must be in the map to allow it to overlay the
data correctly.
 
The specialized export formats, can be used by various application programs. The DIF format is sometimes available to spreadsheet programs. The MULTI format is used by Multiplan an archaic spreadsheet
program. (This export format allows you to use the optional row equals or column equals parameters to designate where exported data will begin on a spreadsheet.) The WORD format is used by WordStar an



archaic word processing program. The WordPerfect format is used by the WordPerfect word processing program. (HINT: The WordPerfect format can be easily read by Microsoft Word. Do not use the
WORD format for anything but WordStar.)
ASCII files: EXPORT can create ASCII files in either structured or delimited form. Structured ASCII files set aside a specific number of characters for each field in every record. Fields in the exported file
retain their specified length regardless of whether the supplied data for these fields fills that length or not. Each record in a structured ASCII files is separated by a newline. Delimited ASCII files set a specific
character as a field separator (delimiter), and, the fields in the export file shrink or expand to fit the length of the data within each field. Delimited files may also employ opening and closing record indicators,
however, these special delimiters are not frequently used these days.
Application specific files: EXPORT can create several application specific files. These formats can be used to merge data from filePro into various spreadsheet and word processing applications.
 
Technical Notes:
Overriding extensions
EXPORT adds default extensions to the merge file name, depending on the parameter. For example, if your merge name is "letters" and your parameter is either ASCII or WORD, the spin off file's name is
"letters.wp". Other extensions are ".dif" for DIF and ".sl" for MULTI.
For example:
       Then: export ASCII aaa=/tmp/rawdata f=, r=\n
       Then: aaa(1)=2 ; aaa(2)="" ; aaa(3)="P" ; aa(4)=14 ; end
filePro will append a ".wp" to this type of an export if you do not already have a suffix on the export filename. The code above will create a file called "/tmp/rawdata.wp". To change this behavior, just add
the suffix you would rather have: ".txt", ".doc", etc. To override any of the default extensions ("dif," "sl," or "wp"), set the exported filename equal to the name you want with the new extension. Use a
complete pathname if desired:
       Then: export EXPORTTYPE alias=filename.newext [options]
 
IMPORTANT: Remember that on DOS 3.1 systems an extension can only be comprised of 3 letters.
There is also an environment variable, PFADDWP, that turns the behavior of adding ".wp" to exported filenames off and on. The default is ON.
 
5.0.14 Change
EXPORT ASCII/WORD would always export the same number of fields, regardless of whether the fields were assigned to on each record, even if they were only referenced in a comment. Now, filePro will
only export the number of fields as the highest-reference field actually assigned.
 
For example:

If:
Then: out[1] = 1 ; out[2] = 4
If: xx = "y"
Then: out[3] = 3 ; out[4] = 4
If:
Then: ' out[5] = 5

 
filePro would previously always exported 5 fields. Now, if x="y" is true, it will export 4 fields, and if false will export 2 fields.
To revert back to the old behavior, set PFEXPORTALL=ON.
 
Overriding Default Directories and Paths
On DOS systems, filePro puts the exported spin off file in the current directory.
On UNIX/XENIX systems, it puts the file in ".../fpmerge" directory (as governed by the PFDIR environment variable and the /etc/default/fppath file). There must be an "fpmerge" directory in the same
directory as your "filePro" directory.).
You can place the exported file in any directory (for which filePro has write permission) by setting the exported filename equal to the desired pathname:
       Then: export exporttype alias=\dir\mergename.ext [options]
Use the separator mark (\ or /) appropriate to your operating system.
 
Restrictions:
An "IMPORT filename" definition must be alone on its "Then" line.
 
Only one EXPORT or IMPORT statement with the same merge file name is allowed per processing table. In other words, you can't have the statement, "EXPORT MULTI List" followed in a few elements by
"IMPORT WORD List."
 
Examples:
 
ASCII Files
Fixed Length ASCII:
      Then: export ASCII filename -X
When you use the "-X" flag, the program creates one long string per record, maintaining the defined lengths of the filePro fields. In other words, it does not strip blanks on either side of any data. For
example, your first data field is 10 characters long, the second is 15 characters long and the third is a 7 character numeric field. The exported string would look like this (without the quotes of course):
       "John      Smith           123.45\r"
The record delimiter (carriage return or line feed), depends on the operating system.
 
Delimited ASCII:
       Then: export ASCII aaa=/tmp/merge.txt f=, r=\n
When you specify field and record delimiters, the program creates one long string per record, by marking each exported field with the designated field separator. It is important to note that BLANK space to
the right of any supplied data will be removed. For example, your first data field is 10 characters long, the second is 15 characters long, the third is a 12 character field, and the fourth is a 7 character numeric
field. The exported string would look like this (without the quotes of course):
       "John,Smith,policeman,123.45\r"
If you make an assignment to an exported field in a delimited ASCII format and the data assigned is null (i.e., the field or expression being assigned is blank), the exported string will still surround the designated
exported field with the field separator. For example if the above example was assigned in the following way:
       Then: aaa(1)=2;aaa(2)=3;aaa(3)=4;aaa(4)=19
and field 4 on this particular filePro record was blank, the exported string would look like:
       "John,Smith,,123.45\r"
 



Microsoft Excel Import Files
Although Microsoft Excel will import various formats, a "Comma Separated, Quote Delimited" format is more commonly used. Use the filePro EXPORT word option to create this type of file.
Simple:
       Then: export Word cust
       Then: cust(1)=1 ; cust(2)=3 ; cust(3)=4<6
Elaborate:
 
       Then: 'The following will create a merge file of name/addresses
       Then: 'that will automatically close up blank lines when merging.
       Then: FNAME:1
       Then: LNAME:2
       Then: COMPANY:3
       Then: ADDRESS1:4
       Then: CITY:5
       Then: STATE:6
       Then: ZIP:7
       Then: COUNTRY:13
       Then: export Word merge=C:\wpmerge.wp
       Then: dim array[4](50);clear array
       Then: i(1,.0)="1"
         If: FNAME ne "" or LNAME ne ""
       Then: array[i] = ""{ FNAME < LNAME;i=i+"1"
         If: COMPANY ne ""
       Then: array[i] = ""{ COMPANY;i=i+"1"
         If: ADDRESS1 ne ""
       Then: array[i] = ""{ ADDRESS1;i=i+"1"
         If: CITY ne "" or STATE ne "" or ZIP ne "" or COUNTRY ne ""
       Then: array[i] = ""{ CITY < STATE < COUNTRY < ZIP;i=i+"1"
       Then: merge(1)=array["1"]
       Then: merge(2)=array["2"]
       Then: merge(3)=array["3"]
       Then: merge(4)=array["4"]
       Then: end
 
Word Processing and Spreadsheets Files
WordPerfect:
Simple:
       Then: export WordPerfect cust
       Then: cust(1)=1 ; cust(2)=3 ; cust(3)=4<6
Elaborate:
 
       Then: 'The following will create a merge file of name/addresses
       Then: 'that will automatically close up blank lines when merging.
       Then: FNAME:1
       Then: LNAME:2
       Then: COMPANY:3
       Then: ADDRESS1:4
       Then: CITY:5
       Then: STATE:6
       Then: ZIP:7
       Then: COUNTRY:13
       Then: export WordPerfect merge=C:\wpmerge.wp
       Then: dim array[4](50);clear array
       Then: i(1,.0)="1"
         If: FNAME ne "" or LNAME ne ""
       Then: array[i] = ""{ FNAME < LNAME;i=i+"1"
         If: COMPANY ne ""
       Then: array[i] = ""{ COMPANY;i=i+"1"
         If: ADDRESS1 ne ""
       Then: array[i] = ""{ ADDRESS1;i=i+"1"
         If: CITY ne "" or STATE ne "" or ZIP ne "" or COUNTRY ne ""
       Then: array[i] = ""{ CITY < STATE < COUNTRY < ZIP;i=i+"1"
       Then: merge(1)=array["1"]
       Then: merge(2)=array["2"]
       Then: merge(3)=array["3"]
       Then: merge(4)=array["4"]
       Then: end
 
Note : Later versions of WordPerfect adopted the use of standard merge file formats. If you are using WordPerfect 6.0 or later, try using EXPORT WORD to create a standard CSV format and select the
"ASCII Delimited" option in WordPerfect's merge options.
 
WORD (WordStar not Microsoft Word):
Here is a typical WORD record export:
       "Smith", "John", "123.45", "01/06/1986" <cr/lf>
WordStar uses quotation marks as field delimiters, commas as field separators, and carriage return line feed codes as record separators.
HINT: Microsoft Word can make use of a delimited ASCII file as a merge document.
 
MULTI:
Below are two EXPORT MULTI statements. Data from fields 22 and 23 in the source filePro file will be arrayed across the spreadsheet starting on row 3. In this example, the exported filename (the one to
be merged with the spreadsheet) is called "merge."
       Then: export multi merge r=3
       Then: merge(1)=22; merge(2)=23
To place the data in columns, starting with column 2:
       Then: export multi merge c=2
       Then: merge(1)=22 ; merge(2)=23



DIF:
       Then: export dif merge
       Then: merge(1)=22; merge(2)=23



FIELDEDIT()
 
Syntax:
Then: xx = FIELDEDIT(lookupname,fieldno)
"lookupname" is the name of the lookup file. Use a dash "-" to represent the current file.
"fieldno" is an expression designating the field number for which you want the edit type.
Return value is a text field containing the name of the target field's edit type.

 
Version Ref:  4.5
Description:
Returns the name of the edit for the specified field in a lookup file.
 
Examples:
Retrieves the edit type of a lookup field and places it in variable aa.
       Then: lookup inv=arinvoice k=2 i=a -nx
       Then: aa=fieldedit(inv,"5")
Assigns an edit to a field based on the edit type of a lookup field.
       Then: lookup inv=arinvoice k=2 i=a -nx
       Then: aa(10,fieldedit(inv,"5"))
The following code uses other filePro field functions to display the "map" of a lookup file. It displays the field names, lengths, and edit types in a listbox that looks similar to an actual map printout. (Assumes
the lookup name is "file".)
       Then: dim map(100)(60,*)
       Then: no(3,.0) = "1"
         If: numfield(file) eq "0"
       Then: errorbox "No fields" ; end
loop     If: no gt numfield(file) or no gt "99"
       Then: goto done
       Then: map[no] = no & " - " &
             doedit(fieldname(file,no),"*","45") & " " &
             doedit(fieldlen(file,no),".0","3") <
             fieldedit(file,no)
       Then: no = no + "1" ; goto loop
done     If:
       Then: aa = listbox(map,"1",no-"1")
Note the use of the DOEDIT() function while building the map entry. This guarantees that all entries will be of the same length, and the columns will be aligned.



FIELDLEN()
 
Syntax:
       Then: xx=FIELDLEN(lookupname,fieldno)
"lookupname" is the name of the lookup file. Use a dash "-" to represent the current file.
"fieldno" is an expression designating the field number for which you want the length.
Return value is a numeric field containing the length of the target field.

 
Version Ref:  4.5
Description:
Returns the length of the specified field in a lookup file.
 
Examples:
Retrieves the length of a lookup field and places it in variable aa.
       Then: lookup inv=arinvoice k=2 i=a -nx
       Then: aa=fieldlen(inv,"5")
Assigns a length to a field based on the length of a lookup field.
       Then: lookup inv=arinvoice k=2 i=a -nx
       Then: aa(10,fieldlen(inv,"5"))
The following code uses other filePro field functions to display the "map" of a lookup file. It displays the field names, lengths, and edit types in a listbox that looks similar to an actual map printout. (Assumes
the lookup name is "file".)
      Then: dim map(100)(60,*)
      Then: no(3,.0) = "1"
        If: numfield(file) eq "0"
      Then: errorbox "No fields" ; end
loop    If: no gt numfield(file) or no gt "99"
      Then: goto done
      Then: map[no] = no & " - " &
            doedit(fieldname(file,no),"*","45") & " " &
            doedit(fieldlen(file,no),".0","3") <
            fieldedit(file,no)
      Then: no = no + "1" ; goto loop
done    If:
      Then: aa = listbox(map,"1",no-"1")
 
Note the use of the DOEDIT() function while building the map entry. This guarantees that all entries will be of the same length, and the columns will be aligned.



FIELDNAME()
 
Syntax:
      Then: xx=FIELDNAME(lookupname,fieldno)
"lookupname" is the name of the lookup file. Use a dash "-" to represent the current file.
"fieldno" is an expression designating the field number for which you want the name.
 
Return value is a text field containing the name of the target field.
 
Version Ref: 4.5
Description:
Returns the name of the specified field in a lookup file.
 
Examples:
Retrieves the name of a lookup field and places it in variable aa.
      Then: lookup inv=arinvoice k=2 i=a -nx
      Then: aa=fieldname(inv,"5")
The following code uses other filePro field functions to display the "map" of a lookup file. It displays the field names, lengths, and edit types in a listbox that looks similar to an actual map printout. (Assumes
the lookup name is "file".)
      Then: dim map(100)(60,*)
      Then: no(3,.0) = "1"
        If: numfield(file) eq "0"
      Then: errorbox "No fields" ; end
loop    If: no gt numfield(file) or no gt "99"
      Then: goto done
      Then: map[no] = no & " - " &
            doedit(fieldname(file,no),"*","45") & " " &
            doedit(fieldlen(file,no),".0","3") <
            fieldedit(file,no)
      Then: no = no + "1" ; goto loop
done    If:
      Then: aa = listbox(map,"1",no-"1")
 
Note the use of the DOEDIT() function while building the map entry. This guarantees that all entries will be of the same length, and the columns will be aligned.
 
Version 5.6
FIELDNUM() was added to return the field number of the FIELDNAME of a lookup



FIELDVAL()
 
Syntax:
      Then: xx=FIELDVAL(lookupname,fieldno)
"lookupname" is the name of the lookup file. Use a dash "-" to represent the current file.
"fieldno" is an expression designating the field number for which you want the name.
 
Return value is the contents of the specified field.
Version Ref:  4.5
 
Description:
Returns the contents (value) of the specified field in a lookup file.
 
Example:
Retrieves the contents of a lookup field and places it in variable aa.
      Then: lookup inv=arinvoice k=2 i=a -nx
      Then: aa=fieldval (inv,"5")



FILENAME()
 
Syntax:
       Then: aa = FILENAME(handle)
 
Return value 
The filename of the specified handle.
Version Ref:  5.0
 
Description:
Returns the filename of the specified handle.
 
The handle must be a value returned from OPEN() or CREATE().Invalid handles return null.
 
Example:

handle = CREATE("/tmp/tempfile");
...
name = FILENAME(handle)

 
NOTE:
This is useful in generic CALL routines where the filename isn't known. In a text file, it is possible that the value returned by FILESIZE() is not the same number of bytes that can be read from the file.



FILESIZE()
 
Syntax:
       Then: aa=FILESIZE(handle)
"handle" is the file handle returned by OPEN() or CREATE().
 
Return value 
The size, in bytes, of the file.
 
Note: In a text file, it is possible that the value returned by FILESIZE() is not the same number of bytes that can be read from the file.
 
Version Ref:  4.5
Description:
Returns the number of bytes in a file.



FLOOR()
 
Syntax:
       Then: xx=FLOOR(num_expr)
 
"num_expr" is the given number.
"xx" is the resulting value.
Return value is a field of the same edit type and length as num_expr.
 
NOTE: If the given number is already an integer, the original number is returned.
 
Version Ref:  4.5
 
Description:
Performs the FLOOR function, which given any number, returns the next lesser integer.
 
Examples:
Show the difference between FLOOR(), CEIL(), INT(), and converting to an integer:
Try the example with the numbers: -5.6 -5.5 -5.4 5.4 5.5 5.6 and note the differences among the functions.
       Then: input popup xx(10,.5) "Enter a number: "
        If: xx = ""
       Then: end
       Then: yy(10,.0) = xx
       Then: msgbox xx & "\nFLOOR:" < FLOOR(xx) & "\nCEIL:" < CEIL(xx)&       "\nINT:" < INT(xx) & "\nrounding:" < yy



FLUSHKEY
 
Syntax:
       Then: FLUSHKEY
 
Description:
Empties the keyboard buffer before returning control to the executing program. This includes any keystrokes sent via the PUSHKEY command that have not already been executed.



FOR

Version Ref: 6.1 (USP 6.1.01)
FOR f[(len,edit)] FROM exp TO exp [STEP exp] DO label
 - A loop that runs from a value to a value. Built in edits are supported. If a STEP value is not supplied, filePro will determine a STEP value based on the FROM and TO expression values. A FROM
value that is less than a TO value will result in a positive STEP ("1"). If FROM is greater than TO the STEP value will be negative ("-1"). Each iteration of the loop will update the value of "f", incrementing
by STEP, and goto the label specified by DO.
Note: The FROM, TO, and STEP expressions are evaluated once when the loop is first executed. Changing these values once the loop starts executing will not change how the loop run.

Example - For Loop
Processing:

      Then: FOR f(10,.0) FROM "1" TO "10" STEP "1" DO lp1; goto en1 
  lp1   If: 
      Then: msgbox f    ' print the value of "f" from 1 to 10
      Then: end
  en1   If:
      Then: FOR d(10,mdyy/) FROM "12/01/2024" TO "12/31/2024" DO lp2; goto en2
  lp2   If:
      Then: msgbox d    ' print the value of "d" from 12/01/2024 to 12/31/2024
      Then: end
  en2   If:
      Then: end
 

WHILE

Version Ref: 6.1 (USP 6.1.01)
WHILE cnd DO label
 - A loop that runs while the condition is true. Each iteration checks the condition (cnd) and while the value is true goes to the label specified by DO. A condition can be an IF expression or label.

Example - While Loop
Processing:

      Then: declare total(10,.0)
      Then: total="0"
      Then: lookup inv=invoice r=(rec) -nx
      Then: WHILE inv DO lp1; goto en1
  lp1   If: 
      Then: total=total+inv(1)
      Then: getnext inv
      Then: end
  en1   If:
      Then: close inv; end
 

LOOP WHILE|LOOP UNTIL

Version Ref: 6.1 (USP 6.1.01)
LOOP label WHILE cnd
LOOP label UNTIL cnd
 - A loop that runs while the condition is true (WHILE) or until the condition is true (UNTIL). Each iteration starts by going to the label specified by DO, then the condition is checked and the loop either
continues or terminates based on the value of the condition. A condition can be an IF expression or label.

Example - Loop While
Processing:

      Then: i(10,.0)="10"
      Then: LOOP lp1 WHILE i gt "0"; goto en1
  lp1   If: 
      Then: i=i-"1";
      Then: end
  en1   If:
      Then: end
 



FORM
 
Syntax:
       Then: FORM formname
       Then: FORM exp
 
FORM can also be used on the condition line to test whether the form was actually found:
         If: not form
       Then: [do something]
 
Version Ref: 4.8
 
Version 6.0.02

FORM now will allow you to pass a path and filename to use instead of looking in the local directory
Syntax:  form "library/zipform"

 
Description:
Prints a form from within processing. (AUTOMATIC and INPUT processing only.)
 
Examples:
FORM lets you print forms conditionally; print one form instead of another; and print more than one copy of a particular form. If you have a set of output formats named SALES1,
SALES2, SALES3 and so on, and you want to print different forms depending on the conditions. There are at least two ways to do this. First is to set up a series of conditional
elements: if field 2, format number, contains "1," then print SALES1, if field 2 contains "2," then print SALES2, etc. The second way is to use an expression, and generate the format
name from the contents of field 2:
       Then: form "SALES" { 2
If field 2 contains "3," then SALES3 is printed.
To print more than one copy of a form, you'd write a loop:
       Then: input aa(2,.0) "Print how many copies? "
loop     If: aa gt "0"
       Then: form "label"; aa=aa- "1"; goto loop
Any processing associated with the form (by virtue of having the same name as the form) is not done. Dummy fields in the input processing tables can be put on this form. For
example, if field A on the input processing table is a date field, and field A on the output processing table is a YESNO field, the field that appears on the printed form will be a date
and not a YESNO.
 
Hint: If you have a need to create a form quickly, you can copy a screen by using the "Extended Functions - Import Text File" feature in "Define Output". Keep in mind that you will
have to remove the non-text portions of the screen and change "%" field indicators to either exclamation points or asterisks to properly print a form version of your screen.

v6.1 ( 6.0.03 USP )
FORM WITHPROC "formname"
Added additional command switch to FORM and FORMM commands to allow the associated processing table to run while in input processing. Note: You cannot call the
WITHPROC variant from within another form UNLESS the calling form is a processing only form.



FORMERROR()

 syntax: xx=FORMERROR()
  returns: errno from last FORM or FORMM command.
  e.g. 2=file not found, 13=permission error
  

 



FORMM
 
Syntax:
       Then: FORMM formname
       Then: formm exp
where "name"' is the name of the form to be printed and "exp" is any expression that evaluates to a form name.
 
Version Ref: 4.0
 
Version 6.0.02

FORM now will allow you to pass a path and filename to use instead of looking in the local directory
Syntax:  formm "library/zipform"

Description:
(UNIX and network DOS) - Same as the FORM command, except that it does not close the print spooler. With the spooler open, any other forms sent to the spooler (with FORMM) will be grouped with the
original. Use FORM with the last form to close the spooler. All the forms will be printed together, in the order in which they were sent to the spooler. FORMM is available in Inquire, Update, Add only.
 
Examples:
You could have a multi-page report, with each page a different form. When printing the report, use FORMM for all the pages (in order) up to the last page; for the last page, use FORM or exit Inquire, Update,
Add to close the spooler. All the pages of the report will be printed consecutively, in order.

v6.1 ( 6.0.03 USP )
FORMM WITHPROC "formname"
Added additional command switch to FORM and FORMM commands to allow the associated processing table to run while in input processing. Note: You cannot call the WITHPROC variant from within
another form UNLESS the calling form is a processing only form.



FPSTAT()
 
Version Ref: Version 6.2 (USP 6.1.02)

    s = FPSTAT(lookup) - Return map information and basic access 
        attributes for a given filePro lookup.
    
Parameters:
    lookup: A lookup to a filePro file to retrive basic attributes from.
            Can be "-" for the current file.
Returns:
    kfilesize;dfilesize;mdate;mtime;
    Blank on error.
    
Where:
    kfilesize is the total sum of the size of all key segments in bytes.
    dfilesize is the total sum of the size of all data segments in bytes.
    mdateis the last date a key/data file was modified, e.g. 03/24/2025
    mtime is the last time a key/data file was modified, e.g. 02:19:59
    
Note: The returned values are ONLY for the active qualifier on the lookup.



FRAC()
 
Syntax:
       Then: a=FRAC(n)
 
Version Ref:  4.1
Description:
Returns the fractional portion of a number. (Compliment of the INT function.)
 
Examples:
       Then: fr = FRAC(no)



FREESPACE()
 
Syntax:
      Then: XX=freespace()
      Then: XX=freespace(drive)
 
Returns the available free space (in bytes) of the drive on which the main file's map is located.
For UNIX versions, FREESPACE() will use the partition on which the main file's map is located.
 
Version Ref:  4.8
Description:
FREESPACE() returns the free space (in bytes) of the drive letter [DOS] or filesystem [Unix] specified.
 
Examples:
       Then: XX=FREESPACE("C")
 
Returns the amount of free space left on the C drive.



FTP_OPEN
Version 6.0.00
handle = ftp_open(remote, username, password [,timeout])
Returns a handle to an FTP connection

remote: URL of the server to connect to, e.g. ftp://172.16.2.1/  (must end in a trailing slash)
username: The username to connect with.
password: The password for the connection.
timeout: Optional - sets the length in seconds before the connection is terminated on a pending connection. Default 0, infinite timeout.

example:
declare local handle(8,.0);
handle = ftp_open("ftp://172.16.2.1/","logan","mypassword","10")
status = ftp_chdir(handle, directory) Changes the current FTP directory for certain commands.
                                                      ftp_rename, ftp_mkdir, ftp_rmdir, ftp_delete, ftp_list, ftp_pwd
handle: Handle to the FTP connection.
directory: Directory to switch to.
Returns "0" or a negated libcurl error.

example:
status = ftp_chdir(handle, "directory")
status = ftp_put(handle, local, remote [, show progress])

Send a file to a FTP server.
handle: Handle to an FTP connection.local: Local file to send.
remote: URL to upload to (Must be URL, cannot use relative paths).
show progress: "0" hide progress bar, "1" show progress bar, default "1".
Returns "0" or a negated libcurl error.

example:
status = ftp_put(handle, "/send/file.txt","ftp://server/path/to/file.txt", "1")
status = ftp_get(handle, local, remote [, show progress])

Get a file from a FTP server.
handle: Handle to an FTP connection.
local: Local file to save to.
remote: URL to get from (Must be URL, cannot use relative paths).
show progress: "0" hide progress bar, "1" show progress bar, default "1".
Returns "0" or a negated libcurl error.

example:
status = ftp_get(handle, "/save/file.txt","ftp://server/path/to/file.txt", "1")
status = ftp_rename(handle, from, to)
Rename a file on a FTP server.
handle: Handle to an FTP connection.
from: File to rename.
to: New file name.
         Returns "0" or a negated libcurl error.

example:
status = ftp_chdir(handle, "mydirectory")
status = ftp_rename(handle, "original.txt","renamed.txt")
status = ftp_mkdir(handle, directory)
Create a directory on a FTP server.
handle: Handle to an FTP connection.
directory: Path to create new directory, can be relative or absolute.
         Returns "0" or a negated libcurl error.

example:
status = ftp_chdir(handle, "mydirectory")
status = ftp_mkdir(handle, "newdirectory")
status = ftp_rmdir(handle, directory)
Remove a directory on a FTP server.
handle: Handle to an FTP connection.
directory: Directory to remove.
        Returns "0" or a negated libcurlerror.

example:
status = ftp_chdir(handle, "mydirectory")
status = ftp_rmdir(handle, "todelete")
status = ftp_delete(handle, remote)

Delete a file on a FTP server.
handle: Handle to an FTP connection.
remote: File to delete.

Returns "0" or a negated libcurl error.
example:

status = ftp_chdir(handle, "mydirectory")
status = ftp_delete(handle, "todelete")
status = ftp_close(handle)
Closes an open FTP handle.
handle: Handle to an FTP connection.
         Returns "0" or a negated libcurl error

error = ftp_error(code)
Translates a FTP error into a human readable error string.
code: The numeric error code returned by a FTP method.
Returns the associated error string.

num = ftp_list(handle, array)
Gets a listing of all files and directories in the current FTP directory.

handle: Handle to an FTP connection.
array: A non-aliased array to return the list of files through.
Returns the number of elements in the returned array, or a negated libcurl error.



example:
dim array(); ' 0 size arrays are now allowed by filePro
num = ftp_list(handle, array)
if: num lt "0" ' num should contain the number of elements in array
then: errorbox ftp_error(num); xx=ftp_close(handle); end
then: xx=selectbox(array)

 
path = ftp_pwd(handle)

Get the PWD of the FTP handle.
handle: Handle to an FTP connection.
Returns the PWD of the ftp handle.

 



GET16() GET32() PUT16() PUT32()
 
Gets or Writes data to a file.
 
Syntax
value = GET16( buffer [ ,offset [ ,byteorder ]] )
value = GET32( buffer [ ,offset [ ,byteorder ]] )
binval = PUT16( value [ ,byteorder ] )
binval = PUT32( value [ ,byteorder ] )
 
Version Ref:  5.6

 
The GETnn functions retrieve a binary value from a buffer, and the PUTnn functions convert the value into binary. The offset parameter specifies the zero-relative offset within the buffer where the
value resides. The byteorder parameter specifies the byte order of the binary value, with "L" meaning little-endian, "B" meaning big-endian, and the default being the native order of the current system.

 
For example, to get the 32-bit little-endian value at offset 8 within the MyBuffer variable, you would use:

 
value = GET32(MyBuffer,"8","L")
 
To convert the RouterHandle variable into a 16-bit little-endian value, you would use:
 
value = PUT16(RouterHandle,"L")
 
Note that 8-bit values can already be read/written using the existing ASC and CHR functions.
 

These functions are used more easily interpret the contents, where READ()/WRITE() could access the data, but interpreting the contents would require a bit of work to extract/build the binary data.
 

For example, you want to get information about a .BMP file. Within the file is a BITMAPINFOHEADER structure, defined in C as:
typedef struct tagBITMAPINFOHEADER
{
DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes;
WORD biBitCount;
DWORD biCompression;
DWORD biSizeImage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
} BITMAPINFOHEADER;
 
After you read the information with:
 
xx = read(handle,MyBuffer,"40")
 
You want to extract the information from it:
 
biSize = GET32(MyBuffer)
biWidth = GET32(MyBuffer,"4")
biHeight = GET32(MyBuffer,"8")
biPlanes = GET16(MyBuffer,"12")
biBitCount = GET16(MyBuffer,"14")
... and so on ...
 
If you wanted to write out the information, you could build the buffer using the PUT16/PUT32 functions:
 

MyBuffer = PUT32(biSize) & PUT32(biWidth) & PUT32(biHeight) & PUT16(biPlanes) & PUT16(biBitCOunt) & ...etc...
 

It may also be the case that the file is always in a specific endian byte order, regardless of the platform you are running filePro on. (For example, binary data sent via TCP/IP is almost always sent in big-
endian order, even on little-endian platforms.) In that case, you would pass an explicit "L" or "B" endian parameter to force the byte order.



GETCWD()
 
Syntax:
       Then: xx=GETCWD()
 
Return value is a text field, which is the length of the current directory name.
Note: Under MS-DOS, the path entries are separated with forward slashes "/" rather than backslashes "\".
 
Version Ref:  4.5
Description:
Returns the current directory name.
 
Examples:
To write an ASCII file to the current directory:
      Then: xx=getcwd(); aa=xx & "/mailist"
      Then: export ASCII test=(aa)



GETENV()
 
Syntax:
      Then: v = getenv("name")
 
Version Ref:  4.1
Description:
Returns value of environment variable "name", or variables stored in the filePro config file (fp/lib/config).
 
Examples:

Then: aa=getenv("LOGNAME")
Then: hm=getenv(aa)

 
The GETENV function returns the value of a variable stored in the fp\lib\config file or the system environment. However, when you start Inquire, Update, Add or Request Output, these values are copied to a
temporary memory, where GETENV will look for them. Therefore, any changes made to these variables by other users while you are in Inquire, Update, Add will not be picked up by GETENV.
 
If you execute GETENV on the variables PFPROG, PFDIR or PFDATA, and the variable has not been given a value, GETENV will look for the value in the corresponding line in the fppath file.
 
IMPORTANT: An environment variable in the system environment will override the same variable in the configuration file.
GETENV now checks the fppath file for PFPROG, PFDATA, and PFDIR



GETLOCKS()
 
Version Ref: Version 6.2 (USP 6.1.02)

    n = GETLOCKS(array,lookup) - Returns the number of elements populated
        in the array. Fills the array with locked record information for a given
        lookup. Use '-' for current file. If passing a multi-dimensional, the
        array must point to the final sub array OR the second to last. This
        allows us to return the PID and Username/UID for the given lock. 
        Returns "0" on Windows.
        
Restrictions:
    Linux|Unix|FreeBSD Only.
    
Parameters:
    array:  An array to place the locked record information in.
    lookup: The lookup to use to check a filePro file for locked records.

Examples:
    Then: ' Fill array with the record number of locked records in the file
    Then: dim array(10)(10,.0)
    Then:                        ' x will contain the number of locks on the
    Then: x = GETLOCKS(array,-)  ' file that will fit into array
    
    Then: ' Fill array with locked records including PID and Username/UID
    Then: dim array(10,3)
    Then:                        ' x will contain the number of locks on the
    Then: x = GETLOCKS(array,-)  ' file that will fit into array
    
    In the second example each "row" of the array will contain the locked
    record number, the PID of the locking process, and the user holding the
    lock. e.g.

    Then: x = array["1","1"] ' x holds the record number
    Then: x = array["1","2"] ' x holds the PID
    Then: x = array["1","3"] ' x holds the username OR UID



GETNEXT
 
Syntax
Each "getnext" lookup operation has five basic parts:
Ø    a lookup statement
Ø    a test for the end of the file
Ø    field assignments and operations
Ø    the getnext or getprev instruction
Ø    a loop back to the end-of-file test
 
The syntax is like this:

Then: lookup filename . . .
subr

If: not filename
Then: [end or go elsewhere]

Then: n=filename(m); . . .
Then: getnext filename; goto subr

or:
Then: getprev filename; goto subr

 
Version Ref:  3.x
Description:
LOOKUP's "getnext" (get next) and "getprev" (get previous) commands make it easier to write repetitive lookups. They let you look through the lookup file repeatedly without retyping lookup statements or
writing loops back to the lookup statement.
 
You might want to add a second test to check that the lookup key and lookup field still match - if you only want Smiths, for instance, you don't want the program to continue on to the Todds once the Smiths
run out. The syntax would be something like this:
 

If:  filename(m) ne [key field ]
  Then:  end or go elsewhere



GETNONCE() (not included in filePro Lite)
After a call to ENCRYPT(), you can call GETNONCE() to get the "nonce" that was used.

Syntax
xx = GETNONCE()
 

"nonce" is the encryption mode used by filePro.
 

If "nonce" is not specified, filePro generates one.
Many consider it important to use a unique nonce with each piece of data encrypted. It does not reduce the cryptographic security (make the
decryption any easier) of the encrypted data if the nonce is known unless the same nonce is reused with different data. An example of this might be
encryption of data in medical records. You might use a nonce built from the patient ID and social security number. Then, a unique nonce could be
generated (and regenerated) in processing from data which would not change stored in the record. If some of the nonce data might possibly change
it wouldn't be to hard to build a routine to retrieve the encrypted field, decrypt it with the old data, re-encrypt it with the new data, and store it.



GETPID()
 
Returns the process ID of the current process.
 
Syntax
xx = GETPID()
xx = GETPPID()
 

Return value
 A text field, which is the current process ID.

 
Version Ref:  5.6
 
Note: GETPPID() returns the process ID of the parent process under*NIX. On Windows, this information is not available, and an empty string is returned.



GETPREV
 
Syntax
Each "getprev" lookup operation has five basic parts:
Ø    a lookup statement
Ø    a test for the end of the file
Ø    field assignments and operations
Ø    the getnext or getprev instruction
Ø    a loop back to the end-of-file test
 
The syntax is like this:

Then: lookup filename . . .
subr

If: not filename
Then: [end or go elsewhere]

Then: n=filename(m); . . .
Then: getnext filename; goto subr

or:
Then: getprev filename; goto subr

 
Version Ref:  3.x
Description:
LOOKUP's "getnext" (get next) and "getprev" (get previous) commands make it easier to write repetitive lookups. They let you look through the lookup file repeatedly without retyping lookup statements or
writing loops back to the lookup statement.
 
You might want to add a second test to check that the lookup key and lookup field still match - if you only want Smiths, for instance, you don't want the program to continue on to the Todds once the Smiths
run out. The syntax would be something like this:
 

If:  filename(m) ne [key field]
Then:  end or go elsewhere



GETQUAL()
 
Version Ref: Version 6.2 (USP 6.1.02)

    s = GETQUAL(fname) - Return a colon delimited list of all qualifiers
        for the file given by "fname"
    n = GETQUAL(array, fname) - Return the number of qualifiers for the
        file given by "fname" while filling "array" with the list of qualifier
        names.
        
Parameters:
    array: An array to fill with a list of qualifier names.
    fname: A filePro file name.
    
Example:
    (File invoices has 3 qualifiers 2022, 2023, and 2024)
    Then: s=GETQUAL("invoices") ' s will contain "2022   :2023   :2024   :"
    Then: DIM quals(10)
    Then: n = GETQUAL(quals, "invoices")  ' n will contain "3"
    Then: q = quals["1"]                  ' q will contain 2022
    Then: q = quals["2"]                  ' q will contain 2023
    Then: q = quals["3"]                  ' q will contain 2024



GOSUB
 
Syntax:
       Then: GOSUB "label"
         If: ...
       Then: ...
label    If: ' subroutine
       Then: ...
         If: ...
       Then: ' subroutine
       Then: RETURN

 
Version Ref:  3.x
 
Description:
"label" is a subroutine of code, terminated with a RETURN, that GOSUB calls.
RETURN ends the subroutine started at "label" by GOSUB, and starts processing
up again at the command after GOSUB.
Processing will immediately branch to "label" and start executing from that point until a RETURN is encountered, at which time processing returns to the command immediately after the GOSUB. If there is a
";" after this GOSUB label, the command after the ";" is executed next. Otherwise, processing will pick up again at the "if" line immediately below "GOSUB label".
IMPORTANT: You must end all subroutines with a RETURN. Do not send processing to a subroutine with GOSUB and have it encounter an END statement before it encounters a RETURN. This may work in
many cases but is not a good practice and can cause erratic results.
Note: Maximum number of nested GOSUBs (GOSUBs that are called by other GOSUBs) is 16 per table.
Command used with GOSUB:



GOSUB OF / GOTO OF
 
Syntax:
       Then: GOSUB (num_expr) OF label1, label2, ...
       Then: GOTO (num_expr) OF label1, label2, ...
 
"num_expr" is an index into the list of labels (starting at 1).
"label1,label2, ..." are the labels where processing branches to.
Only the integral portion of num_expr is used. Any fractional portion is ignored. The number is not rounded.
 
If "num_exper" is less than 1, or greater than the number of labels, the gosub/goto is not executed, and processing falls through to the next statement.
 
NOTE: The parentheses around (num_expr) are required.
 
Version Ref:  4.5
Description:
Gosub/goto one of a list of labels.
 
Examples:
Handle different types of records, assuming field "rectype" contains "A" , "B", or "C".
(Note that "A" has an ASCII value of 65.)
 
 Then: GOSUB (asc(rectype) - "64") OF RecTypA, RecTypB, RecTypC



GOTO
 
Syntax:
       Then: GOTO "label"
         If: ... ' this code will be skipped
       Then: ... ' this code will be skipped
label    If: ' label; processing continues here
       Then: ...
         If: ...
       Then: END
 
Version Ref:  3.x
Description:
GOTO means "go to another processing element." GOTO must be followed by a label.



group(path/filename)  (ver 5.8.03)
 

Group() returns a string containing "owner:group" on the file.
In Windows, there is no concept of group but the function still exists.  It returns the gid and uid

associated with the file (if it exists) otherwise, it returns "0:0"
 
see also mode()



GUI
 
Syntax:
if: GUI
if: NOT GUI
 
Version Ref:  5.0
Description:
Allows you to test if you are running under a Graphical User Interface (GUI) environment or not.
 
GUI2/WEB (Version 6.0.00)
Syntax:
if: GUI2
if: NOT GUI2
Syntax:
if: WEB
if: NOT WEB
Description:
Allows you to test if you are running under a fileProWEB User Interface environment or not.
 
Version 6.0.02
x=@GUI.PAUSE()
   Pauses automatic screen updating while in GI/Web.
x=@GUI.RESUME()
   Resumes automatic screen updating while in GI/Web.
These functions are useful for hiding the output of some system commands while running processing. Output can sometimes cause undesired effects on a filePro screen or prevent some commands from
updating the screen correctly. This should correct some text being displayed while outside of filePro's messaging.
Example:
Then: x=@GUI.PAUSE()
Then: SYSTEM command
Then: x=@GUI.RESUME()



HARDCOPY
 
Syntax:
       Then: hardcopy
Prints the current screen. Works in conjunction with PFHCFF (when set to ON this environment variable adds a form feed after the screen print.)

 
Version Ref:  3.x
Description:
HARDCOPY lets you print a hardcopy from a processing table. It prints the current record, functioning like "H - Hardcopy" on the Inquire, Update, Add option line.
 
Restrictions:
May only be used on Input processing tables.
 
Examples:
      Then: input popup q(1,yn) "Do you want a hardcopy? (y/n) "
         If: q eq "y"
       Then: hardcopy
 
Note : When printing is directed to a spooler, the screen may not print immediately but will print after exiting "Inquire/Update/Add" mode. You may be able to override this with spooler options/controls
provided by your operating system or by turning spooling "off" when there is a need for immediate printing. You can also use the "form" command (provided you have created a form with the desired fields) as
an alternative to using the "hardcopy" command. See FORM for additional details.



HASH (Version 5.7.3)
result =  HASH( hash_type, data [ , result_type [, length ]] )
Where:

hash_type is one of the available hash methods:
"whirlpool"
"sha512"
"sha384"
"sha256"
"sha224"
"sah1"
"ripemd320"
"ripemd256"
"ripemd160"
"ripemd128"
"tiger"
"md5"
"md4"
"md2"

Case is not significant in the name.
Data is the actual data to hash
Result_type specified how the hash should be returned.

0 - (default) Return the hash as-is
1 - Return the hash in hex
2 - Return the hash in BASE64 encoding

Length is the length of the input data.  The default is to use the
entire length of 'data'
 
Example:
hash("sha1","Hello","1") returns

"F7FF9E8B7BB2E09B70935A5D785E0CC5D9D0ABF0"
hash("sha1","Hello","2") returns

"9/+ei3uy4Jtwk1pdeF4MxdnQq/A="
New "hash-based message authentication code" (HMAC) hash function added to Version 5.7.04:

result = HMAC_HASH(method, data, key [,method2[,length]] )
where "method", "data", "method2", and "length" correspond to the same parameters in HASH(), and "key" is the HMAC key.



HELP
 
Syntax:
       Then: HELP name
 
Display a help screen of section "name".
"name" is found in a file called "help" (Unix) in the current filePro file's directory.
"name" is found in a file called "HELP" (DOS) in the current filePro file's directory. This is a plain text file which holds help for screens, fields, and "names".
 
Version Ref:  3.x
Description:
Displays a help screen.
 
Examples:
Say that you want a certain help screen to appear automatically whenever the user moves the cursor into the tax rate field (field 8) and tries to type whole numbers instead of a decimal number. First you'd
write a piece of text in the help file named "taxes." Then, you'd write the following conditional processing statement:
 
@wlf8    If: mid(8,"1","1") ne "."
       Then: help "taxes ; screen 1,8
 
As soon as the user moves out of field 8, the program checks for the period, puts up the help screen if it isn't there, and returns her to field 8 in update mode when she is done looking through the help pages.
(HELP screens can be as many pages long as required.).



HTML (not included in filePro Lite)
See HTML Reference.



HTMLERRNO()
 
Syntax:
 Then: xx=HTMLERRNO()
 

Version Ref:  4.8  (not included in filePro Lite)
 

Description:
Returns an error code for the last HTML/JSFILE/JSON statement. Zero means the statement succeeded. "1" indicates that the specified document id is not an open document. A negative number "-1", "-2",
etc. is the system error number.



IMPORT (not included in filePro Lite)
 
Syntax:

       Then: import ASCII filename R=r F=f O=o C=c
       Then: import DIF filename
       Then: import WORD filename
 
DIF, WORD, ASCII are the type of file from which IMPORT will draw data.
filename is the source filename.
filename can be an expression by assigning it as an alias as in:
 
        Then: import ASCII aaa=(exp) R=r F=f O=o C=c
 

Version Ref:  3.x
 
Description:
IMPORT opens a non-filePro file so that its data can be accessed by filePro. Typically, records from an imported file are copied into records of a filePro file. The data can be copied (on a field by field basis)
into existing records or into free records.
 
IMPORT can work with three types of file formats: ASCII for reading text and word processing files, DIF for reading "dif" style files, and WORD for reading WordStar text files.
 
ASCII:
       Then: import ASCII name R=r F=f O=o C=c
or:
       Then: import ASCII name=pathname R=r F=f O=o C=c
 
where "name" is the name of the import file and "pathname" is a full or relative pathname. Use the pathname option when the merge file is not in the current directory.
 

"r" is record separator
"f" is field separator
"o" is opening field delimiter
"c" is closing field delimiter.

 
Example:
 Then: IMPORT ASCII test=test.txt R=̂ J f=\^
 
The above would import a file named "test.txt" in your current directory containing a "linefeed" character at the end of each record with a " "̂ between each data field. Notice the different use of "  ̂" symbol.
In the first case it is used as a control character to read a "linefeed" and in the second case it reads a literal "  ̂" since it is preceeded with a " \ " backslash. Also notice that the "O" Opening and "C" Closing
field delimiters are not used in the above example.
 
IMPORTING CSV formats - Opening and closing field delimiters are commonly used in "CSV" type files.
 
Example:
 
Typical CSV formatted file
 

"John","Adams","123 South Street","Anywhere","NY"
"Quincy","Smith", 100 North Street", "Washington","PA"
"Debby", "Adams","123 State Hwy 7","Mount Vernon","VA"
 

This data format is usually imported using the IMPORT WORD but can also be imported using IMPORT ASCII by identifying quotes as the opening and closing field delimiters as follows.
 
 Then IMPORT ASCII tst=c:\temp\test.txt R=̂ J f=, O=" C="
 
IMPORTANT: You may use a few special codes with the IMPORT ASCII format to identify delimiters or field separators:

\r for carriage return
\f for form feed
\n for new line
\t for tab

 
You may also use punctuation characters, ASCII codes, and control codes if your import file contains these as delimiters and separators.
 
The CARET "  ̂" symbol - This symbol requires special treatment since it indicates a "CTRL" character and is normally followed by a letter e.g. Ĵ, ^L, ^M, etc. Refer to the "Character Table" in "Define
Processing" help for "CTRL" characters. In cases where you want to import the caret " "̂ symbol as a literal, preceed it with a backslash e.g. \ .̂
 
DlF:
       Then: import DIF name
or:
       Then: import DIF name=pathname
 
where "name" is the name of the import file and "pathname" is a full or relative pathname. Use the pathname option when the merge file is not in the current directory.
 
WORD:
 
       Then: import WORD name
or:
       Then: import WORD name=pathname



 
where "name" is the name of the import file and "pathname" is a full or relative pathname. Use the pathname option when the merge file is not in the current directory.
 
Each "IMPORT filename" definition must be alone on its "Then" line.
Field assignments are written after the IMPORT command has been executed.
Use at least three characters for the IMPORT filename, and don't start with a number.
IMPORT is not available on Automatic or Input processing.
When using a pathname for the IMPORT filename, use the separator mark (\ or /) appropriate to your operating system.
 
Restrictions:
An "IMPORT filename" definition must be alone on its "Then" line.
 
Only one EXPORT or IMPORT statement with the same filename is allowed per processing table. In other words, you can't have the statement, "EXPORT MULTI List" followed in a few elements by
"IMPORT WORD List."



INDEXOF()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

subscript = INDEXOF(array, value) 
 Find the subscript of some value in an array.

Example:
array["1"]="cat"
array["2"]="dog"
array["3"]="bird"

subscript = INDEXOF(array, "dog") ' subscript will contain "2"



INKEY
Syntax:
         If: inkey = "c"
       Then: aa=inkey
 
Where "c" is a keyboard character or nothing (no key pressed) and where "aa" is the dummy field used to hold the value of the key the user pressed.
 

Version Ref:  3.x
 
Description:
Gets next keystroke if available.
INKEY is a system function that returns the value of the first character in the type-ahead buffer. Until a key has been pressed, the value of INKEY is null. On action lines INKEY must be assigned to a field in
order to use the key pressed. On condition lines INKEY must be compared to a value; it cannot be used by itself. The condition, "If: inkey", won't work.
For another way of capturing user keystrokes for processing, see the WAITKEY command.
INKEY cannot detect and does not respond to the BREAK key.
 
IMPORTANT: The INKEY function is CPU intensive. It is STRONGLY suggested that you use the WAITKEY function in its place.
 
Examples:
Use INKEY to eliminate extra keys the user may have pressed on the way out of Inquire, Update, Add or Request Output. These extra keystrokes are sometimes accepted by menus, and send the user into
unwanted situations. Use this syntax to eliminate extra keystrokes:
 
loop     If: inkey ne ""
       Then: goto loop
 
In other words, keep resetting INKEY until it has no value (is null ""). When INKEY becomes null, the loop ends.
 
To continuously show the time at the top-right corner of the screen until the user presses a key:
 
loop     If: inkey eq ""
       Then: show (1,70) @TM; goto loop
 
 
Use @SK with INKEY to test whether the user wants help:
 
         If: inkey eq "?" or @sk eq "HELP"
       Then: help "field1"



INPUT
 
Syntax:
       INPUT n "message"
       INPUT(r,c) n "message"
 
Displays message on line 23, waits for user to respond and puts response into dummy variable n. (The response holder MUST be a dummy variable.)
The "message" is an expression. Any part of it that is a literal string must be inside quotes.
 

Version Ref:  3.x
 
Description:
Prompts for user input.
INPUTPW(r,c) n "message"
 
Standard input statement.
 
       Then: input b "message to user"
 
 
You can build a literal string, or use any field or expression as the message portion of an INPUT statement.
 
       Then: input b "message" < n & m
or:
       Then: mm="Does everything look okay? (y/n)"
       Then: input q mm
 
 
You may define the variable which holds the response at the same time an INPUT question is asked. (Like any other filePro variable, this dummy field should only be defined once (anywhere) on a table.
Subsequent or previous uses of a defined variable should not be defined again.
 
       Then: input q(1,yesno) "Do you want to continue?"
 
 
INPUT questions can be placed at a particular point on the screen:
 
       Then: input(r,c) b "message"
 
where "r" is the row and "c" is the column. The row and column entries are expressions.
 
 
You must include a message in the INPUT statement. For a blank message, use:
 
       Then: input n ""
 
 
 
Note: The response can only be captured in dummy fields. Transfer the received values to real fields if they are to be stored on the record.



INPUT POPUP
 
Syntax:

Then: INPUT POPUP (r,c) aa "message"
 

Then: INPUT POPUP(r,c) n "message" DEFAULT [value]
 
 

Version Ref:  4.1
  5.0 (enhanced)

 
Description:
Functions the same as INPUT, but displays the input request message in a popup box at row "r" and column "c". If these coordinates are omitted, the popup box is centered on the screen.
 
If the row and column value specified position any part of the window beyond the limits of the screen, the window is automatically re-positioned to appear completely within the screen boundaries.
 
The location of the upper left corner of the popup window is determined by the row "r" and column "c" values. If row and column are omitted, the window is centered on the screen. The popup window can
also be centered by using "-1" for the row or column. This is useful if you want to center the window vertically or horizontally but want to specify a row or column.
 
The width of the popup window is determined by the defined length of the input variable plus the length of any message text on the same line.
 
The height of the window is determined by the number of message lines.
The code '"\N" can be used to begin a new line of text within the popup window.
 
Examples:

 
If: 'display the input popup box at row 5 and column 7

Then: input popup ("5","7") aa(8,mdy/) "A2-SYSTEM ARCHIVE PROCEDURE\n----------------\nEnter Archive Date: "

If: 'center the input popup box horizontally and vertically

 Then: input popup aa(8,mdy/) "A2-SYSTEM ARCHIVE PROCEDURE\n---------------------------\nEnter Archive Date: "

If: 'center the input popup box vertically starting in column 1

 Then: input popup ("-1","1") aa(8,mdy/) "A2-SYSTEM ARCHIVE PROCEDURE\n---------------\nEnter Archive Date: "

If: 'center the input popup box horizontally in row 1

Then: input popup ("1","-1") aa(8,mdy/) "A2-SYSTEM ARCHIVE PROCEDURE\n---------------\nEnter Archive Date: "
 
5.0 INPUT POPUP(r,c) n "message" DEFAULT [value]
 
Defaults the value of the input. You can optionally specify the
value, or use the current value of the input field.
 
Example:
 
   INPUT POPUP State "Enter state: " DEFAULT "NY"
Asks for the state, with "NY" defaulted in the input field.
 
Note: Make sure that "n" is defined e.g. declare State(2,state)



INPUTPW
 
Syntax:
       Then: INPUTPW(r,c) n "message"
 

Version Ref:  4.0
 

Description:
Same as INPUT, but a '#' is shown for each character entered by the user to hide the user input. It is often desirable to mask responses when prompting for passwords and other security sensitive data.



INPUTPW POPUP
 
Syntax:
       Then: inputpw popup(r,c) pw "message"
 

Version Ref:  4.1
 
Description:
Same as INPUT POPUP, but a '#' is shown for each character entered by the user (for security purposes).
 
Examples:
       Then: inputpw popup ("9","8") pw(8,*) "Enter Password "



INSTR()
 
Syntax:
       Then: a = INSTR(n,m,s)
 
Looks for field "m" in field "n" starting at position "s". The starting location in field "n"is returned as a number in field "a"; return value is "0" if field "m" is not found in field "n";
   
"a" is the return value
"n," "m," and "s" are expressions; "n" is the field you are searching
"m" is the field you are looking for
"s" (optional) is the character position in field "n" from which to start the search.
 
If the field is not found, INSTR returns a zero.
Examples:

Then: a = "The quick, brown fox jumped over the lazy dog."
Then: b = "fox"
Then: x = INSTR(a,b) ' x will contain 18.
Then: x = INSTR(a," ") ' x will contain 4.
Then: x = INSTR(a," ","20") ' x will contain 21.

 
Version Ref: 4.1
 

Description:
INSTR looks for the contents of one field within a second field, beginning at a specified character position. INSTR returns the character position in the second field where the first
field is found. INSTR can be used in an expression.
 
Version 6.0.01
 
RINSTR, and INSTR now allows negative positions for working backwards.
 

RINSTR(n,m)
RINSTR(n,m,s)

Search for m in n.
Searches backwards from string length or position s.

INSTR(n,m,s)
"s" (optional) is the character position in field "n" from which
to start the search.

NEW: If you use "-1" as the position it will scan backwards
from the end of the string and return the position if m is found.



INT()
 
Syntax:
       Then: a=INT(n)
 

Version Ref:  4.1
 

Description:
Returns the integer portion of a number. (Compliment of the FRAC function.)
 
Examples:
      Then: in = INT(no)



ISFILE
v6.2 (6.1.02 USP)
n = ISFILE(fname)
 - Test if a given path is a file. Returns "1" if the file exists and is a file. Returns "0" if it is not. Returns a negated system error on failure.

ISDIR
v6.2 (6.1.02 USP)
n = ISDIR(fname)
 - Test if a given path is a directory. Returns "1" if the file exists and is a directory. Returns "0" if it is not. Returns a negated system error on failure.

ISLINK
v6.2 (6.1.02 USP)
n = ISLINK(fname)
 - Test if a given path is a link. Returns "1" if the file exists and is a link. Returns "0" if it is not. Returns a negated system error on failure.

Parameters
fname
 - A path to an on-disk resource.

NOTE: Shares the same @FSTAT array used by EXISTS() in filePro.
ISLINK() always returns "0" on Windows.



ISFILE
v6.2 (6.1.02 USP)
n = ISFILE(fname)
 - Test if a given path is a file. Returns "1" if the file exists and is a file. Returns "0" if it is not. Returns a negated system error on failure.

ISDIR
v6.2 (6.1.02 USP)
n = ISDIR(fname)
 - Test if a given path is a directory. Returns "1" if the file exists and is a directory. Returns "0" if it is not. Returns a negated system error on failure.

ISLINK
v6.2 (6.1.02 USP)
n = ISLINK(fname)
 - Test if a given path is a link. Returns "1" if the file exists and is a link. Returns "0" if it is not. Returns a negated system error on failure.

Parameters
fname
 - A path to an on-disk resource.

NOTE: Shares the same @FSTAT array used by EXISTS() in filePro.
ISLINK() always returns "0" on Windows.



ISFILE
v6.2 (6.1.02 USP)
n = ISFILE(fname)
 - Test if a given path is a file. Returns "1" if the file exists and is a file. Returns "0" if it is not. Returns a negated system error on failure.

ISDIR
v6.2 (6.1.02 USP)
n = ISDIR(fname)
 - Test if a given path is a directory. Returns "1" if the file exists and is a directory. Returns "0" if it is not. Returns a negated system error on failure.

ISLINK
v6.2 (6.1.02 USP)
n = ISLINK(fname)
 - Test if a given path is a link. Returns "1" if the file exists and is a link. Returns "0" if it is not. Returns a negated system error on failure.

Parameters
fname
 - A path to an on-disk resource.

NOTE: Shares the same @FSTAT array used by EXISTS() in filePro.
ISLINK() always returns "0" on Windows.



ISLEAP()
 
Syntax:
       Then: xx=ISLEAP(date)
       Then: xx=ISLEAP(year)
 
 "date" is a date within the year to test.
 "year" is a numeric field containing the year itself.
 
Return value is 1 if it is a leap year, 0 otherwise.
 

Version Ref:  4.5
 
Description:
Determines if a given year is a leap year.
 
Examples:
Using a date field, determine if the date is in a leap year.
 
      Then: input popup dt(10,mdyy/) "Enter a date: "
           If: isleap(dt) gt "0"
      Then: msgbox dt < "is during a leap year."
 
Using a number, determine if that year is a leap year.
 
      Then: input popup yr(4,.0) "Enter a year: "
           If: isleap(yr) gt "0"
      Then: msgbox yr < "is a leap year."
 
Note: A leap year is defined as any year divisible by 4, unless it ends in a "00", in which case it must also be divisible by 400. The year 2000 is a leap year.



IXCOMMENT()
 

Syntax:
       Then: xx=IXCOMMENT(filename,indexletter)
 

Return Value

Returns the comment from the specified index.
If the index doesn't exist, or has no comment, a null value is returned.
 

Version Ref:  4.8
 

Description:
IXCOMMENT() returns the comment for the index specified.



IXSORT()
 
Syntax:
       Then: XX=IXSORT(filename,indexletter[,sortlevel])
 
Return Value
In the format: field,length,ascend/decend,[subtotal])
If no sort level is specified, all sort levels are returned in the format for all possible choices: 2, 12,a,n:1, 15,a,n:::
 

Version Ref: 4.8
 

Description:
IXSORT() returns the sort information for the specified index.
 
  Version Ref: 5.8.03
Enhanced to allow adding working path the filename

Then: IXSORT(filename, indexletter[,sortlevel[,path]])



JSFILE
 

Syntax:
JSFILE :CR filename
JSFILE [id] :CR filename
 
 
where id is an optional file handle, :CR CReates the file.
(NOTE:   If [id] is not provided, it defaults to "0")
 
JSFILE [id] :TX text
 
Writes text line(s) containing text to the file specified by id.
 
JSFILE [id] :CR-
 
Closes the file specified by filename.
 
The [id] file handle is not required for a single file. To create
multiple files, use a unique file handle for each [id].
 

Version Ref:  4.8  (not included in filePro Lite)
 
Description:
JSFILE Creates sequential ASCII files.
 
Example: Creates file1.txt and file2.txt that says hello and filename.
 
If:
Then: fa="file1.txt"; fb="file2.txt"
If:
Then: ta="hello"
If:
Then: JSFILE "1" :CR fa
If:
Then: JSFILE "2" :CR fb
If:
Then: JSFILE "1" :TX ta < fa; JSFILE "2" :TX "Hello" < fb
If:
Then: JSFILE "1" :CR- ; JSFILE "2" :CR-



IXSEL()  -  (Ver. 5.8.03)
 
This command will return the selection set for the automatic index.
 
The format is:

XX=IXSEL (filename,indexletter)
 
The return value is:

SelectorSentence:Group,Heading,Rel,Value:Group,Heading,Rel, Value....
 
 Version Ref: 5.8.03
 
Enhanced to allow adding working path the filename

 
Then: IXSEL(filename, indexletter[,sortlevel[,path]])



LEN()
 
Syntax:
       Then: LEN(f)
 
Where "f "is a dummy or real field.
 

Version Ref:  3.x
 

Description:
LEN returns the length of the field if one is assigned. In the case of a dummy field, if no length is assigned, LEN will return the length of its contents. LEN can be used on all processing tables, on both the
condition and action lines.
 
Examples:
The following assigns dummy field aa to have a length of field 5 and the "*" edit type.
 
      Then: aa(len(5),*)
 
Fill the dummy field bb with the length of field 5.
 
      Then: bb=len(5)
 
If the length of field 5 is 20, the contents of dummy field bb will also be 20.



LISTBOX()
 
Syntax:
         If: n=#-of-elements in box, w=width of lines in box
       Then: dim name[n](w) as in dim name[4](12)
         If:
       Then: name["1"]="Line 1 of box" ; name["2"]="Line 2 of box"
       Then: name["3"]="Line 3 of box"; ... ; name[n]="Line n of box"
       Then: a=LISTBOX(name,first,last,row,col,height,width)
Then: aa=LISTBOX(array,first,last,row,col,height,width [,position])

 
Version Ref:  4.1
  5.0 (Enhanced)
Description:

Displays a popup window containing a list of values from "name", an array defined with DIM.
Only "name" is required, all other parameters are optional. "first" and "last" refer to the range within the array to use (defaults to first and last elements of the array).
 
All parameters up to the last parameter used must be specified. Any unused parameters may be specified as a NULL string (" ''). Examples of valid parameter lists follow:
 
       Then: aa=LISTBOX(array,"","","","",height,width)
       Then: aa=LISTBOX(array,"","","","","",width)
       Then: aa=LISTBOX(array,"","","","",height,"")
 
Unused trailing parameters can be omitted. For example, the following two statements are equivalent:
 
       Then: aa=LISTBOX(array,"","",row,col)
       Then: aa=LISTBOX(array,"","",row,col,"","")
 
Note Version 5.0 enhanced "LISTBOX" to take an optional 8th parameter, which is the position of the initial highlight.
 
If row/col/height/width are not given, the window is centered on the screen. If the window is larger than needed, it will be shrunk accordingly.
 
The user sees the listbox (as prescribed) on the screen and control is handed to the user. Moving the highlighted bar to the desired choice and pressing ENTER deposits the number of the listbox item in the
specified variable to the left of the equal sign, and puts control back on the processing table. The listbox will be cleared automatically from the screen. Appropriate action can be taken based on the number
chosen by the user.
 
Choices from the listbox are made by positioning the highlight bar to the desired element with the arrow keys, or by pressing the first character of that element, then pressing < RETURN >. If the desired
element is named "test!," pressing "t" selects it. Select the next element (named "test2") by pressing "t" again.
 
The < PgUp > and < PgDn > keys may be used to move between screen pages. Use < HOME > to move the highlight to the first element on each screen page.
 
Description:
Prompts the user to select a value from a list.
 
Examples:
       Then: dim months[l2](3)
       Then: months["1"]="Jan";months["2"]="Feb";...months["12"]="Dec"
       Then: a=LISTBOX(months,"","","","","3")
       Then: show "You chose month#"<a<"which is"<months[a]
@keyH    If:
       Then: dim hbox[3](41)
       Then: hbox["1"]="1) Print the full schedule for this date."
       Then: hbox["2"]="2) Print the schedule for a specific Dr."
       Then: hbox["3"]="3) Cancel hardcopy request. "
       Then: sg=listbox(hbox)
         If: @sk="SAVE"
       Then: goto @keyH
         If: @sk="BRKY"
       Then: end
         If: sg="1"
       Then: goto doform1
         If: sg="2"
       Then: goto doform2
         If: sg="3"
       Then: end
doform1  If: '*doform1
       Then: beep
       Then: msgbox "\n\rThis schedule is\r\n\rnow printing. \r\n\n"
       Then: sn="rreport pcdappdet -f alldoctors -v vall -id -a -u -bg -bs 2>/d
             ev/null 1>/dev/null -r"<p&d
         If: 'the /dev/null redirections to /dev/null are for Unix only
       Then: system noredraw sn
       Then: end
doform2  If: '*doform2
       Then: input popup sl "Enter Doctor \r1-8\r\n==> "
         If: sl=""
       Then: end
         If: sl lt "1" or sl gt "8"
       Then: goto doform2
       Then: sm=doctnum[sl]
       Then: sn="rreport pcdappdet -f singlecoct -v vsingle -ia -a -u -bg -bs 2
             >/dev/null 1>/dev/null -r"<sm&p&d
         If: ' the /dev/null redirections above are for Unix only
       Then: beep



       Then: msgbox "\n\r This schedule is\r\n\rnow printing. \r\n\n"
       Then: system noredraw sn
       Then: end
 
NOTE: LISTBOX usage can be very elaborate. Large multiple page arrays may be put up which start and end at varying places in the array based on other processing. Also, the elements of the listbox can be
filled with varying text each time they are displayed by reloading the array elements before putting the LISTBOX up on the screen (lines 260-261 below). If any of the options such as beginning element and
ending element are not needed, use a "" as a placeholder in their stead (line 266 below).
 
       Then: 'following arrays used on doctor by hour listbox
       Then: dim lbox[90](74)
       Then: dim num1[90](10) ; dim num2[90](10) ; dim num3[90](10)
       Then: dim name1[90](20) ; dim name2[90](20) ; dim name3[90](20)
       Then: dim tim[90](6,,g)
       Then: tim["1"]=" 7:00a" ; tim["2"]=" 7:10a" ; tim["3"]=
              " 7:20a" ; tim["4"]=" 7:30a" ; tim["5"]=" 7:40a" ; tim["6"]
              " 7:50a"
       Then: tim["7"]=" 8:00a" ; tim["8"]=" 8:10a" ; tim["9"]=
              " 8:20a" ; tim["10"]=" 8:30a" ; tim["11"]=" 8:40a" ; tim["12"]=
              " 8:50a"
              ...
              ...
       Then: tim["85"]=" 9:00p" ; tim["86"]=" 9:10p" ; tim["87"]=
             " 9:20p" ; tim["88"]=" 9:30p" ; tim["89"]=" 9:40p" ; tim["90"]=
             " 9:50p"
 
 
dosked   If: '*dosked
       Then: gosub ldnum ; gosub ldnames ; i(2,.0)="1"
loop     If: i le "90"
       Then: lbox[i]=tim[i]&"  "&num1[i]&"  "&""name1[i] ; i=i+"1";goto loop
       Then: display "doctday"
       Then: show ("1","1") "  Schedule for: Dr. " & doctlongname[a] < "on" < "\
              r" & jk & "\r" < jm < ra
       Then:  show ("22","1") "Use \r ARROWS \r or \r Nxt-Page \r, \r Prv-Page \r
              keys. Press \r RETURN \r to select time slot."
       Then: show ("24","2") "(You must choose 'beginning' time slot of existing
              appts to view/modify them.)"
         If: 'z will hold the number of the element selected, remember the offset
       Then: z=listbox(lbox,b,e,"4","1","18","")
         If: @sk="BRKY"
       Then: cls ; return
         If: @sk="SAVE"
       Then: cls ; return
         If: 'deals with the offset for morning, afternoon, evening
       Then: z=z+(b-"1")
       Then: gosub filpats



Lite or filePro Lite
 
filePro Lite is an abbreviated version of filePro that has enough features to create small basic programs.  Advanced features are not available in Lite
and certain functions may be limited.
 



LOCKED()
 
Syntax:
 If: LOCKED(lookupname)
 

Version Ref:  4.8
 

Description:
Test if the specified lookup failed because the record was locked. (requires the new "-w" flag on lookup in addition to the "-p" flag)



LOG()
 
Syntax:
        Then: result = LOG(n)
 

Version Ref:  4.8
 
Description:
Natural (base e) logarithm
 
Examples:
When na = "100"
 
XX=log(na)
 
Returns the natural log value "4.6051702"



LOG10()
 
Syntax:
       Then: result = LOG10(n)
 

Version Ref:  4.8
 
Description:
Base 10 logarithm
 
Examples:
When na = "100"
 
XX=log10(na)
 
Returns the common log value "2.000000"



LOGTEXT
 
Syntax:
       Then: LOGTEXT exp
 
Adds "exp" to file stored in environment variable LOGFILE.
 
Notes: Will do nothing if the LOGFILE variable is not set.
 
LOGAPPEND controls the "open" mode of the file for the session. The choices are overwrite or append for each session.
 
Version Ref:  4.5
 
Description:
Stores data in the destination file set by the environment variable LOGFILE.
 
Examples:
 
       Then: LOGTEXT "Record "<@rn< " updated by "<@ID< "on" <@TD<"at"<@TM<"."
 

Result: A line of text is shown in the destination file similar to the following.
 
"* Record 3 updated by root on 08/07/99 at 12:30:22"
 

See Also
 
LOGFILE
PFLOGAPPEND



LOOKUP (only 1 (one) lookup per process in Lite)
 
Syntax:

 
LOOKUP filename  R=n -E record-number lookup
LOOKUP filename  K=m I=o -XE key-field (indexed) lookup
LOOKUP filename  R=FREE -E first-free-record lookup
LOOKUP filename  K=m I=o -XEP with p flag, locks looked-up record
LOOKUP filename K=m I=o b=format with a browse format where the format can be a literal or an expression
LOOKUP filename K=m I=o -s b=format -s switch drops "No records exist " message for browse
LOOKUP filename@qual lookup to specified qualifier
LOOKUP filename@ lookup to unqualified (main) file
LOOKUP assign=filename designating an alias for the lookup filename
LOOKUP filename K=m I=o -XEPW with w flag, will cause protected lookup to lock records to fail rather than wait for record to be unlocked.
LOOKUP filename = test k=(aa) i=A -nxo Partial lookup flag added to *cabe lookup wizard.
 
All the above syntax when used with DECLAREd variables, as follows:
 
LOOKUP k= r=
 
lookup dat = (FileName & "@" & QualFile) i=A k=(KeyWord) -nx
lookup zip = zipcodes i=A k=(State & ZipCode) -nx
lookup sys = (SysFile) r=(RecNum) -n
 
In the above examples: FileName, QualFile, KeyWord, State, ZipCode, SysFile, RecNum and LookupKey, are GLOBAL define variables whose value may be set in processing.
 
Version Ref: 6.2 (6.1.02 USP)
 
Enhanced index flag to take an expression.
 
Example:

ix="A"
lookup myfile = test k=("key") i=(ix) -nx
 

 
Version Ref: (6.0.00.01)
 
Partial lookup flag added to *cabe lookup wizard.
-O on an exact lookup now does partial key matching. This kills a lookup once the beginning of the key value no longer matches the lookup key value.
 
Example:

aa="CR100"
lookup myfile = test k=(aa) i=A -nxo
 

The lookup will fail once the current record's key changes where the beginning no longer matches CR100.
This means the lookup, in this case, would match the following records.

CR100A
CR100B
CR10000A

But fail in the following cases
CR101
CR110

And so on.
 
Version Ref:  Various
NOTE: If an alias is used for a lookup filename, this alias is the only name that can be used to refer to this lookup and fields from the specified record, the filename itself will no longer be recognized.
 
LOOKUP                               dash (-) in place of filename, moves to the
                                     specified record in current file
 
NOTE: Using a dash (-) in place of the filename parameter in a lookup statement, causes filePro to perform a very special operation. This syntax will cause the current record to be stored, and moves the user
to the designated lookup record, and this record is now considered the "current" record. Processing begins on this record on the processing element immediately following the lookup dash statement.
Obviously, lookup dash can only be used to move within the current file, it may not be used to place a user in another file.
 
LOOKUP can also be used to connect to a record in the current file. To do this, simply use the current file name as the lookup file name. This is considered a normal lookup and data can be moved to and
from that record in the usual way. This is nothing like the special operation performed by lookup dash described above. When the current filename is used in the lookup (not a dash), the user is not moved to
that other record, rather a simple lookup is performed.
 
 
Description:
 
Connects to another file for purposes of retrieving data from that file or posting data into that file.
 
LOOKUP is used to temporarily connect two files. The two files are:
 
1. The current file (the main file, the primary file), i.e., the one you're in when you define or run the operation
2. The other file (the lookup file, the lookup), i.e., the one specified in the lookup statement
 
LOOKUP can be used two ways: to get data from a file; and, to post (copy) data to a file, or both.
 



Creating a Lookup
 
There are three steps (or parts) to consider when creating any lookup:
 
1. Designating which file to use for the lookup.
2. Designating how to find the appropriate record in that file.
3. Designating what to do if the lookup fails, i.e., is not successful in finding the specified record.
A fourth consideration comes into play after the lookup has been run successfully. This step is not actually part of the lookup statement itself, but comes on processing lines after the LOOKUP line.
4. Designating the fields in the lookup file from which to take data, or those in which to put data, or both.
 
IMPORTANT: The lookup wizard can be used to prompt you step-by-step for the required LOOKUP parameters. This wizard is accessed by pressing the F5 key while the cursor is on a "then" line. (This key
is for PC's and ANSI mode terminals. It will be different for character based terminals, on which it is normally CTRL-R.
 
IMPORTANT: If you use punctuation in filenames, and you want to do a lookup to such a file, you need to use an alias
 
Lookup Statements
 
Record-number, key-field and free-record lookups have different formats and a variety of different options.
For help defining the lookup file statement, use the "define  lookup" option accessed with < F5 >.
 
For an assigned file name:
 
       Then: lookup assign=filename r=f -e
 
 
Record-number options
 
       Then: lookup filename r=f -e
 
where "filename" is the name of the file containing the desired records, "r" indicates record-number lookup, "f" is the field containing the record number in the current file (the value in field "f," is a record
number from the other file), and "-e" is the default lookup failure choice, "report an error. "
 
Free-record options
 
       Then: lookup filename r=free -e
 
Keep in mind that the lookup file doesn't have to contain empty records. LOOKUP expands the file as needed.
 
On UNIX/XENIX systems, you might want to add a "protect" flag (-P) to the statement. The -P flag prevents two users from accessing and changing the same lookup record at the same time. It does so by
locking the lookup record as soon as it's accessed; the record isn't unlocked until all processing is done and the new data is saved or until a WRITE statement is done on that lookup.
 
Syntax:
 
       Then: lookup filename r=free -ep
 
Keyfield options
 
Syntax:
       Then: lookup filename k=m i=o -xe
 
where "filename" is the name of the lookup file, "k" is the keyfield flag and "m" is the reference field in the current file; "i" is the index flag and "o" can be index A-H, 0-9 in the lookup file; -x is the default
match, "exact match," and e is the default lookup-failure choice, "report an error."
 
Indexes
 
Keep in mind that the index must be built in the lookup file on the field corresponding to the cross-reference field in the current file. For example, if the key field in the current file is zip code, sort the lookup
file's index on its zip code field. For best results, make sure the index sort-key and the cross-reference field have the same edit type.
 
Match options
X, exact match
G, exact or next greater match
L, exact or next lower match
 
If you pick the 'less than' or 'greater than' mode, the program looks for an exact match first. If it finds no match, it chooses the record with the value just less or greater than the one requested.
 
Lookup-failure options
The failure option flags tell the program what to do if the right information isn't found. The options are:
B, fill the field with blanks
N, do nothing (use for processing tests)
E, report an error
 
The E flag is the only one of the three that returns a "Lookup Failed" error message. The N flag is used to test for lookup failures and resolve them while processing is running.
 
Note:
If you use the N flag without testing for failed lookups (by adding the statement "If: not filename"), you'll get another error message later, when you try to use the field for which the lookup failed. The B flag
returns no error message, just fills the field with blanks. See "Connecting Files: Lookups and Posting" earlier in this chapter for more information.
 
Changing record positions
 



Use LOOKUP and a hyphen instead of a file name to change the record position in the current file. (Note that this is not the same as doing a lookup from and to the current file.) This option lets you keep
the user in update mode while still letting him pick the record to update next. See example 2 below.
 
Syntax: Writing Field Assignments
 
Once the lookup files are specified, you must tell the program into which fields, exactly, the data are to be put. Specifying fields for lookups:
 
       Then: a=filename(n); b=filename(m); . . .
 
where "a" and "b" are the fields in the current file into which the data go, "filename" is the name of the lookup file, and "n," "m," etc., are the numbers of real or system-maintained fields containing the data
in the lookup file.
 
Specifying fields for posting:
 
       Then: filename (n) =a; filename (m) =b ; . . .
 
where "filename" is the name of the lookup file, "n," "m," etc. are the numbers of real fields into which the data go, and "a" and "b" are dummy, system-maintained or real fields in the current file from which
the data come.
 
Example 1
 
In the COPY and INPUT examples, your records were simply appended to the end of Archive. With LOOKUP, however, you can archive to particular records. In this set of instructions, you archive records
according to customer name.
 
Step 1
Access the "arch" output processing table in sample file, TInvoice. Change the record-number lookup in element 3 (or 1 if you didn't do the INPUT example) to a key-field lookup, as follows:
 
       lookup archive k=1 i=b -ex
 
Save the processing table. If you tried the INPUT example, this is how the revised table should look (screen 13-23):
 
Screen (x): Copying to Particular Records
 
Step 2
Build Archive index B on field 1, customer. Also, create a few new invoices using the same customer numbers but different item numbers or quantities as in the invoices already archived. Note the balances due.
 
Step 3
Run the archival; access Request Output; the file name is tinvoice, the output format is "arch." Sort on field 1, if desired, and select all records. Enter an archive date.
 
Step 4
Check Archive via Inquire, Update, Add. There should be no additional records, but the balances-due should be different.
 
Example 2
Suppose that you want to let the user update a series of records without having to exit from update mode each time he wants a particular record. You could write the processing as follows (try it on TClient):
 
       Then: cc= @rn; input aa(15,uplow) "What name do you want to
             update now? Press RETURN to quit"
       Then: bb=aa { ""
         If: aa eq ""
       Then: exit
       Then: lookup - k=bb i=a -ex
         If: cc eq @rn
       Then: getnext -
       Then: screen 1; restart
 
This set of elements asks the user what name to find next, switches to the new record (if he asks for the same name, moving the user to the next instance of the name - cc eq @RN, getnext -). Once the
record is found, the SCREEN command puts him in update mode and RESTART starts processing from the top of the table.
 
Restrictions
A lookup statement must be alone on its action line.
Any file name (including an assigned file name) used in a lookup statement must be at least three characters long and should start with a letter.
 
IMPORTANT: If you use punctuation in filenames, and you want to do a lookup to such a file, you need to use an alias
 
Example 3
         If: lookup cust r=free -e
       Then: cust(4)=3
 
Copy field 3 of the current (or main) file record into field 4 of the free record in "cust".
 
Example 4
       Then: aa="1"
       Then: lookup control r=aa -e
       Then: zz=control(8)
 
Looks up file "control" using the value in field aa to get a particular record number in the "control" file. Copies the value in field 8 on that record in the "control" file to the dummy variable zz.
NOTE: As of Version 5.7.04, browse lookups are now supported in dreport/rreport
 



MAX()
 
Syntax:
       Then: a=MAX(n)
       Then: n=MAX(aa,ab, ...)
 
Version Ref:  4.1
 
Description:
Finds maximum value of field "n" on output, or returns the highest value in the list of fields given.
 
Examples:
For financial analysis, you want the average sales per sales representative, plus, for comparison, his or her maximum and minimum sales (see the "AVG" and "MIN" commands also). "Total Sales" is field 22.
To find the maximum value, you'd put dummy field M on a subtotal line in the report format, and write the element as follows:
 
       Then: M=MAX(22)
 
Find the maximum in a list of values.
 
       Then: mx = MAX(ab,ac,ad,ae,5,12)
 
Restrictions:
For aggregate maximums, calculations are made at the subtotal and total breaks.
For comparative maximums, the fields do not have to be numeric, but they must all be comparable. For example, you may supply a list of dates or times, but not both. There must be at least two fields. If only
one field is supplied, the aggregate form of the function is used.



FOR

Version Ref: 6.1 (USP 6.1.01)
FOR f[(len,edit)] FROM exp TO exp [STEP exp] DO label
 - A loop that runs from a value to a value. Built in edits are supported. If a STEP value is not supplied, filePro will determine a STEP value based on the FROM and TO expression values. A FROM
value that is less than a TO value will result in a positive STEP ("1"). If FROM is greater than TO the STEP value will be negative ("-1"). Each iteration of the loop will update the value of "f", incrementing
by STEP, and goto the label specified by DO.
Note: The FROM, TO, and STEP expressions are evaluated once when the loop is first executed. Changing these values once the loop starts executing will not change how the loop run.

Example - For Loop
Processing:

      Then: FOR f(10,.0) FROM "1" TO "10" STEP "1" DO lp1; goto en1 
  lp1   If: 
      Then: msgbox f    ' print the value of "f" from 1 to 10
      Then: end
  en1   If:
      Then: FOR d(10,mdyy/) FROM "12/01/2024" TO "12/31/2024" DO lp2; goto en2
  lp2   If:
      Then: msgbox d    ' print the value of "d" from 12/01/2024 to 12/31/2024
      Then: end
  en2   If:
      Then: end
 

WHILE

Version Ref: 6.1 (USP 6.1.01)
WHILE cnd DO label
 - A loop that runs while the condition is true. Each iteration checks the condition (cnd) and while the value is true goes to the label specified by DO. A condition can be an IF expression or label.

Example - While Loop
Processing:

      Then: declare total(10,.0)
      Then: total="0"
      Then: lookup inv=invoice r=(rec) -nx
      Then: WHILE inv DO lp1; goto en1
  lp1   If: 
      Then: total=total+inv(1)
      Then: getnext inv
      Then: end
  en1   If:
      Then: close inv; end
 

LOOP WHILE|LOOP UNTIL

Version Ref: 6.1 (USP 6.1.01)
LOOP label WHILE cnd
LOOP label UNTIL cnd
 - A loop that runs while the condition is true (WHILE) or until the condition is true (UNTIL). Each iteration starts by going to the label specified by DO, then the condition is checked and the loop either
continues or terminates based on the value of the condition. A condition can be an IF expression or label.

Example - Loop While
Processing:

      Then: i(10,.0)="10"
      Then: LOOP lp1 WHILE i gt "0"; goto en1
  lp1   If: 
      Then: i=i-"1";
      Then: end
  en1   If:
      Then: end
 



FOR

Version Ref: 6.1 (USP 6.1.01)
FOR f[(len,edit)] FROM exp TO exp [STEP exp] DO label
 - A loop that runs from a value to a value. Built in edits are supported. If a STEP value is not supplied, filePro will determine a STEP value based on the FROM and TO expression values. A FROM
value that is less than a TO value will result in a positive STEP ("1"). If FROM is greater than TO the STEP value will be negative ("-1"). Each iteration of the loop will update the value of "f", incrementing
by STEP, and goto the label specified by DO.
Note: The FROM, TO, and STEP expressions are evaluated once when the loop is first executed. Changing these values once the loop starts executing will not change how the loop run.

Example - For Loop
Processing:

      Then: FOR f(10,.0) FROM "1" TO "10" STEP "1" DO lp1; goto en1 
  lp1   If: 
      Then: msgbox f    ' print the value of "f" from 1 to 10
      Then: end
  en1   If:
      Then: FOR d(10,mdyy/) FROM "12/01/2024" TO "12/31/2024" DO lp2; goto en2
  lp2   If:
      Then: msgbox d    ' print the value of "d" from 12/01/2024 to 12/31/2024
      Then: end
  en2   If:
      Then: end
 

WHILE

Version Ref: 6.1 (USP 6.1.01)
WHILE cnd DO label
 - A loop that runs while the condition is true. Each iteration checks the condition (cnd) and while the value is true goes to the label specified by DO. A condition can be an IF expression or label.

Example - While Loop
Processing:

      Then: declare total(10,.0)
      Then: total="0"
      Then: lookup inv=invoice r=(rec) -nx
      Then: WHILE inv DO lp1; goto en1
  lp1   If: 
      Then: total=total+inv(1)
      Then: getnext inv
      Then: end
  en1   If:
      Then: close inv; end
 

LOOP WHILE|LOOP UNTIL

Version Ref: 6.1 (USP 6.1.01)
LOOP label WHILE cnd
LOOP label UNTIL cnd
 - A loop that runs while the condition is true (WHILE) or until the condition is true (UNTIL). Each iteration starts by going to the label specified by DO, then the condition is checked and the loop either
continues or terminates based on the value of the condition. A condition can be an IF expression or label.

Example - Loop While
Processing:

      Then: i(10,.0)="10"
      Then: LOOP lp1 WHILE i gt "0"; goto en1
  lp1   If: 
      Then: i=i-"1";
      Then: end
  en1   If:
      Then: end
 



FOR

Version Ref: 6.1 (USP 6.1.01)
FOR f[(len,edit)] FROM exp TO exp [STEP exp] DO label
 - A loop that runs from a value to a value. Built in edits are supported. If a STEP value is not supplied, filePro will determine a STEP value based on the FROM and TO expression values. A FROM
value that is less than a TO value will result in a positive STEP ("1"). If FROM is greater than TO the STEP value will be negative ("-1"). Each iteration of the loop will update the value of "f", incrementing
by STEP, and goto the label specified by DO.
Note: The FROM, TO, and STEP expressions are evaluated once when the loop is first executed. Changing these values once the loop starts executing will not change how the loop run.

Example - For Loop
Processing:

      Then: FOR f(10,.0) FROM "1" TO "10" STEP "1" DO lp1; goto en1 
  lp1   If: 
      Then: msgbox f    ' print the value of "f" from 1 to 10
      Then: end
  en1   If:
      Then: FOR d(10,mdyy/) FROM "12/01/2024" TO "12/31/2024" DO lp2; goto en2
  lp2   If:
      Then: msgbox d    ' print the value of "d" from 12/01/2024 to 12/31/2024
      Then: end
  en2   If:
      Then: end
 

WHILE

Version Ref: 6.1 (USP 6.1.01)
WHILE cnd DO label
 - A loop that runs while the condition is true. Each iteration checks the condition (cnd) and while the value is true goes to the label specified by DO. A condition can be an IF expression or label.

Example - While Loop
Processing:

      Then: declare total(10,.0)
      Then: total="0"
      Then: lookup inv=invoice r=(rec) -nx
      Then: WHILE inv DO lp1; goto en1
  lp1   If: 
      Then: total=total+inv(1)
      Then: getnext inv
      Then: end
  en1   If:
      Then: close inv; end
 

LOOP WHILE|LOOP UNTIL

Version Ref: 6.1 (USP 6.1.01)
LOOP label WHILE cnd
LOOP label UNTIL cnd
 - A loop that runs while the condition is true (WHILE) or until the condition is true (UNTIL). Each iteration starts by going to the label specified by DO, then the condition is checked and the loop either
continues or terminates based on the value of the condition. A condition can be an IF expression or label.

Example - Loop While
Processing:

      Then: i(10,.0)="10"
      Then: LOOP lp1 WHILE i gt "0"; goto en1
  lp1   If: 
      Then: i=i-"1";
      Then: end
  en1   If:
      Then: end
 



MDAY()
 
Syntax:
      Then: xx=MDAY(date)
 
where "date" is a date within the month to test.
 
Return value is a numeric field containing the number of days in the specified month.
 
Version Ref:  4.5
 
Description:
Returns the number of days in a given month.
 
Examples:
An old rhyme
 
      Then: msgbox mday(doedit("090195","mdy")) < "days hath September."



MEMO
 
Syntax:

Then: MEMO xx delete
Then: MEMO xx clear
Then: MEMO xx edit [(row, col, height, width [,startrow, startcol] )] [WRAP | NOWRAP] [READONLY] [TITLE]
Then: MEMO xx export filename [APPEND]
Then: MEMO xx import filename
Then: MEMO xx show [(row, col, height, width [, startrow, startcol ] ) ] [WRAP | NOWRAP]
 
If: MEMO
If: NOT MEMO

 
Version Ref: 5.0
 
Version Ref: 6.0.00
 

Added maxsize to limit the number of allowable characters entered into a memo window
 

memo NNN edit (row,col,lines,width,startLine,startcol,maxSize)
 

Description:
Used to manage Binary Large Objects (BLOBS) which are plain-text. The items are stored within a filePro record as a variable length field based on
the size of the object. The objects are retrieved with an internal filePro editor or by using and external program to display, edit, print, or to otherwise
manipulate them.
 
Important Note:  If you use MEMO SHOW you must have a corresponding MEMO CLEAR before updating or moving to a new record.  
Without a CLEAR you will leave old memo data on the screen and it will under/overlay with data from the new record or auto processing.
Note:
Length and type must be defined as (16,MEMO).
 
Memo Printing

 
Refer to " Embedding Objects " for memo printing.
 
MEMO commands:
 
 Then: MEMO xx IMPORT filename
 
  Imports contents of specified "filename" into MEMO field xx.
 
 Then: MEMO xx EXPORT filename [APPEND]
 

 Exports MEMO field xx to the specified filename.
 

APPEND is an optional parameter that allows you to append the exported memo to a file. This option was added in version 5.6
 

 Then: MEMO xx DELETE
 
  Deletes the specified MEMO field xx.
 
 Then: MEMO xx SHOW [NOWRAP]
 
  Shows the specified MEMO field xx.
  NOWRAP is an optional parameter added in version 5.6 to prevent text from wrapping.
 
 Then: MEMO xx CLEAR
 
  Clears the specified MEMO field xx after a SHOW xx MEMO.
 
 Then: MEMO field EDIT [(row, col, height, width [,startrow, startcol ] ) ] [WRAP|NOWRAP] [READONLY]
 

Brings up the internal filePro memo editor. All parameters are optional. Blank row/col means center vertical/horizontal. Blank startrow/startcol



means position at start of memo. The internal filePro editor will word wrap as the default. Word wrap can be turned with the optional NOWRAP
parameter. READONLY will prevent the memo from being updated.
 
Then: MEMO field EDIT (row,col) TITLE "Window title text"
 
Then: MEMO field SHOW (row,col) TITLE "Window title text"
 
 Adds a title to the memo window.
 
Note: Only fileProGI will display this title in version 5.0.6.
 
Examples:
 
 @keym If:

Then: MEMO 2 EDIT
 
The above example will bring up the internal filePro memo editor for field 2 in a centered window when the key "m" is pressed at "Enter
Selection". Since no parameters are specified, a default window size of 10 rows by 35 columns wide is used.
 
 @wlfmf if: mf gt ""  'a memo flag field is greater than a blank

then: MEMO 2 EDIT (" "," ","15","60","2 ","1")
 
In the above example, if dummy field "mf" is not equal to a blank you will get a memo editor window that is centered. The height is "15" rows
and width is "60" columns. When the user enters the memo field, they will be placed in row 2, column 1 as specified by the last two
parameters.

If: @sn eq "ray" 'if the current screen name is ray
Then: MEMO 10 EDIT ("10","10","10","40") NOWRAP

 
If you are on screen name "ray", the filePro memo editor opens up a window with an upper left-hand corner at 10,10 and places the current
contents of memo (field 10) in it for editing. The window size is 10 rows by 40 columns. Notice that the starting row and column values are not
specified in this example. If these values are not specified the starting row and column defaults to "row 1", "column 1". Also, word wrap is
turned off with the optional parameter "NOWRAP". If this paremter is not used, the internal memo editor defaults to word wrapping e.g.
"WRAP".
 
 If: @sn eq "ray"
 Then: MEMO 10 SHOW
 
If you are on screen name "ray", the filePro memo editor opens up a window with an upper left hand corner at 10,10 and places the current
contents of memo (field 10) in it for display only. The window size is 10 rows by 40 columns. Notice that the starting row and column values
are not specified in this example. If these values are not specified the starting row and column defaults to "row 1", "column 1".
 

If: 
 Then: MEMO nn CLEAR

 
 Clears the memo field from the screen after a MEMO nn SHOW.
 
MEMO Condition

 
If: MEMO
If: NOT MEMO

Determines if the most recent MEMO command succeeded or not.
 

Note:
Length and type must be defined as (16,MEMO). Currently, MEMO and BLOB are aliases, so "if: NOT BLOB" command will return the same
result as "if: NOT MEMO". (MEMO fields are simplya plain-text BLOB fields.)

 
  If: MEMO xx CO "mytext"
 
 Determine if MEMO field xx contains a string "mytext".
 
Extended Functions and Help for "Inquire/Update/Add"

The internal filePro editor has extended functions and help. When a memo field is displayed in "Inquire, Update, Add", you will see "Press [F8]
for extended functions, [F10] for help". When pressing [F8], a screen is displayed as shown in figure 1.



 

Figure 1 - Memo Editor Extended Functions
 
Although the extended functions are rather self-explanatory, it is important to note that the "Mark text" option allows you to select blocks of text
that can be pasted to other records.
 
Mark Text - Allows you to use the cursor keys, PgUp, and PgDn to select text After selecting this option, another set of extended functions (as
shown in figure 2) are presented when pressing the [F8] key.
 

Figure 2 - Selected text extended functions.
 
This menu allows you to cut, copy, or delete the text you have selected. When selecting these options, the selected text is maintained in
filePro's clipboard for pasting into the current record or another record. When pressing any of these extended function keys, you are returned
to the memo editor screen and your selected text is stored in the clipboard.
 
You can press [F10] for help at any point while editing your memo fields. Figure 3 depicts the typical help for the "Memo Editor" functions.
 

Figure 3 - Memo Editor Help
 
Note that the standard filePro keys also apply for the filePro "Memo Editor" functions. You can use [Alt] [F9] (DOS/Windows) or [Ctrl] [Z] (*NIX)
to toggle INSERT/OVERTYPE mode while editing memo fields.
 
When pressing [F10] for help in the extended functions, a screen similar to figure 4 is displayed.
 



Figure 4 - Memo Editor Extended Functions Help



MENU
 

Syntax:
       Then: MENU name label1,label2,...
 
Version Ref:  3.x
 
Description:
Puts up a menu that looks exactly like a standard filePro menu. It is composed of "name", an array defined with DIM.
 
There must be one more element in array "name" than choices on the menu. This extra element (the first element) holds the menu's title. All elements of array "name" are loaded in processing as in the
following:
 
       name["1"]="The Menu's Title"
 
The first element of the array is always the menus title, as show above.
 
The actual menu choices, descriptions, and actions are loaded into this array based on their physical (p)osition on the displayed menu. The syntax for loading the rest of the elements of the menu array is as
follows.
 
       name[p]="#:description"
 
       p is the position on the menu, must resolve to "1" through "24".
 
       # is the menu-choice character, can be 0-9, A-W,Y,Z, case-
       insensitive, or any punctuation mark on the keyboard.
       X is reserved by filePro as an exit key for the menu.)
 
       : is the mandatory separator between the choice
       character and the description
 
       description is the text for the menu choice
 
The label list directs processing after the user has selected a menu item. The label is where processing does an "implied" GOTO for each choice on the menu. Every menu choice is related to this label list by its
numerical position on the menu plus "1". In other words, the choice in name["5"] is tied to the 4th label in this list. If the user selects this choice (even though it may have a menu choice-character of "S")
processing will begin immediately at the fourth label in the list. This is because the menu heading is always held in name["1"], thereby offsetting the physical choices on the menu and the label list by "1".
 
NOTE: Once processing is sent to the appropriate label by consequence of the user picking a menu choice, it will continue as normal and will NOT automatically return to the MENU command. If you want
this to happen, you must arrange it that way. In other words, if you want the user to always be returned to the menu after executing any menu choice, then you must specifically arrange things this way, usually
by putting a GOTO back to the original MENU command at the end of each label's processing routine.

 
Description:
MENU lets you create menus on processing tables. Processing menus let you select particular processing operations in the same way that user menus let you select particular programs from a list of programs.
The MENU command uses the same routines and defaults as Define User Menus. You can have up to 12 choices in a single, centered column or up to 24 in two columns; the entries "X - Exit" and "Enter
Selection > " are added automatically; and any character except X or x can be used as a menu choice.
 
Examples:
 
Domen    If:
       Then: dim tstmenu["4"]
         If:
       Then: tstmenu["1"]="Order Processing"
         If:
       Then: tstmenu["2"]="1:Get order status"
         If:
       Then: tstmenu["3"]="2:Update pickticket screen"
         If:
       Then: tstmenu["4"]="S:Change order status"
         If:
       Then: menu tstmenu status,scr4upd,fix
         If:
       Then: end '<=user presses "X" processing falls to this line
Status   If: 4 gt "1"
       Then: show "@The status of this order is OPEN" ; goto domen
         If: 4 le "1"
       Then: show "@The status of this order is CLOSED";goto domen
scr4upd  If:
       Then: screen 4 ; goto domen
Fix      If:
       Then: input q(1,yesno) "Is this order locked? (y/n) "
         If: q ne "Y"
       Then: 14="N" ; goto domen
         If:
       Then: 14="Y" ; goto domen
IMPORTANT: Multi-user versions. If you execute a MENU command from @when processing or regular INPUT processing, the record on which you are standing is locked. This means that others wishing to
access this record either in Inquire, Update & Add (rclerk, dclerk) or with output processing (rreport, dreport) will not be able to do so. They will get a "Record is being updated, access denied" message.
Therefore, use good judgment as to when to put up a processing menu and when to use another mechanism for providing choices and consequent actions. The MENU command can be used in @entsel
processing, which does not lock the current record, if it will serve the desired purpose.
 
HINT: Processing menus can be made very dynamic by loading the menu array with varying text, perhaps based on user choices. The highlighted cursor can also be placed on desired menu choices from within
processing by making use of the PUSHKEY command and arrow keys.



MERGEVAL Version 5.6
 
the same as FIELDVAL() but for IMPORT rather than LOOKUP. Gives you a way of using an expression for the field number.

That is:
xx =alias(3)
is the same as
xx = mergeval(alias,"3")

but you can also use sometihng like MERGEVAL(alias,something+"2")



MESSAGE
Note: This command is only available if you have purchased the fileProGI Developer Toolkit . Refer to the documentation provided with the fileProGI Developer Tookit for syntax
and examples.



MID()
 
Syntax:
       Then: a=MID(f,"s","n")
 
Finds and copies the middle of a field.
 
MID(f,"s", "n")=newvalue
 
Replaces characters within a field.
 
"f" is the field on which to perform the operation.
"s" is the number of the starting position within the field.
"n" is the number of characters starting from "s" to use.
 
Version Ref:  3.x
  5.0(Enhanced)
 
Description:
A system function used to find and copy the middle of a string, and to replace characters within a field.
 
5.0 Version 5.0 enhanced the MID function to allow expressions as the first parameter.
 
Example:
 MESGBOX "You were born in the year" < mid(InfoFile[5],"7","4")
 

The above line gets 4 characters starting in position 7 from field 5 in the file named InfoFile.
Note :
If you use a "true" expression as the first parameter, you have to make sure you know the length/type of the result of the expression. It may not be the same as you think.For example, the expression
"1"/"2" is of type (25,F). More likely, you will use this to place lookup fields or array items as the parameter.
 
Examples:
        If: mid(@cd,"7","2") eq "97"
      Then: show "This record was created in 1997." ; end
 
        If: @id ne mid(14,"5","8")
      Then: show "This invoice belongs to someone else." ; end
 
        If:
      Then: mid(14,"5","8")=@id ; end
 
The terms in the MID function are each expressions. However, the start position and the number of characters must be surrounded by quotes if you are using literal numbers. Using real fields in either of these
positions requires that you understand that the value of these fields will be substituted before the function is applied.



MIN()
 
Syntax:
       Then: a=MIN(n)
       Then: n=MIN(aa,ab, ...)
 
Version Ref:  4.1
 
Description:
Finds minimum value of field "n" on output, or returns the lowest value in the list of fields given.
 
Examples:
For financial analysis, you want the average sales per sales representative, plus, for comparison, his or her maximum and minimum sales (see the "AVG" and "MAX" commands also). "Total Sales" is field 22.
To find the minimum value, you'd put dummy field M on a subtotal line in the report format, and write the element as follows:
 
       Then: M=MIN(22)
 
 

Find the minimum of a list of values.
 
       Then: mx = MIN(ab,ac,ad,ae,5,12)
 
Restrictions:
For aggregate minimums, calculations are made at the subtotal and total breaks.
For comparative minimums, the fields do not have to be numeric, but they must all be comparable. For example, you may supply a list of dates or times, but not both. There must be at least two fields. If only
one field is supplied, the aggregate form of the function is used.



MOD()
 
Syntax:
       Then: MOD(exp1,exp2)
 
Returns the remainder of exp1 divided by exp2.
 
Version Ref:  4.1
 
Description:
Returns the remainder of a division. The first parameter is divided by the second parameter and the remainder is the value returned. The sign of the result is the sign of the original number.
 
Examples:
       Then: mo = MOD(no,"100")
 
If "no" is equal to 247 then "mo" would be equal to 47 after the statement is executed.



mode(path/filename)  (ver. 5.8.03)
 

Mode(path/filename) will return the octal permission mask on a file from within processing.
 

see also group()



MOUSE PATH
 
Syntax:

Then: MOUSE PATH ON
Then: MOUSE PATH OFF

Version Ref:  5.0.9
Description:
Allows you to turn off forced cursor path in fileProGI. Default is ON meaning that fileProGI enforces screen cursor path
 
Note: Same as CURSOR PATH



MSGBOX
 
Syntax:
 
       Then: MSGBOX(row,col) message,prompt,keylist
 

Version Ref:  4.1
 
Description:
The MSGBOX processing command lets you display a message in a popup window on the screen. It will display a string "message" in a popup window at a designated position on the screen until the user presses
ENTER or a key from a specified list. The key pressed by the user can be captured and acted upon appropriately.
 
Row and Column
If row and column are supplied, the upper left corner of the window appears at the row and column coordinates. If row and column are not supplied, the window is centered on the screen. The upper-left corner
of a screen is row,col ("1","1").
 
Width and Height
The width of the window is determined by the longest line of text. The height of the window is determined by the number of text lines.
 
Message
The message to appear in the window is a string expression. You can add additional lines to this message by placing a "\n" at the point where you want a new line to begin. All of the SHOW codes are available
to MSGBOX. For example:
 
       Then: msgbox "Text line 1\nText line 2"
 
Prompt
Prompt is the prompt you want to appear telling the user what keys can be used to remove the window (and/or take certain actions) to continue. The prompt appears in the lower-right corner of the window.
If prompt is not specified, then the default prompt of "Press ENTER" is used.
 
Keylist
Keylist is the list of keys, in addition to ENTER, that will remove the window. These keys can be trapped and acted upon with further processing. If keylist is not specified, the ENTER key is the default for
removing the window.
 
NOTES: ENTER is the special key defined as ENTR. MSGBOX will display what is set as the keylabel for this key.

After the message box is executed, @BK is set to the keystroke entered.
 

The arguments to MSGBOX (row/col, the message, the prompt and the keylist) can be variables. If they are variables (or real fields), you must NOT put quotes around them. If they are literals, such
as the keylist below (SLN), then they must be in quotes. Case is not significant (except if the key is a shifted key such as "@", then a 2 will not work, only a shifted 2 "@" will work).

 
MSGBOX is exactly the same thing as ERRORBOX except for the colors which are assigned to it. The colors for MSGBOX are POPUPNORMAL and POPUPINVERSE. This environmental variables
allow you to give a consistent look and feel to your programming by showing "errors" in one set of colors and "messages" (or navigational questions) in another set of colors.

 
Examples:
 
         If: 4 ne "0"
       Then: end
         If:
       Then: o="NO money on this record. Save it, Delete it, or Fix it?"
         If:
       Then: m="(s/d/f)==>"
       Then: msgbox("10","5") o,m,"SDF"
         If: @bk eq "S"
       Then: end
         If: @bk eq "D"
       Then: delete ; end
         If: '<=== the F key in keylist will default here, so will ENTER.
       Then: restart
         If: exists(fn) gt "0"..
       Then: msgbox "File already exists!\nContinue?",
            "Press \rY\r or \rN\r", "YN"
         If: @BK eq "Y"
       Then: gosub mkfile



NEXTDIR()
 
Syntax:
       Then: XX=NEXTDIR()
 
The format of the returned fixed length string is:

 
Format Extension Size Date Time Fullname
32 10 14 10 9 32

Abcdefghijklmn abcdefghij 01234567891234 01/01/2000 12:12:34a -------
 
There is a single space between each of the portions of the string.
The format, extension, and Fullname are left justified.
The size is right justified with commas.
The date and time are right justified.
 

Version Ref:  4.8
Description:
Each execution of this command returns a detailed file specification that the preceding OPENDIR() located. Subsequent NEXTDIR() allows you to build a list of files found with sizes, dates, etc.



NOT HTML (not included in filePro Lite)
 
Syntax:

If: NOT HTML Then: "Do Something"
 

Version Ref:  4.8
 
Description:
Tests for a HTML command on a previous line for the result code indicating success or failure.



NUMFIELD()
 
Syntax:
       Then: xx = NUMFIELD(lookupname)
       Then: xx = NUMFIELD(-)
 
lookupname is the name of a lookup.
- represents the current file (file in which the processing resides).
The return value is the number of fields in the designated file. This value is assigned to the variable XX.

 
Version Ref:  4.5

 
Description:
NUMFIELD obtains the number of fields in a lookup file.
 
Examples:
 
       Then: lookup cust k=1 i=a -ex
       Then: aa = numfield(cust)



NUMRECS()
 
Syntax:
       Then: xx = NUMRECS(lookupname)
       Then: xx = NUMRECS(-)
 
lookupname is the name of a lookup.
- represents the current file (file in which the processing resides).
The return value is the number of records in the designated file. This value is assigned to the variable XX.
 

Version Ref:  4.5
 
Description:
NUMRECS obtains the number of records in a filePro file.
 
IMPORTANT: Deleted and unused (blank) records are included in the count.
 
Examples:
         If:
       Then: lookup cust k=1 i=a -ex
         If:
       Then: aa = numrecs(cust)



OPEN()
 
Syntax:
       Then: aa = OPEN(filename,mode)
 
"filename" is the name of the file to be opened.
"mode" is the access mode to use (see below).
"aa" is the file handle.
 
Parameters
mode  r - read access
      w - write access
      c - create if doesn't exist
      0 - truncate if already exists
      b - binary mode
      t - text mode
 

Version Ref: 4.5 (not included in filePro Lite)
In Version 5.7.04, and new flag A was added.

Anything written to the file will be appended to the end of the file.
Description:
This function returns a file handle to access the opened file through the other file I/O functions.
If the file cannot be opened, a negative number is returned. This number is the negative of the system error number.
 
Note : The file handle returned is analogous to the file handles used internally by the operating system, but the numbers are not necessarily the same. Mode flags can be combined. For example, rwb means read
and write access, in binary mode. If neither "r" or "w" is supplied, read-only is used.
 
Binary/text mode does not affect Unix systems, as Unix makes no distinction. Under MS-DOS, you must make sure to specify binary/text mode as appropriate. If neither is specified, binary mode is used. Note
that for portability purposes, you should specify text mode under Unix if appropriate.
 
Examples:
       Then: mo = "/tmp/" { @id { @rn
       Then: tf = open(mo,"rwc0")
 
Set a filename based on the user id and record number being updated. Open this file for reading and writing. Create the file if it doesn't exist, and truncate it, if does. This file can now be used by referring to it as
"tf" with most of the other file I/O functions.



OPENDIR() (not included in filePro Lite)
 
Syntax:

 
N = opendir(format type, filename)

N = opendir() no format type, no filename - Creates a list of all filePro files.

N = opendir("PRC_MASK") Creates a list of all prc files for the current file.

N = opendir("SCR_MASK", "fpcust") Creates a list of all screens for the fpcust file.

N = opendir("*.htm") Creates a list of all *.htm screens in the current files directory.
 
The preset terms that the OPENDIR() function understands are as follows.

 
Mask: Windows: UNIX:

PRC_MASK .prc Prc.*

TOK_MASK .tok Tok.*

SCR_MASK screen.* Screen.*

IDX_MASK index.* Index.*

BRW_MASK .brw Brw.*

OUT_MASK .out Out.*

SEL_MASK .sel Sel.*

HTML_SCR_PRC_MASK scr*.prc prc.scr*

HTML_SCR_TOK_MASK scr*.tok tok.scr*

HTML_BRW_PRC_MASK brw*.prc prc.brw*

HTML_BRW_TOK_MASK brw*.tok tok.brw*
 
Version Ref:  4.8
 
Description:
OPENDIR() allows you to do the equivalent of a DOS "DIR" or UNIX "ls" command. It returns the number of files in a filePro directory that meet the criteria.
 
Version 6.0.01
NEW command OPENDIR2 to handle long-named files and paths.

e.x.
N = OPENDIR2(mask, path, fmt_sz, ext_sz, nam_sz)
All arguments are optional.
 

Returns the number of files which match the parameters. If no parameters are given, a count of all filePro filenames is returned. If only a mask is specified, it is applied to the current filePro file. There are
pre-defined masks for filePro files, but any mask may be used. Only one OPENDIR() or OPENDIR2() may be active at one time.

mask - the filter applied to the directory, same as OPENDIR()
path - the directory to use
fmt_sz - the total size to use to store the format (default 32)
ext_sz - the size used to store the extension (default 10)
nam_sz - the size used to store the filename (default 32)

Note: the numbers used to define the lengths change the size used by the system controlled "@DIRLIST" arrays.
 



OUTS
 
Syntax:

Then: OUTS x
 
Sends "x" to the serial port as described by the environment variable PFOUTS.
 
Version Ref:  4.0
 
Description:
Sends a string of characters to a serial port.
 
Examples:

OUTS 3
 
Will send field 3 to the serial port.

 
The environment variable PFOUTS must be in the environment. It describes the port name, and attributes of the serial protocol, i.e., baud rate, word length, parity, and stop bit.
 
PFOUTS is set as:
 
PFOUTS="tty1A,9600,8,N,1" (Unix)
set PFOUTS "1,9600,8,N,1" (DOS)
 
Autodialer
 
(Assumes a modem is connected to the designated port.)
 
@keyP   If: 'dial a modem and hang up (after timeout)
      Then: 'so I one can pick up the phone and talk
      Then: pb(14)=20
        If: pb co "("
      Then: pb="1"{mid(20,"2","3"){mid(20,"7","8")
      Then: outs "ATDT"{pb{", ;H "{chr("13")
 
The above code strips out characters that a modem doesn't like and prepends a 1 if the call is long distance. The OUTS command dials the number on a cheap modem attached to this line and waits just long
enough for you to pick up the phone and talk...by then, the modem has hung up gracefully. This allows one to pull up any filePro record that has a phone number in field 20 and instantly dial it by pressing
"P".



PAGE
 
Syntax:
       Then: page
 
Available only for reports.
 

Version Ref:  3.x
 
Description:
Forces end of page when printing reports.
 
PAGE, in conjunction with the system-maintained field @LC, "line count," is used to set a particular page size for reports. When PAGE is encountered on an output processing table, the program does a form
feed and prints the report's heading at the top of the next page.
 
Examples:
To obtain a new page every 45 lines or whenever the total dollar amount on the page exceeds $1000.00. You could set up the processing as follows:
 
       Then: to(7,.2,g)=tot(10)
         If: @lc eq 45 or to ge "1000.00"
       Then: page; to= ""
 
where "to" is the total field and "@lc" is the system-maintained line-count field.



PDF_CLOSE()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

error_value = PDF_CLOSE(handle)
 Frees all values and memory associated with a PDF handle and closes the document. Returns a non-zero number on error.

See also: Fill-In-The-Blank PDFs



PDF_FIELDTYPE()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

type = PDF_FIELDTYPE(handle, fieldname)
 Returns the field type name of the specified field fieldname, which is one of:

NONE
BUTTON
RADIO
CHECKBOX
TEXT
RICHTEXT
CHOICE
UNKNOWN

See also: Fill-In-The-Blank PDFs



PDF_FIELDTYPE2()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

name = PDF_FIELDTYPE2(handle, index)
 Returns the field type name of the specified field index, which is one of:

NONE
BUTTON
RADIO
CHECKBOX
TEXT
RICHTEXT
CHOICE
UNKNOWN

 The index is a number between "1" and the num_fields value returned by PDF_GETNUMFIELDS.

See also: Fill-In-The-Blank PDFs



PDF_GETFIELDNAME()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

name = PDF_GETFIELDNAME(handle, index)
 Returns the full name of a field in a PDF document, given its index. The index is a number between "1" and the num_fields value returned by PDF_GETNUMFIELDS.

See also: Fill-In-The-Blank PDFs



PDF_GETNUMFIELDS()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

num_fields = PDF_GETNUMFIELDS(handle)
 Returns the number of fields in the PDF document.

See also: Fill-In-The-Blank PDFs



PDF_GETVALUE()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

value = PDF_GETVALUE(handle, fieldname [, richtext])
 Returns the field value, e.g. the text in the field, checkbox status, combo box index, etc. for the given field name fieldname. Optionally, richtext can be set to "1" to return rich text data if it
exists.

See also: Fill-In-The-Blank PDFs



PDF_GETVALUE2()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

value = PDF_GETVALUE2(handle, index [, richtext])
 Returns the field value, e.g. the text in the field, checkbox status, combo box index, etc. for the given field index index. Optionally, richtext can be set to "1" to return rich text data if it exists.
 The index is a number between "1" and the num_fields value returned by PDF_GETNUMFIELDS.

See also: Fill-In-The-Blank PDFs



PDF_OPEN()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

handle = PDF_OPEN(pdf_path)
 Returns a handle value (10,.0) that points to a PDF document with pdf_path as the filename. Returns a negative value on error.

See also: Fill-In-The-Blank PDFs



PI()
 
Syntax: 

result = PI()
  

Version Ref:  4.8
 
Description:
Trig Function: Returns the value of PI or 3.14159265



POPFIELD
Version 6.0.01

POPFIELD will allow you to move to a specific field in a POPUP UPDATE
Syntax:   POPFIELD, fld
 



POPUP
 
Syntax:
       Then: POPUP(row,col) f,s
 
Displays screen "s" of lookup file "f" at "(row,col)". If position is omitted, popup will be centered. If - (hyphen) is used for the filename, then the screen must be in the current file and no lookup is needed. A
POPUP must be taken down (cleared from the screen) with the CLEARP command.
 

Version Ref:  4.0
 
Description:
Pops up a specified screen, from the lookup file, to display the record specified by the lookup. The lookup file screen will be sized for display in the popup screen by eliminating unused space to the right and
bottom of the screen. The location of the upper left corner of the popup screen can be specified (optional) If no location is specified, the popup screen will be centered on the current screen.
 
There are two ways you can use a pop-up screen: 1) to view and update a record in the lookup file; 2) to view and update a record in the current file. In either case, a popup will not remain on the screen unless
it is forced to do so. It will simply display and immediately clear too fast for the user to see. In order to keep a popup visible, you must use another filePro command. Usually, the command SHOW "@" is
placed immediately after a POPUP which will keep it on the screen until the user presses <RETURN >.
 
Pop-up Screen From a Lookup File
       Then: popup("r","c") lookup,screen
"r" (optional) is the row coordinate of the upper left corner of the popup screen
"c" (optional) is the column coordinate of the upper left corner of the popup screen
"lookup" is the assigned name of the lookup specifying the file and record to display in the popup screen
"screen" is the name or number of the screen in the lookup file to display in the popup screen.
 
Pop-up Screen From the Current File
       Then: popup("r","c") -,screen
"r" (optional) is the row coordinate of the upper left corner of the popup screen
"c" (optional) is the column coordinate of the upper left corner of the popup screen
A dash (-), used in place of a lookup name. This will displays the current record of the current file on a screen in the current file. No LOOKUP is needed in this case.
 
Only one popup screen can be displayed at a time. Putting up a second popup screen will cause the first to be taken down. (See the CLEARP command below for clearing a popup screen.) If you use a popup
screen in conjunction with a browse lookup, they must be taken down in the reverse order.
 
Pop-up Screen and Passwords
Even though a password is assigned to a screen when defining a screen, since its decided at design time when to use a POPUP screen, the screen password is ignored. Use INPUTPW or other means to control
access to POPUP screens when included in your lookups.



POPUP UPDATE
 
Syntax:
       Then: POPUP(row,col) UPDATE f,s,m
 
Displays screen "s" of lookup file "f" at "(row,col)" and puts the user into update mode on this screen, positioning the cursor in field "m". If (row,col) is omitted, the popup will be centered. If - (dash) is used
for the filename, then the screen must be in the current file and no lookup is needed. If field is omitted, the cursor is placed in the first field on the popup screen. A POPUP UPDATE will stay up until taken
down by a CLEARP command, even after the user has pressed the BREAK or SAVE key to leave the POPUP UPDATE.
 

Version Ref:  4.0
 
IMPORTANT: The special benefit of POPUP UPDATE is that the contents of the POPUP screen will be saved to the looked-up record (or to the current record if - is used as the filename). Thus, if you look
up a particular customer record and POPUP UPDATE a screen from that file and the user makes changes to the fields on this screen, these changes will automatically be written to that record in the customer
file when the user presses the SAVE key. If the user presses the BREAK key, the looked-up record will not be changed.
System-maintained field, @SN, will contain the name of the popup screen
 
HINT: The following benefit applies to using POPUP UPDATE with the current file (dash): When-processing (@WEF, @WLF, @WHP, and @WBL, etc.) on this specific type of POPUP UPDATE can be
performed by doing it from dummy fields placed on this screen. This is an extremely valuable processing construct, since processing is not normally allowed while on a POPUP UPDATE screen.
Pop-up Screens and Passwords
Even though a password is assigned to a screen when defining a screen, since its decided at design time when to use a POPUP screen, the screen password is ignored. Use INPUTPW or other means to control
access to POPUP screens when included in your lookups.
 
CLEARP
 
Syntax:
 
       Then: CLEARP
 
Examples:
 
Description:
This command removes a popup and cleans up the screen. It is a good idea to always use this command after a popup.



PRINT
 
Syntax:
       Then: print
 
PRINT can be used on output processing tables only.
 

Version Ref:  3.x
 
Description:
Prints current record.
 
IMPORTANT: If a PRINT statement is used anywhere on the processing table, then it MUST be encountered or the record will NOT print.
 
Examples:
 
        If: 4 ne "C"
      Then: end
      Then: print ; end
 
When the above code is run against a group of records, only those which have field 4 equal to "C" will print on the report. All other records will not show up on the report. Normally (without any PRINT
statement on the processing table) every record will be printed on a report. This is a very powerful feature of PRINT and you must be aware of exactly how it functions or you will not understand why some
records are printing and others aren't. If the PRINT statement is encountered AND it has a TRUE "if" condition or a blank "if" condition (which defaults to TRUE), the record will print, otherwise, it will be
dropped off the report and, more importantly, OUT OF ANY TOTALING that filePro is doing for you automatically (using =N on the output format)!
 
PRINT lets you control the printing of individual records from processing. Use PRINT to do such things as processing all records but printing only certain ones; and printing more than one copy of a record.
To print multiple forms per record, you can set up a counter and then loop through the set of elements until the count is exhausted.
 
       Then: input ct(2,.0) "Print how many copies?"
loop     If: ct gt "0"
       Then: print; ct = ct-"l"; goto loop



PRINTCODE()

Version Ref: 6.2 (USP 6.1.02)
c = PRINTCODE(code [,flag])
  - Returns either the expanded print code for the current printer or its description.

Parameters:
code: The print code number to evaluate.
flag: 0 - Return the "raw" expanded print code.
      1 - Return the comment for the print code.
Example
Given a print code table containing the following entries:
Number Sequence Description
1 %2 %3 Initialize printer
2 <page> New Page
3 <font name="Courier"> Set Font

    If: ' x will contain '<page> <font name="Courier">'
  Then: x = PRINTCODE("1")
      If: ' x will contain '<page> <font name="Courier">'
  Then: x = PRINTCODE("1","0")
      If: ' x will contain 'New Page'
  Then: x = PRINTCODE("2","1")
 



PRINTER Commands
 
Syntax:
 
      Then: printer "printercommand"
      Then: printer local
      Then: printer file "filepathname"
      Then: printer reset
Then: printer flush
 
 
where:
"printercommand" is the same as an operating system printer command (UNIX/XENIX). An example is "printer lp-dlaser" This will override the Printer Destination (@PD) value that is set from the default
printer setup.
"printer local" redirects output to a printer connected to the user's terminal (UNIX/XENIX)
"filepathname" is the name of a file to which the output is redirected (UNIX/XENIX or DOS). (An example: printer file "/tmp/output".) "filepathname" can also be a destination file name for going directly to
a printer (bypassing the spooler). Example: "printer file /dev/tty01"
"printer reset" cancels any previous printer commands in processing and returns to whatever printer command was in effect before processing started (UNIX/XENIX or DOS)
"printer flush" flushes any printer buffers within filePro.
 

 
Version Ref:  Various

 
Description:
PRINTER lets you redirect output to a printer other than the system printer, or to a printer file.
PRINTER can be used on all processing tables. One obvious use for PRINTER is in input processing, where you might want to send forms and hardcopies to a special printer.

 
PRINTER "command" Sends output to "command". (UNIX/XENIX only)

PRINTER FILE "filename" Sends output to file "filename".

PRINTER LOCAL Sends output to terminal printer. (UNIX/XENIX only)

PRINTER NAME "name" Sends output to printer "name".

PRINTER TYPE "type" Sets printer type.

PRINTER RESET Resets the printer.

PRINTER @PN Resets page back to 1

PRINTER FLUSH Flushes printer buffers within filePro.
 
IMPORTANT: If you use one or more of the other PRINTER functions, you must execute a PRINTER RESET before altering any of them or using new ones. The PRINTER RESET clears any PRINTER
operations from the processing table and puts things back to the condition they were in when the processing table was first encountered. This is an important function to remember when a series of PRINTER
routines does not function the way you think it should.



PUSHKEY
 
Syntax:
 
       Then: PUSHKEY "c"
       Then: PUSHKEY "[code]"
       Then: PUSHKEY "abc[code]xyz[code]..."
       Then: PUSHKEY exp
 
c = character(s)
[code] - Special Keys (those returned by @sk, like "[ENTR]" or "[SAVE]" or "[CRUP]").
exp - The argument to PUSHKEY can be an expression that resolves to keyboard codes and characters.
 

Version Ref:  4.0
 
Description:
Places "keystrokes" into the keyboard queue as if they were pressed by the user.
 
Examples:
 
@keyP   If:
      Then: PUSHKEY "u[CDWN][CDWN]33[ENTR]open[SAVE]" ; end
 
The above code will put users into UPDATE mode, move the cursor down two fields, type the number "33", press ENTER, type the word "open" and then press the SAVE key for them. With one keystroke,
the user performs many keystrokes.
 
Note: Two things are important to understand about how PUSHKEY operates. First, the programmed sequence of keystrokes happens from exactly where the cursor is positioned when the next END
statement is reached. Second, nothing happens until that END statement is reached, and then the PUSHKEY executes.
 
 
Examples:
 
To run an extended selection set called "new," before any records are updated. You could use PUSHKEY in your @ENTSEL processing as follows:
 
       Then: pushkey "X22Lnew[ENTR][ENTR]"; end
 
"X" Exits from the current record.
"2" Selects The "scan For Records" option from  the Inquire, Update, Add, menu.
"2" Selects the "Extended Selection" option from "Scan For Records" submenu.
"L" Loads a selection set.
" new" Inputs the name of the selection set.
"[ENTR]'' Inputs the four-letter special key code for a < RETURN >, to enter the selection set name.
"[ENTR]'' Inputs the four-letter special key code for a < RETURN > to execute the selection and retrieve the records.
"end" Ends the @ENTSEL when-processing
NOTE:  As of Version 6.0 and higher, if an extended selection is set, all functions of dclerk will honor the selection criteria until the extended selection is manually cleared. (Option 3)
 
 
PUSHKEY accepts "[BRKY]". When PUSHKEY puts "BRKY" into the Inquire, Update, Add buffer, it performs as though the BREAK key was pressed. The following example shows how to use this feature
to prevent anyone from updating or adding records:
 
@update  If:
       Then: errorbox "update not allowed."
         If: @OS = "DOS"
       Then: pushkey "[BRKY] " ; screen; end
       Then: pushkey "[BRKY][BRKY]" ; screen ; end
 
Note: Remember that @UPDATE must use the SCREEN command. Using @keyU would not prevent records from being added through "Add Records" mode. Also, in "Add Records" mode, "[BRKY][BRKY]"
will prevent a blank record from being created.



PUTENV
 
Syntax:
       Then: PUTENV envname,value
 
where "envname" is the name of the environment variable.
"value" is the value to assign to this variable.
 
Note: Any value set through PUTENV is lost upon exit from running the filePro program.
 

Version Ref:  4.5
 
Description:
Stores a environment value in the environment of programs called through the SYSTEM command.
 
Examples:
Run a program that requires "DOC" to point to a document directory.
 
       Then: PUTENV "DOC",getenv("PFDATA") & "/" & getenv("PFDIR") & "/docs"
       Then: SYSTEM "rundoc"



QRCODE()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

ret = QRCODE(str, dest [, size [, logo [, fg [, bg]]]])

Create a QR Code from a text string.
 str is the text to store in the QR code.
 dest is the full name and path to the QR code to be generated.
 size is the size of the QR code to be generated in pixels. Must be large enough to store the full QR code.
 logo is an optional logo to place in the center of the QR code.
 fg is the foreground color of the QR code in hexadecimal.
 bg is the background color of the QR code in hexadecimal.

Returns the size of the generated QR code, or -1 on error.

Example:
   If:
 Then: ret=QRCODE("fptech.com","/tmp/website.png")
   

 



RAND()
 
Syntax:
       Then: a = RAND(n)
 
Returns a pseudo-random number between 0 and 32767.
Uses "n" as optional seed value.
 

Version Ref:  4.1
  5.0(Enhanced)
Description:
 
Returns a pseudo random number.
 
5.0 Enhanced to allow a negative seed value with current time to seed the generator.
 
Examples:

Then:  aa = mod(rand(xx), "100") + "1"
GETRAND if:  inkey ne "BRKY"

Then:  aa = mod(rand(" "), "100") + "1"; display; goto GETRAND
 
The above example returns a random number between 1 and 100. Notice that the seed value "rand(xx)" is only used ONCE and the second element, "GETRAND" loop, uses a NULL value for RAND
e.g. rand(" "). RAND with a positive number should be seeded only once to work properly. For 2nd and subsequent iterations, use a NULL e.g. RAND(" ").
 

 Then: xx = RAND("-1")
 
The above seeds the generator with a negative value using current time.



READ()
 
Syntax:
       Then: bytes = READ(handle,destination,length)
       Then: bytes = READ(handle,destination)
 

"handle" is the file handle returned by OPEN() or CREATE().
"destination" is the field to store the information.
"length" is the number of bytes to read.

"bytes" is the number of bytes read.
 
If length is not specified, the length of the destination field is used.
 
Return value

Returns the number of bytes read. 0 usually indicates end-of-file.
 
In a binary file, a return value of less than the request amount usually indicates that end-of-file has been reached. In a text file, it is possible to read fewer bytes than requested, even if EOF is not encountered.
 
Note: Destination must be a field, not an expression.

 
Version Ref:  4.5  (not included in filePro Lite)

 
Description:
Reads from a file.



READLINE()
 
Syntax:
       Then: bytes = READLINE(handle,destination,length)
       Then: bytes = READLINE(handle,destination)
 

"handle" is the file handle returned by OPEN() or CREATE().
"destination" is the field to store the information.
"length" is the maximum number of bytes to read.

"bytes" is the number of bytes read.
 
If length is not specified, the length of the destination field is used.
 
Version 6.0.01.07 - using "-1" for length to force read to EOL
Return value

The number of bytes read, not including the newline character.
 
Destination must be a field, not an expression.
 
Data is read from the file up to a maximum of length bytes, or until a newline character is encountered, whichever comes first. The newline character is discarded if encountered.
 

Version Ref:  4.5  (not included in filePro Lite)
 
Description:
Reads a line of text from a file.
 
Note: The file must be opened in text mode, or undefined behavior may result.



READMAP

Version Ref: v6.2 (6.1.01 USP)

s = READMAP(file)
 - Takes the name of a filePro file and returns information from the first line of the map file. On error or if the file is an invalid filePro file, the function will return blank.

Example

  Each section is 5 characters long by default.
  "type:kreclen:dreclen:keyflds:"
  Where:
    type is the filePro map type; map, map2, odbc, alien.
    kreclen is the key record length for a record in the file.
    dreclen is the data record length for a record in the file.
    keyflds is the number of key fields for a record in the file.
      e.g. "map  :  100:    0:   10:"
 



READOUTPUT()
 
Syntax:

XX = READOUTPUT(filename,formatname [, section])
 
where "filename" is the name of the filePro file, "formatname" is the output format name and section (optional) is the type of information you want returned.
 

Version Ref:  4.8  (not included in filePro Lite)
  5.0 (Enhanced)
Description:
READOUTPUT returns the portions of an output format.
 
Notes:
Section parameter options include:
0 = Returns the text portion of the output format, convertnig graphics characters to "+-|".
1 = Returns the text portion of the output format but returns graphics characters as-is e.g. (0x00-0x0A).
2 = Returns the text portion of the output format but returns graphics characters as spaces.
3 = Returns only the graphics characters, as "+-|" text.
4 = Returns only the graphics characters, as-is.
5 = Returns size information of the format, as a list of colon-separated 3-digit values as "nnn:nnn:nnn:" consisiting of:
width, length, type, # across the page, # down page, # of header lines, # of footer lines (always zero), # of data lines, # of lines per subtotal/grandtotal break.
Notes :
Codes 3 through 5 were added as a version 5.0 enhancement. For codes 3 and 4, all regular text is returned as spaces.
 
If no section is specified, the default section is "0".
 
If the output format cannot be read (ie. Doesn't exist) then a null value is returned.



READSCREEN()
 
Syntax:
       Then: XX=READSCREEN(filename,screenname[,section])
 
"filename" is the name of the filePro file
"screenname" is the screen name.
The optional third parameter is the section of the screen to be read.
 

Version Ref:  4.8  (not included in filePro Lite)
  5.0 (Enhanced)
  6.2 (Enhanced)

Description:
READSCREEN returns the text portion of a screen as a single 1600 character field.
Currently supported sections are:
Third parameter options
0: Graphics characters are returned as text equivalents. (i.e., '|', '-', '+')
1: Graphics characters are returned as is.
2: Graphics characters are returned as spaces.
3: Return only the graphics characters, as "+-|" text.
4: Return only the graphics characters, as-is.
5: Return size information of the screen.

width
height
format type
records across page
records down page
number of header lines
number of footer lines (always zero for now)
number of data lines
number of break levels (including grand total)
9 entries, one for each break level, innermost first

6: Return the color attributes as a 1600-character field.
7: Returns cursor path in a colon separated list of fields.

Notes:
Section codes are optional parameters and if left blank will default to code "0".
 
If the screen cannot be read (ie: doesn't exist) then READSCREEN() returns a null value. For code 0, text equivalents for graphic characters are '|', '-', '+'.
 
Codes 3 through 6 were added as a version 5.0 enhancement. For codes 3 and 4, all regular text is returned as spaces.
 
Code 7 was added as a version 6.2 (6.1.02 USP) enhancement.
 
If the screen cannot be read (i.e., doesn't exist), then READSCREEN() returns a null value.



REPLACE()  (version 5.8.03)
 
This processing command will return a search and replace string of data from either a field or variable.

Syntax is: xx = replace(fld,from,to [,flag])
 
For example:

yy="This is a test"; xx=replace(yy, "a test", "best")
 

yy will equal "This is a test" and xx will equal "This is best"
 
Flags:

"0" or no flag is case insensitive for the search
"1" is case sensitive for the search
“0” is the default



RECLEN()
 
Syntax:
       Then: XX = reclen()
       Then: XX = reclen(lookupname)
 
Given no argument (), RECLEN returns the record length of the current file.
Otherwise, the function returns the record length of the specified lookup file.
 

Version Ref:  4.8
 
Description:
 
RECLEN() returns the record length of the specified file.



REMOVE()
 
Syntax:
       Then: aa = REMOVE(filename)
 
"filename" is the name of the file to be removed.
 
Return value

0 if successful
Negative if failed
 
Note : The file must be closed in order to be removed.
 

Version Ref:  4.5
 
Description:
 
Removes a file from the disk.



REPEAT()
 
Syntax:
       Then: xx = REPEAT(text,len)
 
"text" is the string of characters to repeat.
"len" is the number of characters in the result.
 
Return value:
 
A string of len characters, created by repeating the characters in text as many times as necessary.
 

Version Ref:  4.5
 
Description:
Repeats a string of characters.
 
Examples:
Draw a horizontal line
 
       Then: show ("10","1") repeat("\ G0","240")
 
Use PUSHKEY to push 10 right-arrow keys
 
       Then: pushkey repeat ("[CRGT]","60")



RESET
 
Syntax:
       Then: reset
 

Version Ref:  3.x
 
Description:
 
Reruns an output process against the selected records without re-selecting them. It must be used from within @wgt processing.
 
Examples:
 
@wgt     If:
       Then: hh = "newvalue";reset;end



RESTART
 
Syntax:
       Then: restart
 

Version Ref:  3.x
 
Description:
RESTART returns the user to the beginning of the processing table and puts him or her back in update mode on the first screen updated. When he or she re-records the input, the program re-processes the
record, starting from the top of the table.
 
 
Examples:
 
You want to make sure the user enters the account number, since the following operations depend on that number being there. You could write the element as follows:
 
         If: 5 eq ""
       Then: SHOW "You Missed Account Number" ; restart
 
if field 5 is empty, the message "You Missed Account Number" appears on the screen. The user is returned to the first field on the first screen so that he or she can type in a valid number.
 
RESTART can only be used on INPUT processing. It must be the last command on the line, since anything after it will be ignored.



RETURN
 
Related Commands
GOSUB
 
Syntax:
  Then: RETURN
 
Version Ref:  3.x
Description:
RETURN ends a GOSUB routine, and returns the processing to the first statement following the current GOSUB statement. RETURN must be the last command on any "Then" line, since processing following
it on that line will be ignored. RETURN must not be encountered without a previous GOSUB.
 
Examples:
@wlf6  Then:  GOSUB "addup";end
 
  If: 'any number of lines containing
 Then: 'other code

addup    If: 'now lets total a few fields
Then:  tt(8,.2)=5+6+7+8+9+10
 
If: 'now we will show the total and return where we left off
Then:  show "@Total is $" { tt; RETURN

The subroutine "addup" can be called by @wlf6,7,8,9 and 10 rather than totaling these fields 5 different times on the table.



RTOD()
 
Syntax:
       Then: result = RTOD(angle)
 

Version Ref:  4.8
 
Description:
Converts radians to degrees.
 

Examples:
 

Then: angle_in_degrees = RTOD(1.5678)



SAVE
 
Syntax:
 

Then:  SAVE ON
Then: SAVE OFF

 
Version Ref:  5.0
 
Note: ESCAPE=OFF will also disable saving of records. SAVE is synonymous to "ESCAPE". SAVE=OFF will disable saving of records. Default is "ON".



SCREEN
 

Syntax:
       Then: SCREEN s
       Then: SCREEN s,f
       Then: SCREEN s,f,o
 
SCREEN has several formats available, each allowing the desired level of cursor control.

 
SCREEN Refreshes the current screen, and places cusor in first field of cursor path.

SCREEN s Switches to screen "s", then positions the cursor in the first field of the cursor path

SCREEN s,f Switches to screen "s", then positions the cursor at field "f".

SCREEN s,f,o Switches to screen "s", then positions the cursor in field "f" at offset "o". o" is the offset within the specified field on which to position the cursor.
NOTE: An offset of -1 will place the cursor in the first empty position of the field.

 
Version Ref: 6.0.02
SCREEN command can switch fields in a POPUP UPDATE -, provided no screen name is passed to the SCREEN command.
Examples:
    SCREEN ,33
    SCREEN ,pa,"-1"
- - - - - -
When a screen number, letter, name or expression is given, SCREEN rewrites the entire screen. In other words, all SHOW or other messages are cleared from the screen, and all fields are displayed with their
current value. When no screen number, letter, name or expression is given, the program rewrites and redisplays the changed fields without clearing messages or rewriting unchanged fields.
 
NOTE: If no cursor path is defined for a screen, and no field specified by the SCREEN command, the cursor will be put in the first non-protected field on the screen.
 

Version Ref:  4.5
 
VERY IMPORTANT: The parameters "s", "f", and "o" are expressions. Since SCREEN will recognize single number and single letter screen names, and also recognize unquoted field numbers and letters as
field designations, you must enclose any of these parameters in parentheses if you want them to be resolved as expressions. The full version of the SCREEN command can therefore be thought of as follows:
 
       Then: screen (exps),(expf),(expo)
 
where:
 
"exps" is any expression evaluating to a screen number, letter, or name
"expf" is any expression evaluating to a field number or letter.
"expo" is any expression evaluating to an offset.
 
       Then: screen 3,2,"3"
       Then: screen (aa),"4","3"
       Then: screen A,B,"3"
       Then: screen "3","2","3"
       Then: screen "3","2",(aa)
       Then: screen "inv","2","1"
 
The above are all valid commands, and:
 
       Then: screen 33,2,"3"
       Then: screen aa,"4","3"
       Then: screen A,B,3
       Then: screen "3",22,"3"
       Then: screen "3","2",aa
       Then: screen inv,"2","1"
the above are all invalid commands and will generate an syntax error. Note that the offset parameter requires quotes if it is to be a number, it does not behave like the "s" and "f" parameters.
 
NOTE: If you want the cursor to go to the first available space in the field (the character after the last non-blank character), use -1 as the offset, using screen 0, field 1.
 
       Then: screen 0,1,"-1"
or
       Then: screen "0","1","-1"
 
NOTE: Screen formats in filePro can have names of up to 7 characters for UNIX/XENIX systems, and up to 3 characters for DOS systems. A named screen is accessible only through processing. Note that
single letter screen names, if not in quotes, are always treated as uppercase. For screen names of more than one character, in quotes, case is significant on UNIX/XENIX systems, but not on DOS systems.
 
 
Description:
On the Automatic table, SCREEN is used to access one screen rather than another, and make this screen the default screen. The default screen is the screen Input processing and @KEY processing will return
to when an END statement is encountered.
 
When a SCREEN command is encountered during Input or @KEY processing, the user is put into update mode on the designated screen. When the user presses <ESC> to record the input on this screen,
processing will resume with the command immediately following the SCREEN command.
 
When a SCREEN command is encountered during @WLF or @WEF processing, the user is put into update mode on the designated screen. When the user presses <ESC> to record the input on this screen,
processing ends. @WLF and @WEF processing are not considered Input processing. These routines run independently from Input processing, and do not affect the position of the Input processing's execution
pointer. Each @WLF and @WEF routine has its own pointer, and processing ends for these special routines only when one of the specific @WLF, @WEF "closing" commands is encountered. SCREEN is one
of these commands.
 
 



Restrictions:
If there is more than one SCREEN statement on an automatic processing table, only the last SCREEN statement encountered is performed.
 
SCREEN can only be used on Input and Automatic processing tables.



SEEK()
 
Syntax:
       Then: aa = SEEK(handle,offset,whence)
       Then: aa = SEEK(handle,offset)
 
"handle" is the file handle returned by OPEN() or CREATE().
"offset" is the position within the file.
"whence" flags how to interpret the offset.
 
Parameters
 
whence   0 - absolute position in the file
         1 - position relative to the current position
         2 - position relative to end-of-file
 
Return value

Returns the resulting absolute position in the file.
 
Note: Offset can be negative when using relative positioning.
 

Version Ref:  4.5
 
Description:
Sets the current location within an opened file.



SELECT
 
Syntax:
       Then: select
 
SELECT can only be used on sort/selection processing tables.
 

Version Ref:  3.x
 
Description:
Selects records for further processing by an output table.
 
SELECT lets you control the selection of individual records while on a sort/selection (-v) table. Like the PRINT command, a record is selected only if it encounters the SELECT command (i.e., it passes a
selection condition).
 
Examples:
 
        If: 4 ne "C"
      Then: end
      Then: select ; end
 
When the above code is run against a group of records, only those which have field 4 equal to "C" will be selected and handed to the output process. All other records will not show up in the output. Normally
(without any SELECT statement on the processing table) every record will be selected and passed to the final output process. This is the main and only purpose of the SELECT command, and you must be
aware of exactly how it functions or you will not understand why some records are showing up in your outputs and others are not. Not only do records have to encounter the SELECT command to be chosen
for inclusion in the output phase, but they must meet the designated criteria as well, i.e., if the SELECT statement is encountered AND it has a TRUE "if" condition or a blank "if" condition (which defaults to
TRUE), the record will be selected, otherwise it will be dropped out of the output.
 
Note: SELECT can not select a record more than once.



SELECTBOX ()  Version 5.8.02
This command works similar to LISTBOX() but allows for type-ahead of the listed words.

        aa=SELECTBOX(array,first,last,row,col,height,width,prompt_string,prompt_row,prompt_col, case,init)
 
Example:

n=selectbox(dat,"1","25","5","5","8","60","Type here ","1","2",”1”)

Values for case are:
0 = case insensitive (default)
1 = case sensitive
2 = 'filename' sensitive - that the input  is case-sensitive based on the O/S filename case sensitivity.  That is,

Windows is case-insensitive, and Unix/Linux are case-sensitive. 
This is useful when being used to select a filename from a list

 
init is the starting position when rendered
 

NOTE: This variable can be set in the config file to determine the default case value so that it does not need to be programmed on the command line.          
PFSELECTCASE=n (n = "0", "1", or "2", default=0)
 

NOTE: a space in the type-ahead keystrokes will not be accepted and will clear the entered next and move to the next selection.  
   This was corrected in a newer revision.

NOTE: input area is the length of the  longest item in the list.
IMPORTANT:  If you SELECTBOX and Input Text and Prompt is positioned in such a way that one may overlap the other, you may
experience screen presentation issues.  Make sure they do not overlap.
 
PFSELECTBOXCASE (ver 5.8.02)

This sets a global method for SELECTBOX()

This variable can be set in the config file to determine the default case value so that
it does not need to be programmed on the command line.

Values for case are: 
0 = case insensitive (default) 
1 = case sensitive 
2 = 'filename' sensitive - that the input is case-sensitive based on the O/S 
filename case sensitivity. That is, Windows is case-insensitive, and Unix/Linux 
are case-sensitive. This is useful when being used to select a filename from a list.



SET
 
Syntax:

SET array
SET arrayname,value,start,len
SET arrayname,value,start
SET arrayname,value

 
"arrayname" is the name of the array.
"value" is the value to which each array element is set.
"start" is the starting subscript to use for the "setting".
"len" is the number of entries to set from the starting element.
 
Version Ref:  4.5
 
Description:
Fills an array with a specified value.
 
If "len" is not specified, all elements through the end of the  array are set.
If "start" is not specified, the entire array is set.
 
NOTE: The given value must be of an edit type that is compatible with the array elements.



SHOW
 
Syntax:
       Then: SHOW exp
 

Version Ref:  3.x
 
Description:
SHOW displays an expression on the screen. It will show this expression centered on line 23 of the screen.
 
Examples:
         If:
       Then: show "This invoice is over customer's credit limit."
 
will display as
 
       This invoice is over the customer's credit limit.
 
You can clear a message put up with SHOW by SHOWing nothing.
 
@wlf2    If: 2 gt 19
       Then: show "This invoice is over customer's credit limit."
         If:
       Then: end
@wlf3    If: 3 eq "Y"
       Then: show "" ; end
 
Using SHOW "" will always clear line 23 of the screen, regardless of what is there or how it got there.
 
To show literals, they must be enclosed in quotes.
 
Prompt for user acknowledgment
The user can be automatically prompted for acknowledgment of a SHOW message, by making use of a special function of the SHOW statement. If the first character of a SHOW expression is an "@", the
expression will be shown centered on line 23 as always, and the prompt "Press ENTER to continue." will be centered on line 24 below it. The user must press ENTER to clear the SHOW from the screen.
 
If:
       Then: show "@This invoice is over customer's credit limit."; end
 
The above code will display as:
 
       This invoice is over the customer's credit limit.
                    Press ENTER To Continue
 
IMPORTANT: Remember, the SHOW message is an expression. You can build it out of strings, fields and expressions. A simple example is as follows:
 
         If:
       Then: show "@Invoice over customer's credit limit of $"{14;end
 
where field 14 holds the credit limit. The following message is displayed.
 
       This invoice is over the customer's credit limit of $5000
                       Press ENTER To Continue
 
NOTE: Using SHOW "@" by itself will put up the prompt "Press ENTER To Continue" centered on line 24 by itself with nothing on line 23, and wait for the user to comply.
 
SHOW with Screen Positioning
 
Syntax:
 
       Then: SHOW(r,c,exp)
 
"r", "c" and "exp" are all expressions.
 
Displays the expression at position (r,c).
 
IMPORTANT: Same as SHOW command, but does not allow the use of the "@" to prompt for user acknowledgment. If the "@" is included along with row and column positioning, it will be ignored and the
user will not be prompted for acknowledgment.
 
SHOW Codes
 
You can insert into a SHOW expression the codes for reverse video. At runtime, filePro will show these parts of the SHOW expression with this attribute (usually this means highlighting the area).
 
You can insert into a SHOW expression the code for a key's function, rather than the key name itself. At runtime, filePro will display the appropriate key label for the terminal type or computer on which
you are running.
 
You can insert codes for the keypad graphics characters. At runtime, filePro will display the characters.
 
You can insert a hexadecimal code for any characters in a computer's character set. At runtime, filePro will display the characters.
 



(DOS only) You can insert codes to set and change background/foreground colors and intensity, to make your messages more attractive and conspicuous.
 
         If:
       Then: show "Are you \r SURE \r you want to delete this? "
 
The above code will display the message with the word SURE in reverse video.
 
NOTE: The SHOW Codes can also be used on HELP screens.
 



SHOW POPUP
 
Syntax:
 
       Then: SHOW POPUP (row,col,popupnum) exp
       Then: SHOW POPUP (row,col) exp
       Then: SHOW POPUP exp
 
"r","c" are the screen location of the upper-left corner of the popup window.
"popupnum" is the popup window number; if popupnum is not specified, 1 is used. "popupnum" is an expression.
"exp" is the message to display.
 
NOTE: Popups that overlap another popup must be taken down in the opposite order in which they were displayed. "r" and "c" may each be negative to specify centering in that direction. If not specified, the
popup is centered both vertically and horizontally.
 

Version Ref:  4.5
 
Description:
SHOW POPUP displays an expression in a popup window. These windows can be numbered.
SHOW POPUP windows must be cleared with the CLEARS command.
 
CLEARS
 
Syntax:
 
       Then: CLEARS popupnum
       Then: CLEARS
 
"popupnum" is the popup screen number as specified with SHOW POPUP. If not specified, ALL popups are cleared.
 
NOTE: If you have overlapping popup windows, you must clear them in the opposite order they were created.
 
 
Description:
CLEARS takes down a SHOW POPUP window. If no popup is on the screen, it does nothing. CLEARS can take down specific numbered SHOW POPUP windows. (Do this in the reverse order they were put
up.)
 
Examples:
 
         If:
       Then: lookup cust k=1 i=a -nx
         If: not cust
       Then: show popup ("7","9") "Customer not on file";clears;restart



SHOW RAW
 
Syntax:
 
       Then: SHOW RAW exp
       
Where "exp" is an expression containing the message to display.
 

Version Ref:  5.0.6
 
Description:
Sends the text with no interpretation or formatting by filepro. This allows easier access to the filePro SHOW function when using terminal emulator features as provided by
FACETWIN since the sequences sent are not manipulated by filePro.
Example:
SHOW RAW chr("27") & "[2]start winword " & filename & "'" & CHR("13")
The above would send an escape sequence conatining text ending with a carriage return to the screen.



SHOWCTR
 
Syntax:
       Then: showctr(row) exp
 
Row is the row on which to display the screen message.
Both row and expression are expressions.
A row MUST be specified.
 

Version Ref:  4.5
 
Description:
SHOWCTR displays a message on the screen, centering it on the specified row.
 
Examples:
Display the default filePro prompts.
 
       Then: showctr("24") "\r D \r-Delete, \r H \r-Hardcopy,
             \r U \r- Update, \r X \r-Exit, \r F \r-Print Form,
             \r B \r-Browse"
 
Display any centered prompt.
 
       Then: showctr("23") "Press \r K4 \r to save, \r KY \r to cancel."
 
Display centered message on variable line number.
 
         If: bb eq "fullscreen"
       Then: aa(2,.0)="23" ; showctr(aa) "This is a full screen view."



SHOWTOCOL
 
Syntax:
 
       Then: SHOWTOCOL(row,col) exp
 
"row and col" are the ending screen location
"exp" is the message to display
"exp" is an expression
 

Version Ref:  4.5
 
Description:
SHOWTOCOL displays a message on the screen, specifying the ending (rightmost) column of the message.
 
Examples:
         If:
       Then: showtocol("19","70") "CREDIT IS VERIFIED"



SIGN()
 
Syntax:
       Then: xx = SIGN(num_expr)
 

num_expr is the number from which to take the sign.
 
Return value is -1 if the number is negative, 0 if zero, and 1 if positive.
 

Version Ref:  4.5
 
Description:
Performs the signum function, returning the sign of the input.
 
Examples:



SIN()
 
Syntax:
 
       Then: result = SIN(angle)
 

Version Ref:  4.8
 
Description:
Angles given in radians.
 
Trig Function to returns the SINE of an angle.
 
Example:
 
       Then: result = sin(angle)



SINH()
 
Syntax:
 
       Then: result = SINH(angle)
 

Version Ref:  5.0
 
Description:
Trig Function to returns the SINEH of an angle. The result is given in radians.
 
Example:
 
       Then: result = SINH(45)



SKIP
Syntax:
 
       Then: SKIP
 

Version Ref:  3.x
 
Description:
Skip to next field in the cursor path; used with @wef only.



SLEEP
 
Syntax:
 
       Then: SLEEP time
 
"time" is the time in milliseconds to stop processing.
Note: 1 second = 1000 milliseconds, 1 minute = 60000 milliseconds
 

Version Ref:  4.5
 
Description:
Stops processing for a specified amount of time.
 
Examples:
 
@keyT    If:
       Then: show "@The date is" < @td
       Then: sleep "2000";end



SORT
 
Syntax:
 
       Then: sortN = m
       Then: sortN(l,t,o) = m
       Then: sortN(l,t,o) = exp
 
where: "N" is a number from 1 to 8 (to match the break positions on the output format.)
"m" is the field (real, dummy, or lookup) to sort on
"l" is the field length
"t" is the field's edit type
"o" is either A for ascending or D for descending (A is the default)
"exp" can be any expression
 
Without stated attributes, the dummy sort key takes on the attributes of the result of the expression. In other words, if the result of the expression is a 12-character number, the sort key is a 12-character
numeric field. Just make sure that the edit types are compatible.
 
SORT can only be used on sort/selection processing tables.
The SORT command cannot be used to override the number of sort levels, only the sort keys.
SORT can only be used to override a sort key that HAS a sort key that has already been defined on the output format.

 
Version Ref:  3.x

 
Description:
Sorts output during SORT/SELECTION processing phase. (-v processing table). SORT lets you create customized and conditional sort keys from the sort/selection processing table. SORT will override sort
keys (but not subtotal or total breaks) defined for an output format through Define Output..
 
Examples:
To sort in ascending order, based on a number that has a related name in another file, you can do a lookup to the other file and sort by that name. First, do the lookup on the other file (cust), and then specify
the sort as follows:
 
       Then: sort1(5,*,a)=cust(1)



SORTARRAY
Version Ref: 6.0.00
For user defined arrays only.
xx = SORTARRAY(dat,"0")

where ("0"|"A") is ascending, ("1"|"D") is descending.
Works with ONLY dummy field types.  It does not work with mapped fields to real fields.

Returns -1 on error.



SORTINFO()
 
Syntax:
 
       Then: XX=SORTINFO()
 
Returns the sort information for the currently running output format.
 
       Then: XX=SORTINFO(filename,formatname[,sortlevel])
 
The return value is in the format for all possible choices: field,length,ascend/decend,[subtotal]: 5, 8,a,y:2, 15,a,y
 
Description:
SORTINFO() returns the sort information for the specified output. It also includes the subtotal break information.



SOUNDEX()
 
Syntax:
       Then: a = SOUNDEX(exp)
 

Version Ref:  4.1
 
Description:
The Soundex function returns a 4 character soundex code for a string expression or variable. The soundex code is comprised of a character (A-Z) followed by a 3 digit number. i.e., K152.

 
Key Letters and Equivalents Code Returned
b, p, f, v 1

c, s, k, g, j, q, x, z 2

d, t 3

1 4

M, n 5

R 6
 
The letters a, e, i, o, u, y, w, and h are not coded. A name yielding no code numbers such as, "Lee," would return L000; one yielding only one code number would have two zeroes added, as "Kuhne," coded as
K500; and one yielding two code numbers would have one zero added, as "Ebell," coded as E140. No more than three digits are used, so the name "Ebelson" would return E142, not E1425. Soundex was
designed to group surnames that sound similar.
 
Examples:
 
Witherspoon or Weathers   ->   W362
Braddie or Brody          ->    B630
Kragged or Kracht         ->   K623
 
       Then: a = soundex(exp) ; b=soundex("Smith'')



SPELLCHECK
Spell Check - Using Processing
Spell Check - Memo Fields
The 64-bit versions of filePro now use the industry-standard "hunspell" spell-check library.  As noted by the hunspell website:

"Hunspell is the spell checker of LibreOffice, OpenOffice.org, Mozilla Firefox 3 & Thunderbird, Google Chrome, and it is also used by proprietary software packages, like Mac OS X, InDesign, memoQ,
Opera and SDL Trados."

<http://hunspell.sourceforge.net/>



EXPLODE / SPLIT (Ver. 6.0.02)
EXPLODE or SPLIT import data
Usage:

sz=SPLIT(array, string, delimiter)
array is the array that the data will be placed into
string is the data to split
delimiter is the sequence of characters to split on

NOTE: The array being used must have the size defined for its elements and cannot be an alias.



SQRT()
 
Syntax:
 
       Then: a = SQRT(n)
 

Version Ref:  3.x
 
Description:
Returns the square root of "n".
 
Examples:
       Then: nn = '"456"'
       Then: show "@The square root of " < nn < "is" < sqrt(nn)
 
The square root of variable "nn" is "21.3542".



STACKTRACE()

Version Ref: 6.1 (USP 6.1.01)

Syntax:

n = STACKTRACE(array) 
 Fill an array with a processing trace, listing the current and past processing tables and their line numbers to the current line being executed. This will show lines "jumped" from gosubs and follow
calls and functions. 

 Returns the number of elements that could fit into the array.



STATUS()

Syntax:
 

Then: handle = NEW STATUS()
Then:STATUS handle GET
Then:handle SET

Version Ref:  5.0.6
 
Description:
The STATUS object allows you to save/return the status of break, cursor, video, escape, and background. Allows subroutines to enable or disable these items, and then restore them
to their original state.
 
Example:

MySub
If:
Then: declare save_status(5,.0,g)
If: save_status = ""
Then: save_status = new status()
If:
Then: status save_status get ' save current status
If:
Then: break off ; cursor on
'... more processing here ...
If:
Then: status save_status set ' restore original status
If:
Then: return



STRING FUNCTIONS

All functions that take a position default to the first character in a field if not specified.
All "is" functions return "1" for true and "0" for false.
 x=isalpha(fld [, pos])
  Is the character at the position given a letter?
 
 x=isdigit(fld [, pos])
  Is the character at the position given a number?
  
 x=isalnum(fld [, pos])
  Is the character at the position given a letter or number?
  
 x=isspace(fld [, pos])
  Is the character at the position given a whitespace character?
  ' ', '\t', '\n', '\r', '\v', '\f' 
 
 x=islower(fld [, pos])
  Is the character at the position given lowercase?
 
 x=isupper(fld [, pos])
  Is the character at the position given uppercase?
 
 x=isxdigit(fld [, pos])
  Is the character at the position given a hexadecimal character?
  '0'-'9', 'A'-'F'
 
 x=iscntrl(fld [, pos])
  Is the character at the position given a control character?
  ASCII codes 0x00 (nul) - 0x1f (US), and 0x7f (del)
 
 x=isprint(fld [, pos])
  Is the character at the position given a printable character?
  ASCII codes greater than 0x1f (US) not including 0x7f (del)
 
 x=ispunct(fld [, pos])
  Is the character at the position given a punctuation character?
 
 x=isgraph(fld [, pos])
  Is the character at the position given a character with a graphical representation?
  The characters with graphical representation are all those characters than can be printed (as determined by isprint) except for space.
 
 x=tolower(fld [, pos])
  Return the character at the position given as a lowercase character.
 
 x=toupper(fld [, pos])
  Return the character at the position given as an uppercase character.
 
 str=strtolower(fld)
  Return the entire string converted to lowercase.
 
 str=strtoupper(fld)
  Return the entire string converted to uppercase.
 
 aa=ltrim(fld)
  left trim
 
 aa=rtrim(fld)
  right trim
 
 aa=trim(fld)
  trim both left and right
    

 



STRTOK()
 
Syntax:
 
       Then: n=STRTOK(string,characters[,startpos])
       Then: l=strtok(aa," 1234567890,./[]{}()!@#$%^&*+=-_<>?",l+"1")
 
Note that this is different from the INSTR() function in that it will return the first occurrance of ANY of the specified characters, not a "string" of characters.
 

Version Ref:  4.8
 
Description:
STRTOK() returns the location of the first occurrence of any of the specified characters found in a second string, starting at an optional position in that string. The default starting position is 1.



SWITCHTO
 
Syntax:
 
       Then: SWITCHTO name
 
"name" is the name of screen to switch to.
 

Version Ref:  4.5
 
Description:
Switch to a different screen, without returning to the original screen upon ending processing (which is the default operation of the SCREEN command which also switches screens). Normally, when INPUT
processing ends you are returned to the SCREEN you were on when processing started. The SWITCHTO displays a specific screen, and sets it to be the screen to be returned to, instead of the original screen.
 
Examples:
 
@keyP    If:
       Then: switchto "pay";end
 
Allow only certain users access to screen 9.
 
@key9    If: "*root*kenb*ronk*lauraw*" co ("*" & @id & "*")
       Then: switchto "9" ; end
         If:
       Then: errorbox "You are not authorized for screen 9." ; end



SYNC
 
Syntax:
 
       Then: SYNC lookupname
       Then: SYNC -
       Then: SYNC
 
"lookupname" is the name of the file to sync.
use - to represent the current (main) file.
if no filename specified, all files are synched.
 
NOTE: Many computer systems have a write behind disk cache, where information is not immediately written to the disk, in order to help increase disk performance. Should the system crash between the time
filePro writes a record and the system writes the cache, that formation is lost.
 
Under MS-DOS, a file's directory entry is not updated until the file is closed. If you are adding new records beyond the current end of file and do not exit filePro properly, all new records will be lost. The SYNC
command forces the update of the file's directory entry.
The SYNC command allows you to have some control over when the information is written to disk. Note that indiscriminate use of the SYNC command can degrade overall system performance.
 

Version Ref:  4.5
 
Description:
Flushes any disk writes pending on a file.
 
Examples:
Create an audit trail record, and force it to be written from cache, and the directory entry updated:
 
Then: lookup audit = filename r=free -ex
Then: copy audit ; write audit ; sync audit
 
Even though filePro will write the record with the WRITE command, it is possible that the operating system will cache the write. Also, MS-DOS systems will not update the files directory entry to reflect the
possible size change from the new record. Should the system crash before the cache is written, or filePro exits, these changes can be lost.



SYSTEM
 
Syntax:
 
       Then: SYSTEM "command"
       Then: SYSTEM NOREDRAW "command"
 
"command" is an expression.
"command" can be any Operating System command accessible from the operating system command line (DOS), or shell (Unix).
 
If NOREDRAW is omitted, the screen will be redrawn after the command is executed..
 

Version Ref:  4.1 (for NOREDRAW)
 
Description:
SYSTEM lets the program execute operating-system commands while processing records. When the SYSTEM processing is finished, the user is returned to the next statement after the SYSTEM command.
 
Examples:
Take the user to another filePro file in Inuqire, Update & Add without forcing them to completely leave the current file. When they leave the other file, they are returned back to the end statement.
 
@keyG    If:
       Then: system "/appl/fp/rclerk otherfile -s1"
       Then: end



TAN()
 
Syntax:
 
       Then: result = TAN(angle)
 

Version Ref:  4.8
 
Description:
Trig Function to provide angles given in radians.
 
Returns the TANGENT of an angle.



TANH()
 
Syntax:
 
       Then: result = TANH(angle)
 

Version Ref:  5.0
 
Description:
Hyperbolic trig Function to return the tangent of an angle in radians.
 
Example:
 
       Then: result = TANH(angle)



TELL()
 
Syntax:
 
       Then: aa = TELL(handle)
 
"handle" is the file handle returned by OPEN() or CREATE().
 
Return value

Returns the current absolute position in the file.
 

Version Ref:  4.5
 
Description:
Gets the current location in the file.



TOHTML()
 
Syntax:

Then: xx = TOHTML(yy)
Version Ref:  4.8 (not included in filePro Lite)
 
Description:
TOHTML() converts special HTML characters '<', '>', '"', and '&' to their HTML equivalents: &lt; &gt; &quot; &amp;
This permits you to include these characters within the text of an HTML document.

Example:
You want to display e-mail addresses. If you had:

addr = "Bill Randall < wrandall@fileproplus.com >"
...
HTML :TX addr

the e-mail address would not appear, as it would be interpreted as an HTML
tag. You would need to do:

addr = "Bill Randall < wrandall@fileproplus.com >"
...
HTML :TX TOHTML(addr)

which would generate:

Bill Randall &lt; wrandall@fileproplus.com&gt ;

This would be interpreted and displayed as expected.
(The function can be used anywhere in processing that an expression can be
used, not just in the HTML command itself.)



TOT()
 
Syntax:
 
       Then: a = TOT(n)
 
Gets a total or subtotal on field "n".
 

Version Ref:  3.x.
 

Description:
A system function that tells filePro Plus to keep a running total of a field or fields.
 
There is more than one way to get cumulative totals. One is to put the total-field indicator on a total or subtotal line of a report. Another is:
 
       Then: a=a+n
 
However, neither is as flexible as the TOT function. In the first case, TOT lets you total conditionally; " = " doesn't. In the second case, TOT lets you write statements like:
 
       Then: tt = tot(22)*tot(23)
or:
       Then: tt = tot(22*23)
 
Note that the results of the two equations are quite different from each other. In record 1, field 22 contains a value of 10 and field 23, a value of 12. In record 2, field 22 contains a value of 3 and field 23, a
value of 8. The result of equation 1 is 260: (10 + 3)*(12+ 8). The result of equation 2 is 144: (10*12) + (3*8).
 
Examples:
You want to print a report that lists average sales per sales representative, maximum and minimum sales, and at the end of the report, the total number of sales transactions for all representatives.
Field 22 is "Total Sales." The element would be written as follows:
 
       Then: TS=TOT(22)
 
To print the total, put *TS on a total line of the report format.



TVM_xx
 
Financial Functions
 
Time-value-of-money functions have been implemented to calculate n/i/pv/pmt/fv values, given the other 4.
 
Examples:
 

N = TVM_N(i,pv,pmt,fv)
I = TVM_I(n,pv,pmt,fv)
PV   = TVM_PV(n,i,pmt,fv)
PMT = TVM_PMT(n,i,pv,fv)
FV  = TVM_FV(n,i,pv,pmt)

 
where:

N  = number of payments
I  = Interest rate
PV  = present value
PMT = amount of payment
FV = future value

 
Notes:
 
  The formula used is:
 
    100
  ( 1 - sppv ) * pmt * --- + pv = -fv * sppv
    i
 
  where "sppv" is the single payment present value:
 
    i - n
  sppv = ( 1 + --- )
    100
 
It is assumed that payments are made at the end of each period.



UPDATE
 
Syntax:
 
       Then: update
 
Note: Available on automatic processing tables only.
 

Version Ref:  3.x
 
Description:
The UPDATE command puts the user into update mode automatically and/or conditionally from automatic processing. In effect, it presses "U" for the user.
 
Examples:
Since automatic processing happens at least twice, it is important to test whether or not the user is already in update mode to prevent "updating" again and again and again.... Use the following combination of
commands to prevent the user from looping through the automatic processing forever.
On the automatic processing table:
 
         If: q eq ""
       Then: q(1,,g)="1"; update
         If: q eq "2"
       Then: q=""
 
Put the following at the bottom of the INPUT processing table:
 
       Then: q= "2"



USER
 
USER timeout ( ver 5.8.02 )
 
Syntax:
 
       Then: USER label = progname
 
Version Ref:  3.x NIX only (not included in filePro Lite)
Version Ref:  5.7.04 Windows supports this command (not included in filePro Lite)
Version Ref: 5.8.02 Added timeout parameter (not included in filePro Lite)
 
Description:
Send/receive data to/from user supplied program.
 
Examples:
As in lookups, there are two steps. First you identify the user program name:
Then: user prgname
       Then: user prgname=pathname
 
where:
 
"prgname" is the name you assign to the external program. You must use the complete pathname if the user program is not in the current directory. Next, you set up field
assignments. To write to a user program, use this syntax:
 
       Then: prgname=m
 
where "prgname" is the external program and "m" is a filePro Plus field or expression. To write a number of arguments, repeat the statement: prgname=m; prgname=n; prgname=o;
and so on.
 
To read from a user program:
 
       Then: m=prgname
 
where:
 
"m" is a filePro Plus field
"prgname" is the external program

To read in a number of assignments, repeat the statement: m=prgname: n=prgname: o=prgname; and so on.
To test for an end-of-file or program termination, put the user program name on the condition line.
 
You can now also specify a timeout (in milliseconds):

    user alias = ( command, timeout )

When reading from the user command, if nothing is received within that many milliseconds, the read will return a null string -- "" -- and you can put "timeout(alias)" on an "if" line to
see if the null string was because of a timeout.
 
When you make an assignment to a user program, filePro Plus writes to the user program's standard input. The field ent will be terminated with a "\n" (new-line character). When
you read in values or otherwise reference the userprogram, filepro Plus will read from the standard output of the user program (up to a new-line character).
 
When you read in values or otherwise reference the user program, filePro Plus will read from the standard output of the user program (up to a new-line character).
 
IMPORTANT: When reading from a user program, filePro Plus executes the program only once, not over and over. Therefore, make sure the user program itself loops until it
reaches an end-of-file.   If you wish to run the same user command more than once you must close it before rerunning it.

close 'prgname'
Also, when using the user command, do not add any other functions to the same line as the user command as it will render the command invalid.



User Defined Functions

 User defined functions - Forward declare functions to be used:
 (function|func) [file.]name([dim|var] var1, [dim|var] var2, ...)

 e.g.
   function fplib.showlock(var pid)
   function fplib.log(file, line, what)
   function somefunc(dim myarray)

 Call a function:
   [x=][file.]name(var1, var2, ...)

 Return a value from a function:
   return(value)

 Can pass fields: real, dummy, longvar
 Can pass arrays: Alias and system arrays are copied to a non-aliased 
 array. Non-aliased arrays are passed by reference.

 Function names must be at least 3 characters in length.
 Functions cannot modify values outside of its scope.
 Functions do not call automatic processing.
 Functions cannot modify real fields.
 Functions cannot be called unless they are declared.
 Functions can pass values by reference (changes made to the value will 
 carry back out of the function, only to arrays).
 Functions can optionally return a value.

 Parameter names must be at least 3 characters in length.
 Parameters will be passed to the function using the name they were defined 
 with in the declaration statement.

 Environment variables:
  PFFUNCDBG=(ON|OFF), default OFF. 
   If ON the debugger will be allowed to continue into the function 
   call. If OFF the debugger will skip over user defined functions. 
   NOTE: Debug statements inside of functions will still be able to 
   be activated. If debug is set inside of a function, it will 
   continue even after the function is left.
   
 Example:
 Processing table for fibonacci:
  If:                     ' Declare for future use
  Then: function fibonacci(nval)
    If:                     ' Get the parameter
  Then: declare extern nval
    If: nval le "1"         ' Return the result
  Then: return(nval)
    If:                     ' Return the result
  Then: return(fibonacci(nval-"1")+fibonacci(nval-"2"))
  
 Usage:
  If:                     ' Declare for future use
  Then: function fibonacci(nval)
  If:                     ' Call the function
  Then: n=fibonacci("9")
  If:                     ' Display the result
  Then: msgbox ""{n       ' Prints "34"
  

 



VIDEO
 
Syntax:
 
       Then: VIDEO off
       Then: VIDEO on
       Then: VIDEO sync
 
Version Ref:  4.5
 
Description:
Turns video updates on and off, or synchronizes screen to most current appearance without turning video on or off.
VIDEO SYNC forces the screen to be updated to the current state, without turning video back on.
If video updating is turned off, it is automatically turned back on if filePro needs to get a keystroke, and no PUSHKEYs are pending. This prevents the system from appearing frozen when it is in fact waiting
for user input.
 
IMPORTANT: There are instances when you might need VIDEO SYNC or else you will not "see" what you expect to see. Because of the internal workings of filePro's "virtual screen", a change may happen
to the screen that the process does not show. Consider the following code:
 
       Then: end
@keyT    If:
       Then:
       Then: show popup "the time is"<@tm
         If: @os eq "dos"
       Then: sleep "3000"
         If: @os eq "unix"
       Then: sleep "3"
       Then: clears ; end
The above code will not show anything on the screen! This is because filePro works internally, updating and displaying a virtual screen. If a change and a clear of that change are put up in sequence with
nothing else happening, by the time the screen gets displayed, it is already in its cleared state. The code can be fixed by adding the VIDEO SYNC command to line 3 as follows:
 
       Then: show popup "the time is"<@tm ; video sync
 
This tells filePro to refresh all changes to the screen at that point, regardless of what follows. A blank screen is a fairly rare instance in filePro, but it is distressing not to know the explanation for this
behavior when you do come across it.
 
HINT: When used with PUSHKEY, turning off the video updates with VIDEO OFF can produce very clean operations. Use VIDEO ON to turn screen updating back on when the pushkey is done.
 
 
Examples :
Use index A to find the name "Brody".
 
       Then: video off ; pushkey "X4ABrody[ENTR]" ; end
 
Automatically perform a long sequence of commands that normally update the display, and let the user know whats going on.
 
       Then: show popup "Performing calculations..." ; video off ; clears
 
...put first part of calculations here...
 
       Then: show popup "Done first part. Starting part 2..." ;
             video sync ; clears
 
... put next part here...
 
       Then: video on ; msgbox "Done."
 
TIP on VIDEO SYNC
Use VIDEO SYNC to force the screen to be immediately drawn after showing the message.  Of course, this may slow things down if it draws many messages.  (Note how filePro updates the screen once a
second, rather than every X records.)

Perhaps a subroutine?

    VidSync
          If:
        Then:  Declare LastTime(8,hms,g)
          If:  LastTime ne @tm
        Then:  video sync ; LastTime = @tm
          If:
        Then:  return

Then simply "gosub VidSync" to update the screen.  If more than one second has elapsed since the last call (or if this is the first call),
then the screen will be updated.



WAITKEY
 
Syntax:
 
       Then: a = WAITKEY       Wait for next keystroke. Used on "then" lines.
         If: WAITKEY = "k"     Same as above, but used on "if" lines.
 
Version Ref:  3.x
 
Description:
Waits for the next keystroke.
 
Examples:
 
WAITKEY used on the "then line:
WAITKEY stores the next key pressed in the prescribed dummy variable. You can test this variable and act accordingly upon its being one value or another. If you want to intercept Special Keys (from the
Key Label list) you must designate a dummy variable of at least 4 characters in length, and an edit type capable of storing text.
 
wtcode   If:
       Then: a(4)=waitkey
         If: a eq "Z"
       Then: show "@The user pressed a Z" ; goto doZ
         If: a eq "Y"
       Then: show "@The user pressed a Y" ; goto doY
         If: a eq "SAVE"
       Then: show "@The user pressed ESCAPE." ; ESCAPE
         If: a eq "CRUP"
       Then: show "@The user pressed the UParrow";pushkey "[CRUP]";end
       Then: goto wtcode
 
The code above shows how WAITKEY functions. If the user does not press any of "Z", "Y", "SAVE" or "CRUP" it will keep waiting until one of these keys is pressed. This is a powerful mechanism for
forcing the user to press only those keys you want pressed.
 
 
WAITKEY use on the "if" line:
On the "if" lines, WAITKEY allows you to wait for particular characters and act upon receiving them from the user.
 
         If: waitkey="z"
       Then: show "@The user pressed a Z" ; end
       Then: show "@The user pressed something other than a Z" ; end
 
 
Capturing special keys
If waitkey contains a null value, the key pressed was a special key, not a character key, and will be contained in the system-maintained field for special keys, @SK. The value will be a four-letter code from the
Special Key Codes.
 
Here is an example in which the nature of the key captured, character or special, determines which routine is called, "gotchar" or "gotspec":
 
       Then: aa=waitkey
         If: aa ne ""
       Then: goto gotchar
         If: @sk="CDWN"
       Then: goto gotspec
 
 
IMPORTANT: WAITKEY cannot detect or respond to the BREAK key.



WOM()
 
 Syntax:
 
       Then: xx = WOM(date_expr)
 
"date_expr" is the date to use.
"weeks" is always considered Sunday through Saturday.
 

Version Ref:  4.5
 
Examples:
If the year starts on Friday, then the first week is January 1st and 2nd, and January 3rd starts the second week.



WOQ()
 
Syntax:

       Then: xx = WOQ(date_expr)
"date_expr" is the date to use.
"weeks" is always considered Sunday through Saturday.
 
Version Ref:  4.5
 
Examples:
If the year starts on Friday, then the first week is January 1st and 2nd, and January 3rd starts the second week.



WOY()
 
Syntax:

       Then: xx = WOY(date_expr) week of year
 

"date_expr" is the date to use.
"weeks" is always considered Sunday through Saturday.

 
Version Ref:  4.5
 
Examples:
If the year starts on Friday, then the first week is January 1st and 2nd, and January 3rd starts the second week.



FOR

Version Ref: 6.1 (USP 6.1.01)
FOR f[(len,edit)] FROM exp TO exp [STEP exp] DO label
 - A loop that runs from a value to a value. Built in edits are supported. If a STEP value is not supplied, filePro will determine a STEP value based on the FROM and TO expression values. A FROM
value that is less than a TO value will result in a positive STEP ("1"). If FROM is greater than TO the STEP value will be negative ("-1"). Each iteration of the loop will update the value of "f", incrementing
by STEP, and goto the label specified by DO.
Note: The FROM, TO, and STEP expressions are evaluated once when the loop is first executed. Changing these values once the loop starts executing will not change how the loop run.

Example - For Loop
Processing:

      Then: FOR f(10,.0) FROM "1" TO "10" STEP "1" DO lp1; goto en1 
  lp1   If: 
      Then: msgbox f    ' print the value of "f" from 1 to 10
      Then: end
  en1   If:
      Then: FOR d(10,mdyy/) FROM "12/01/2024" TO "12/31/2024" DO lp2; goto en2
  lp2   If:
      Then: msgbox d    ' print the value of "d" from 12/01/2024 to 12/31/2024
      Then: end
  en2   If:
      Then: end
 

WHILE

Version Ref: 6.1 (USP 6.1.01)
WHILE cnd DO label
 - A loop that runs while the condition is true. Each iteration checks the condition (cnd) and while the value is true goes to the label specified by DO. A condition can be an IF expression or label.

Example - While Loop
Processing:

      Then: declare total(10,.0)
      Then: total="0"
      Then: lookup inv=invoice r=(rec) -nx
      Then: WHILE inv DO lp1; goto en1
  lp1   If: 
      Then: total=total+inv(1)
      Then: getnext inv
      Then: end
  en1   If:
      Then: close inv; end
 

LOOP WHILE|LOOP UNTIL

Version Ref: 6.1 (USP 6.1.01)
LOOP label WHILE cnd
LOOP label UNTIL cnd
 - A loop that runs while the condition is true (WHILE) or until the condition is true (UNTIL). Each iteration starts by going to the label specified by DO, then the condition is checked and the loop either
continues or terminates based on the value of the condition. A condition can be an IF expression or label.

Example - Loop While
Processing:

      Then: i(10,.0)="10"
      Then: LOOP lp1 WHILE i gt "0"; goto en1
  lp1   If: 
      Then: i=i-"1";
      Then: end
  en1   If:
      Then: end
 



WORDWRAP()
 
Syntax:
Then: xx = WORDWRAP( text, width [ ,options ] )
 
where "text" is the text to be word-wrapped, width is the number
of characters to be included per line and options are as follows.
 
 0 - Return the word-wrapped text as-is, excluding any hard returns. (default)
 1 - Return the text with trailing spaces removed.
 2 - Return the text as-is, including any hard return at the end.
 
Return value
Returns the number of lines that will result for the given
field or expression for the specified width per line.
 
Notes:   Also see @WORDWRAP[]
 
Version Ref:  5.6
 
Example:
 
Then: dim wraptext(999)
Then: xx = WORDWRAP(9,"70","1"); c(3,.0)="1"
 
Loop
If: c lt xx
Then: wraptext(c) = @WORDWRAP(c); c=c+"1"; goto Loop
Then: end



WRITE
 
Syntax:
 
       Then: WRITE
       Then: WRITE filename
 
WRITE, by itself, without a filename argument, forces all open files be updated to their in-memory versions.
WRITE filename, instructs that just the designated file be updated to its in-memory version.
 
Version Ref:  4.5 (not included in filePro Lite)
 
IMPORTANT: On multi-user systems, "WRITE filename" also causes the lock to be removed from "lookup files" which have had a lock placed on them by the -p lookup option. In other words, on multi-user
systems, it is possible for multiple users to view a record at the same time. However, only one user at a time can UPDATE a record. This is because while the user is updating the record, it is locked by filePro.
Other users may view it, but may not write to that record until the locking user unlocks it. This prevents records from getting corrupted by two people changing data on them at the same time. If the record is
retrieved by a lookup and the -p flag is used on the lookup, then no one else can update that record until the lock is removed. This is done with the "WRITE filename" command. You should write your code
so as to retrieve records, update them, and release them as soon as possible. This keeps your databases open and easily used by everyone.

 
getnum   If:
       Then: lookup ctl=control r=r -np
         If: not ctl
       Then: show "@problem, no control record" ; exit
       Then: 1=ctl(4) ; ctl(4)=ctl(4)+"1" ; write ctl ; return
 
This code gets a unique number from a control file. Then it increments the value in the control file so that the next user coming for a unique number will get the next higher number. However, because the -p
flag is used on the lookup line, this particular record is "locked" and no other process can retrieve a unique number until it is unlocked. This prevents two or more users from getting the same unique number!
That is why there is nothing else between getting the unique number, incriminating the control number by "1", and then running the WRITE command against the control file. The WRITE command not only
hands all the fields of the record to the O/S for storage on disk, but it ALSO unlocks the file at this particular record. Anyone else can now obtain the next available unique number, it will be one higher than
the last number retrieved, and the next retrieval will increment it for the next user after that and so on. The idea to grasp here is that the locked record is not held in a locked state for any longer than
absolutely necessary. Get the unique number, increment the control number, write the file to ensure that the change is written to disk before anyone else can retrieve this record, and obtain the next unique
number.
 
NOTE: The CLOSE filename statement will also perform an "unlock" of a designated file. However, this will also close the file, and the next user accessing this file to obtain anything will have to wait a little
longer while the O/S "opens" the file again. In a case where many hits will be made on a file in a short period of time, it is best to simply WRITE the file each time it is updated to provide faster operations.
 
HINT: If you are working on a new record, the system-maintained fields for that record will be empty until an automatic WRITE happens at the end of processing, or until you issue a WRITE command on
the processing table. A good check to see if a record is new is to test whether @cd (creation date) is equal to "" (null). If it is, this record is currently new and has never been written to disk.
 
Description:
WRITE is a very important command. It has two important functions. The first is to force the memory copies of all the fields in a record to be written out to disk. (Actually they are just handed to the O/S
whose job it is to really write them to disk. Another filePro command, SYNC, forces the O/S itself to write all of its buffers to disk. This means things waiting to be written to disk actually get written.)
However, for most practical purposes, you can assume that issuing a WRITE is a guarantee that your data will be written to disk. The second function of WRITE is to unlock a specified file or all files if no file
is specified.
 
Technical Notes
WRITE is different from the WRITE( ) function, which writes regular files opened with the OPEN( ) or CREATE( ) functions.
 
Version 6.0.02
The functions lock or unlocks nbyte bytes of the file specified by handle.

x=lock(handle,how[,nbyte])
handle - an open handle to a file
how - U|0 : unlock bytes
L|1 : lock bytes
N|2 : lock bytes non-blocking
nbyte - How many bytes in the file to lock, if omitted, lock

the billionth byte in the file (file does not have to be
that large)
 

x=unlock(handle[,nbyte])
handle - an open handle to a file
nbyte - How many bytes in the file to unlock, if omitted,

unlock the billionth byte in the file (file does not
have to be that large)
returns "1" on success
returns negated system error on error



WRITE()
 
Syntax:
 
       Then: aa = WRITE(handle,source,length)
       Then: aa = WRITE(handle,source)
 

where "handle" is the file handle returned by OPEN() or CREATE(), "source" is the data to write, and "length" is the number of bytes to write. If "length" is not specified, the length of the source field is
used.

 
Return value
 The number of bytes written.
 
Version Ref:  4.5 (not included in filePro Lite)
 
NOTE: In a text file, it is possible to write more bytes than specified. For a DOS text file a write of 10 bytes with a LF (line feed) character in it will cause 11 bytes to be written as the LF is converted to a
CR/LF (carriage return, line feed pair). WRITELINE() is recommended for text files.
 
The write will be done to the current position in the file. This position can be set by SEEK(), otherwise it will be the byte immediately at the end of the last read/write operation.



WRITELINE()
 
Syntax:
 
       Then: bytes = WRITELINE(handle,source,length)
       Then: bytes = WRITELINE(handle,source)
 

"handle" is the file handle returned by OPEN() or CREATE().
"source" is the data to write.
"length" is the number of bytes to write.

"bytes" is the number of bytes written, including newline
If length is not specified, the length of the source field is used.
 
A newline character is appended to the information written.
 
Return value

The number of bytes written, including the newline.
 
Note: The file must be opened in text mode. A newline character is appended to the information written.
 
Version Ref:  4.5 (not included in filePro Lite)
 
Description:
Writes a line of text to a file.



XLATE()
 
Syntax:
 
       Then: xx = XLATE(text_expr,from_expr,to_expr)
 
"text_expr" is the string to edit.
"from_expr" is a list of characters to translate from.
"to_expr" is a corresponding list of characters to translate to.
 
Return value:
 
A copy of the original string, with each character translated as appropriate.
 
NOTE: If from_expr is longer than to_expr, then any character found in from_expr beyond that length will be deleted from the resulting string.
 
Version Ref:  4.5
 
Description:
Translates individual characters in a text string to other characters.
 
Examples:
Convert backslashes to forward slashes, braces to brackets, and eliminate some punctuation marks.
 
       Then: newname = XLATE(oldname,"\ { } !@#$%","/[]")
 
Eliminate parentheses and dashes from a phone number, leaving just the digits. Then dial the number.
 
       Then: outs "ATDT" & XLATE(phone,"()- ","") & chr("13")
 
Note that the file I/O functions cannot be used to access any file with a name formatted as a filePro file. For example, you cannot access a file named "screen.1." "Index.A," or "key."



Advanced Options in Define files - Version 5.7.00
There is a new function in Define Files called O - Options
This pops up additional advanced options to select.

The first option allows you to change the creation password.  Press Y and then enter the new creation password.
Leaving the field blank will remove an existing creation password.
 
The second option for file encryption.  Press Y and then enter the encryption key.  DO NOT LOOSE the key as it will
be required to access the file and it cannot be retrieved by filePro or fP Technologies.   Leaving the field blank will
remove an existing encryption key.  DO NOT  encrypt an alien or ODBC file.
 
The third option allows you to edit the allowed list for this file.  If for some reason you wished to move this files data
to a new machine and this file was encrypted, you would need to add the necessary information on the other filePro
installation in order for it to properly read the encrypted data.
 
The final option is for mirroring this file to a dual write or secondary location.  See Dual Write/Mirror.



Edits Description
The edits feature in filePro allow you to easily validate data as it's entered and can be used to format data during importing from other sources and when posting. Because of the
power and ease of programming that filePro edits provide, many programmers routinely use filePro to validate data which is downloaded from mainframe computers and other
sources.

Edit Classifications
Edits can classified and used in various ways but can be generally classified as follows.
 
System Edits These edits that are maintained internally to filePro. This type of edit are primarily date edits such as MDY, MDY/, MDYY/, etc. These edits can be

used by all filePro files and cannot be changed.

Global Edits These edits are maintained in a table in "..\fp\lib\edits" by default or as specified by the PFGLOB environment variable. These edits can be used by all
filePro files. User edits can be added to the Global Edits table.

Local Edits These are user edits (also called file edits) that are file specific and maintained in the applicable filePro directory e.g. "..\filepro\file_name\edits" where
file_name is the name of the filePro directory. A local edit will override a global edit with the same name.



Edit Syntax
In the following descriptions, "X" and "Y" are edit expressions, "L" is any literal, surrounded by quotes and N is a number.
 

Expression Desription
( X ) Parentheses may be used to separate expressions as in algebra.

[ X ] The expression X is optional.

{ X } The expression X may occur any number of times, but must occur at least once.

< L > The literal may appear, but if it doesn't, filePro will add it.
Examples:
"Y<es>" will accept either "Y" or "Yes" as input and will turn a "Y" into a "Yes".
~"N"_<o> will accept any of the following as input and turn it into "No".
N n no NO No nO

! L ! The literal must appear, and filePro will delete it.

X | Y Either expression is permitted.
Example: "N" | "N"!o! will accept only "N" or "No", and will turn a "No" into an "N".

X & Y The data must conform to both expressions.

* Accept any single character.

\ At beginning of line. Right-justifies the resulting field.

\C\ At beginning of line. Right-justifies the resulting field using a fill character as specified by "C".

^ Ignores case differences. Takes effect where it occurs on line.

% Turns off case conversion. Takes effect where it occurs.

~ Converts data to uppercase. Takes effect where it occurs.

_ Converts data to lowercase. Takes effect where it occurs.

@ Use to identify where to end a field. 
Example: ["-"] ( {N}|<0> ) ( (<.><0><0>@) | ( "." ( N <0> @ | N N [{N}] ) ) )
2 would be displayed 2.00
2.1 would be displayed 2.10
2.12 would be displayed 2.12
2.123 would be displayed 2.123

 
Punctuation Combinations - Punctuation may be combined to form the following functions:

[{ X }] -- The expression may occur any number of times, or not at all.
[! L !] -- If the literal appears, it will be deleted.

Prompted Edits
filePro Plus lets you add prompts to your edits. When the user moves to a field that uses a prompted edit, the prompt will appear at the bottom of the screen before the user types
anything into the field.
 
Syntax:
 name 'prompt' normal edit syntax
 where "name" is the name of the edit and "'prompt'" is the prompt text enclosed in apostrophes (do not use quotation marks).



System and Global Edits List
The following is a list of filePro defined GLOBAL edits.
 

Edit Description
 

* Accepts any value.

# Accepts only 0-9, periods, dashes, slashes and blanks; right-justify; (will not sort in numeric order).

$ Prepends a dollar sign; accept any number of digits and a negative sign in front of the point; show point and two decimal places,
right-justify the result; (since it truncates rather than rounds, use only for result fields),n (where n = 0-8 or F); add a comma every 3
digits.

.0 shows integer values only; no decimals.

.n (where n = 0-8); accept numeric; show n decimal places.

A accept A-Z, a-z

ALLUP accept words (usually names) in upper or lowercase, convert contents to uppercase

ALNUM alphanumeric; restricted to A-Z, a-z, 0-9, and blanks

ASCII accept the entire range of printable characters

BLOB this edit is used for storing pictures and objects in the blob file
This edit type defaults to the valid length of 16

CHEQUE convert dollar amounts to words (used for printing checks); suggested length is 75
DMY DDMMYY format; (6)

DMY/ DD/MM/YY format; (8)

DMYY DDMMYYYY format; (8)

DMYY/ DD/MM/YYYY format; (10)

F floating decimal

HM HH:MM; minimum length of 5 for minutes + n for hours > 99

HMS HH:MM:SS; minimum length of 8 for minutes + n for hours

LOWUP change leading letters to caps; leave other caps intact

MDY MMDDYY format; (6)

MDY/ MM/DD/YY format; (8)

MDYY MMDDYYYY format; (8)

MDYY/ MM/DD/YYYY format; (10)

MEMO this edit is used for storing text memos in the blob file
This edit type defaults to the valid length of 16

MMM_YY convert a MDY, MDYY, MDY/, MDYY/ date into MON/YEAR

N accept 0-9 only

NUM accept 0-9, supplies a zero if position is left blank

PARNEG remove minus sign from a negative number and place parentheses around the number

PHONE the entire number in phone number format; (to include area codes,

RJ right-justify

RMINUS move minus sign of negative number to the right side of number

SEX accept only M, F, m, or f, and change lower to uppercase; (use a length of 1)

SSNUM Social Security number; accept 0-9; show dashes;(len must be 11)

STATE accept standard postal abbreviation; (length must be 2)

UNPAREN Removes parentheses

UNPHONE remove parentheses, hyphens, and spaces from phone # string

UPLOW change leading letters to caps, all others lowercase, except Roman numerals & De, Del, La, Li, Lo, Mac, Mc, and San

TIME HH:MM:SS; length of 8; accepts 00:00:00-23:59:59

YESNO (use a length of 1)

YMD YYMMDD format; (6)

YMD/ YY/MM/DD format; (8)

YYMD YYYYMMDD format; (8)

YYMD/ YYYY/MM/DD format; (10)



ZIP Accepts 5 or 9 digits with or without dash; show dash in 9-digit zip; (length must be 5 or 10)

0RJ Right-justify and "0" fill



ENCRYPT / DECRYPT (not included in filePro Lite)
 

Syntax
 

result = ENCRYPT(data,method,key [ ,nonce ] )
result = DECRYPT(data,method,key [ ,nonce ] )
 

where
 

data the data string to be encrypted.
method the encryption method used e.g. Blowfish, RC2, AES, etc.
key the character sequence used as the primary base to encrypt or decrypt the "data" field.
nonce the encryption mode used by filePro. If nonce is not specified, filePro generates one.



Encryption Methods (not included in filePro Lite)
In general the choice of one encryption method over another has more to do with bid requirements or compatibility than it does with the merits of the
method.
 

The encryption methods supplied are:
 

1. Blowfish - developed by Bruce Schneier as a replacement for
2. Twofish - an earlier method developed by Bruce Schneier DES - one of the AES competition finalists
3. AES - Advanced Encryption Standard - the latest government standard - chosen via an open submission/discussion/analysis process
4. Rijndael - the same as AES (rijndael is the method chosen for AES)
5. DES - Data Encryption Standard - the previous government standard 3DES - DES with a key size three times as large
6. Safer+ - another AES submission developed by Cylink Corporation
7. RC2 - developed by Ron Rivest for RSA Security

 

Additional References:
Blowfish - http://www.schneier.com/blowfish.html
Twofish - http://www.schneier.com/twofish.html
Safer+ - http://csrc.nist.gov/CryptoToolkit/aes/round1/conf1/saferpls-slides.pdf
AES/Rijndael - http://csrc.nist.gov/CryptoToolkit/aes/rijndael/
DES - http://www.itl.nist.gov/fipspubs/fip46-2.htm
3DES - http://csrc.nist.gov/cryptval/des/tripledesval.html
RC2 - http://www.rsasecurity.com/rsalabs/node.asp?id=2249



Encryption Mode (not included in filePro Lite)
The encryption mode used is CTR mode.
 

The key is the character sequence used as the primary base to encrypt or decrypt to desired field. A key is in some ways similar to a pass phrase
used to validate a system login. The key should be not easily guessed, it should be protected as you would protect a login pass phrase. The
encryption key has a required length ( Block Size ) that differs among encryption methods. Depending on the encryption method used, the key length
can either be within a specified range or the key is a fixed length and must be one of a set of valid lengths. The following table provides Block Size and
acceptable key ranges values allowed for each supported encryption method.
 

Method Block Size Key Range
Blowfish 8 8 - 56

RC2 8 8 - 128
AES 16 16, 24, or 32

Rijndael 16 16, 24, or 32
Twofish 16 16, 24, or 32

DES 8 7
3DES 8 21
Safer 16 16, 24, or 32

 
The length of the key must be between the specified values (inclusive) if a range is specified or be one of the specified values if a list of values is specified.

The encryption/decryption routines enforce this key length requirement and will exit with an error if the length of the supplied key is not valid for the requested method. There is no way encrypted data
can be recovered if the key is lost - this point can not be emphasized enough.
 

Nonces are generated by filePro and are created by constraining the output of the Yarrow pseudo-random number generator to printable non-control
characters (so they can be easily stored). Entropy is currently added to the Yarrow generator by manipulations of the system clock. The nonce used
for encryption must be provided at decryption time but it introduces no cryptographic weakness if the nonce is known (as long as the key is kept
secret). It does introduce a cryptographic weakness if the same nonce is reused with the same key.
 
The "nonce", sometimes called the initialization vector, is used to transform the key into the symmetric key that is actually used to transform the data. While the key must be held secret in order to
protect the data the nonce can be revealed without compromising the security of the encrypted data. While the key can and usually will remain constant while encrypting multiple sets of the same type
of data, the nonce should change for each separate set of data. Reusing the same nonce with the same key to encrypt multiple pieces of data weakens the encryption and makes it more susceptible
to cryptographic analysis and exposure of the encrypted data. The same key and nonce used to encrypt the data must be supplied at the time of decryption in order for the data to be successfully
decrypted.
 

An example of this might be encryption of data in medical records. You might use a nonce built from the patient ID and social security number. Then,
a unique nonce could be generated (and regenerated) in processing from data which would not change stored in the record. If some of the nonce
data might possibly change it wouldn't be to hard to build a routine to retrieve the encrypted field, decrypt it with the old data, re-encrypt it with the new
data, and store it.
 

The length of the nonce for the encryption method has to match the block size for the encryption method.
 

For example:

Selecting Blowfish as the method would mean that the nonce would have to be 8 bytes and the key could be any length between 8 bytes and 56 bytes
inclusive.
Selecting AES as the method would mean that the nonce would have to be 16 bytes long and the key would have to be 8, 16, or 24 bytes long.
Selecting 3DES as the method would mean that the nonce would have to be 8 bytes and the key would have to be 21 bytes.



Encrypt / Decrypt Example (not included in filePro Lite)
 

For this example, use "Define Files" to create a simple filePro file with 4 fields as follows.
FIELD 1   data 64 *
FIELD 2   method 20 *
FIELD 3   key 24 *
FIELD 4   nonce 24 *
 

Use "Define Processing" to create an "input processing table" with the following lines.
 

@wuk*
ba(64,*) = encrypt(1,2,3,4)
bb(64,*) = decrypt(ba,2,3,4)
display
end

 

Then use "Define Screen" and place fields *1, *2, *3, *4 !ba, and !bb on the screen.
 

Enter any 4 sets of values for data/method/key/nonce and press [F8] to display the encrypted and decrypted data in fields "ba" and "bb". Try various
combinations for each field value e.g. "data", "method", "key", etc. The results of encryption will change with each combination of field values in field
"ba" and the decrypted value (displayed in field "bb") should match the value entered in field "data".



Encrypting Fields - Caution (not included in filePro Lite)
Again, carefully think through the process of encrypting your data before applying encryption since you can destroy your data or at least make it
difficult to properly access your data.
 

Don't apply edits other than "*" to stored data fields you encrypt.
Avoid encrypting fields you need to build indexes on.
Always make a backup before applying encryption.

 
Examples:
 

Unciphered Ciphered Edit Type Edit Mask Result
123-12-1234 a§6¦ûf23gh ssnum nnn-nn-nnnn (blank)
Jim Smith D¥§kbnmbÃÇ lowup Aaa Aaaa jiM SmiTh
In the case of field having the "ssnum" edit type, when encrypting, the ciphered data will not pass "ssn" edit since the edit mask limits the field to numbers and "-" dashes as shown above. The
ciphered value "a§6¦ûf23gh" will obviously not pass the "ssnum" edit. When the edit fails, the resulting value is a blank field. Only use the "*" edit type for ciphered fields to avoid this.
 
In the "Jim Smith" example, although the result is not as expected, the data is not lost. The lowup edit can be applied to convert the "j" back to uppercase. However, if you expect to be able to find the
"Jim Smith" record by either an index search or by scanning for records, the ciphered field value "D¥§kbnmbÃÇ" is not very useful. Avoid encrypting fields that you need to search for or having
indexes for this reason.



Credits Encryption
Credit to:
 

Tom St. Denis
tomstdenis@gmail.com
http://libtomcrypt.org
 

Whose encryption library we use to provide encryption within filePro.
He kindly placed the entire library in the public domain.



Color-Values

 

Screen colors can be set if the system provides for color. The following charts identify the hexadecimal codes which apply for each color.
These codes can be used by setting the environment variable with the filePro configuration program or setting the appropriate environment
variables. Use the filePro configuration editor or environment variables to specify your colors.

Normal Color Chart

High Intensity Color Chart



Configuration Editor

 

If you want to employ an environment variable for ALL filePro programs and all users, you can put it into the filePro configuration file. This is
done by running the configuration editor from the filePro Directory program. This editor allows you to place environment variables, one per line,
along with the desired value. (Under Windows there is NO need to use the word " set " in this editor, it is automatically assumed.)

IMPORTANT: Values set inside the editor are overridden by changes made in the user  s environment. In other words, if PFTMP is set in the
configuration editor and again in the autoexec.bat or a user  s personal .bat file (or ".profile" files under Unix), the global value set in the " config
editor/file " file will be overridden by the local environment value.

The configuration editor is reached by choosing the filePro Directory from the filePro Plus Main Menu and then pressing the button marked "
For Configuration Editor " . (Under ANSI normally F6).

There are 3 environment variables, which CAN NOT be set in the configuration editor/file. They are PFPROG, PFDIR and PFDATA. These
must be set outside of the file somewhere else in the environment prior to starting filePro.

5.0 Enhancement - Numeric configuration variables can be entered as octal values by prefixing the value with zero instead of "0x" for
hexadecimal values.



Environment Variables

 

In the early days of filePro, the program was known as ProFile. Because of this, all environment variables were first designed as PFxxxx.
When the first versions of filePro were released, all PFxxxx environment variables were linked to the same name staring with FP. For
compatibility, this convention has been kept up forever. Any variable shown that starts with PF, such as PFDIR, PFDSK, PFNOBOX, etc. can
also be used starting with FP, as in, FPDIR, FPDSK and FPNOBOX. You may feel free to use either version of the variable.

This reference shows the syntax for setting environment variables as: variablename=value. On Unix systems, these variables also need to be
exported as: variablename=value for them to be recognized by filePro.

The method for setting environment variables on Microsoft platforms is " set variablename=value and they do not have to be exported.

VERY IMPORTANT: All environment variables can be set using the filePro Configuration Editor (Choice ? on the filePro Plus Main Menu),
EXCEPT the following three special cases: PFPROG, PFDATA and PFDIR. These MUST be set externally in the environment for filePro to
use them.

In Version 5.8.01, PFDIR2 and PFDATA2 were added to support filePro's mirroring (dual write) feature. (not available in Lite)



Environment Variables - Debugging

 
LOGFILE=filename

Sets filename for LOGTEXT command.

Version Ref: 4.5

 

PFCALLDBG=OFF
default ON, that can be used to have the debugger ignore calls when turned OFF.

Version Ref: 6.0.00
 
PFCHECKLOCK=ON

Warning if attempt to modify lookup w/o -p flg

Version Ref: 4.5
PFCHECKLOCKPOPUP

Controls logging of non-protected lookups.

If PFCHECKLOCK=ON and PFCHECKLOCKPOPUP=OFF, then the popup message does not appear, but the error is still logged.

Note: PFCHECKLOCKLOG=filename sets the filename for logging. (Default:Unix=/tmp/fp.log, Windows=/fp.log)

Version ref: 5.0
PFLOGAPPEND=ON

Appends LOGFILE instead of overwriting.

Version Ref: 4.5

Note: Use LOGAPPEND prior to version 5.0.14
 

PFLOOKUPNOFILE=ON

Allows you to check syntax on a prc table without it checking for valid filenames in any lookups that you have.

Version Ref: 5.0
PFNOTRAP=ON

(Unix only) PFNOTRAP=ON tells filePro not to trap SIGBUS and SIGSEGV errors.

Version Ref: 4.5
PFCALLDBG

Default ON, that can be used to have the debugger ignore calls when turned OFF. Note: DEBUG ON will still enable the debugger in a call.

Version Ref: 6.0.01

PFSECUREDEBUG
PFSECUREDEBUG=ON, default off. Disables !B escape in processing when set to ON. Prevents users from accessing the shell through the debugger.

Version Ref: 6.0.02



Environment Variables - Index (building, lookups, Browse)

 
PFBIXBLANK=OFF|ON

Controls how filePro treats a null lookup key.

ON=4.1 way, where null=all blanks

OFF=4.5 way, where null key=lowest possible value.

Default is "ON"

Version Ref: 4.8
 

PFBIXBUILD=2
 

Tells dxmaint to use 4.1 style sorting during build whenever possible. Use this on HUGE files to improve performance - on
smaller files it will actually harm performance. (dxmaint)

Version Ref: 4.8
 

PFBIXNODESIZE=nnn

Will have dxmaint build indexes with a nodesize of nK bytes (1 <= n <= 63) rather than the default value calculated by filePro. (dxmaint)

Version Ref: 4.8
PFBRWM=ON

Strip trailing blanks from browse lookup. (*clerk)

Version Ref: 4.5
PFDDEFXMAINT
 

Set PFDDEFXMAINT to OFF to revert to the old 4.1 index routine in ddefine
 
Version Ref: 5.8.03
 

PFF6PROMPT=OLD

(4.8.5K2) PFF6PROMPT=OLD will put back the old behavior of ignoring @WBL processing in determining which F6 prompt to display. (*clerk)

Version Ref: 4.8
PFIXGT=ON

This will allow *clerk to do a next-greater-than if no exact match is found when selecting through Index Selection. (*clerk)

Version Ref: 4.8
PFIXS=ON | OFF

Turns on or off "Index Scan" feature. (*clerk, *report)

Version Ref: 3.0
PFKEEPIXVAL=OFF

PFKEEPIXVAL=OFF causes dclerk to clear the index key prompt. Default of ON keeps the previous value entered. (*clerk)

Version Ref: 4.5.8
PFLKNL=NEW

Lookup "-nl" finds the last matching record instead of the first. (*clerk, *report)

Version Ref: 4.5
PFMAXALLOC=nnn

Maximum # of sort buffers allocated when re-building demand indexes (automatic indexes pre 4.5). Default is "16". (dxmaint)

Version Ref: 4.5

Version Ref: 5.8.01 the default was raised to 128
PFMAXASIZE=nnn

Sort buffer size when building demand indexes, (automatic indexes pre 4.5) (dxmaint)

Version Ref: 4.5



Version Ref: 5.8.01 the default was raised to 128,000
PFMAXTEMP=nnnn

Maximum virtual memory size when sorting. Demand indexes (auto pre 4.5) Default "1000". (dxmaint)

Version Ref: 4.5
PFMAXTFIL=nnn

Maximum virtual memory files used for sorting. Demand indexes (automatic pre 4.5) (dxmaint)

Version Ref: 4.5
PFNOIXHIDE=ON

Disables Index Hiding (All indexes are shown including hidden indexes).

Version Ref: 5.0
PFNUMIXBUF=nnn

Sets the number of index blocks to buffer in memory for 4.5-style indexes. (Index blocks are usually 1K each.) Default is 10.

Version Ref: 4.5
PFNUMIXBUILD=nnn

Same as PFNUMIXBUF, but for dxmaint only. Default is200. Maximum is 32767.

Version Ref: 4.5
PFOLDIX=ON

Builds old style (4.1) indexes. (*clerk, *report, dxmaint)

Version Ref: 4.5



Environment Variables - Miscellaneous

 
ABE=ASCII

Save processing tables in ASCII format. (*cabe)

Version Ref: 1.0

CABEBACKUP ON|OFF (on by default)
CABEBACKUPMINS n (minutes between backups)
CABEBACKUPCT n (backup files per process)

While editing a process it will automatically be * backed up depending on the settings of
these variables: * CABEBACKUP (ON|OFF) * CABEBACKUPMINS (MINUTES) * CABEBACKUPCT (NUMBER OF
BACKUPS BEFORE ROLLOVER) * Backups can be restored through menu item 5.
Version 6.0.01
 

PF64K=ON

Turns on/off size warning in cabe. (*cabe)

Version Ref: 4.5

PFPDFFONTSIZE

Default FPML/PDF font size is 12. Variable PFPDFFONTSIZE=nnn allows you to set the default size.

PDPOSTPRINT

Version 6.0.00

PDPOSTPRINT=ON | OFF

This variable needs to set to ON and will add additional behavior to PFPOSTPRINT.

PFPOSTPRINT is set to execute when output is run.  This is used to launch external programs on the results such as opening a RTF, PDF, etc. on the
resulting output.

DPOSTPRINT set to ON will expand the available PFPOSTPRINT to PFPOSTPRINTnn where nn is a number between 1 and 99

When a specific printer is called by filePro, the associated PFPOSTPRINTnn will be launched on the resulting output.

i.e.  Printer1 would be associated with PFPOSTPRINT1, Printer2 w/ PFPOSTPRINT2, etc.

PFADDWP=OFF

Turns off adding .wp extension to export word. (*clerk, *report)

Version Ref: 4.5

PFAUTOKSIZE=nnn

Override default tok size for auto processing. Equivalent of -ty flag. If not set, default value is "20000" prior to 5.6.0 and "100000" with 5.6.0 and later.
(*cabe, *clerk, *report)

Version Ref: 4.8

PFBACKGROUND=OFF|ON

Turns off ability of user to throw session into background via -bg or !g for "*report" and "dxmaint". Default is "ON" (*report, dxmaint)

Version Ref: 4.8

PFBLANKOV=ON | OFF

Causes date math with blank dates to return "/OV". Default (unset) is OFF (*clerk, *report)

Version Ref: 4.8.8

PFBLDFREE=OFF | ON

Freechain build message. Default is OFF. (*clerk, *report)

Version Ref: 4.5

PFBREAK=OLD

Processing halts when break key pressed. (new or non-set behavior is to continue report only see PFCLKBREAK for clerk) (*report)

Version Ref: 4.5

PFBRWFORMPWD

Password protection of  .brw formats

By setting the environment variable PFBRWFORMPWD to ON, one can then select certain .brw formats and assign a password to protect against



unauthorized changing and saving of the .brw format. Without knowing the password assigned to the .brw format and PFBRWFORMPWD set to OFF
(default if not set) you will not be able to modify and save.   With this set to ON, you will see a new Password option when accessing browse format in
*clerk (IUA).

Version Ref: 5.8.03

PFBRWSLASH=OFF

Some European character sets (i.e.: Norwegian) use character 0x5C (the backslash in US-ASCII) as a letter of their alphabet. Setting
PFBRWSLASH=OFF turns off filePro's backslash-code handling for browse lookups. (*clerk)

Version Ref: 4.8

PFCLKBREAK=OLD

Return to last function when break key pressed. (*clerk only - see PFBREAK for report)

Version Ref: 4.5

PFCLOSEPENDWARNING=OFF
Add PFCLOSEPENDWARNING=OFF to disable the warning if you attempt to close an HTML tag when it was not open.

  Version Ref: 5.0.15
 
PFDDEFXMAINT

ddefine will now use the version 4.5+ dxmaint interface when making indexes for new files. Set PFDDEFXMAINT to OFF to revert to the old 4.1 index
routine in ddefine

Version Ref: 5.8.03

PFDLGENTER=ON

Enter key acts like a save key.(*clerk)

Version Ref: 4.5

PFEDFAILBOX  

(4.8.09) Causes "edit failed" messages to appear in a popup box, rather than flash at the bottom of the screen. (Similar to PFLOCKBOX=ON)

Version Ref: 4.8.9

Default: Unset is OFF.

PFEOF=nnn

Sets the End-of-field marker character for filePro's memo editor.

Version Ref: 5.0

Default: 17

PFEOP=nnn

Sets the End-of-Paragraph marker character for the filePro memo editor.

Version Ref: 5.0

Default: 17 or the override value set by "PFEOF".

PFEXPORTALL=ON

EXPORT ASCII/WORD would always export the same number of fields, regardless of whether the fields were assigned to on each record, even if they
were only referenced in a comment. Now, filePro will only export the number of fields as the highest-reference field actually assigned.

For example:

If:

Then: out[1] = 1 ; out[2] = 4

If: xx = "y"

Then: out[3] = 3 ; out[4] = 4

If:

Then: ' out[5] = 5

filePro would previously always exported 5 fields. Now, if x="y" is true, it will export 4 fields, and if false will export 2 fields. To revert back to the old
behavior, set PFEXPORTALL=ON.

Version Ref: 5.0.14



PFFIXEDLISTSIZE=ON

Version Ref: 5.0.9

Prevents filePro from shrinking selection lists. This allows screen readers for the blind to be programmed with fixed screen locations for such lists.

Default: OFF

PFFIXNOLOCK=OFF

Version Ref: 5.0.9

Turns off a change in behavior related to how filePro handles posting to a lookup that does not have a "-p" to lock the record. This returns the behavior to the
method used in handling record locks prior to version 4.8.10

PFFORMTOKSIZE=nnn

Override default tok size for "FORM" command for @keyF (equivalent of -tf flag). If not set, default value is "20000" prior to 5.6.0 and "100000" with 5.6.0
and later. (*clerk)

Version Ref: 4.8

PFHELPAUTOGOTO=ON|OFF

Automatically forces F9 for index search upon entering help.

Version Ref: 5.0.2

PFHELPDIR=path

Sets alternate help file directory. If help is not found in the specified path, filePro will look in $PFPROG/fp/lib as well.

Note: This variable only applies for filePro /fp/lib help files. Application help files are not affected.
PFIDLEN=nnnn

Setting PFIDLEN=32 will cause @ID, @CB, and @UB to have a length of 32 rather than 8.  (The only legal values are

currently "8" and "32".  Any other value is undefined.)  Default is 8

Version Ref: 5.8.00
PFIMPBUF=nnnn

Increase default record length for importing ASCII files. Default "1024" prior to release 5.6.0 and "10000" with 5.6.0 and later. (*clerk, *report)

Version Ref: 4.1

PFINDEXX

This effects the X to exit availability when in Index Selection of *clerk. Default (not set) is when Index X does exist, X-Exit is not displayed or valid but if
there is not Index X then it does display and is valid. PFINDEXX=ON means that X-Exit will be on all the time and it someone wishes to get to an X index
they must arrow to it. PFINDEXX=OFF means that X-Exit will not display regardless of rather there is a X index or not.

Version Ref: 5.8.03

PFLBSIZE=nnn

Determines the maximum number of labels that can be in a processing table. Note that this includes labeled processing lines, lookups, arrays, aliases, and
selection set names. (Note that using the same lookup name, alias, or selection set name more than once only counts as one entry.) The default value is 1000
but can be set to any value from 100 to 32,767.

Version Ref: 4.5

PFLISTSLASH=OFF

Some European character sets (i.e.: Norwegian) use character 0x5C (the backslash in US-ASCII) as a letter of their alphabet. Setting
PFLISTSLASH=OFF turns off filePro's backslash-code handling for listbox. (*clerk,*report)

Version Ref: 4.8

PFLOCKBOX=OFF

Flashes "record is being updated" message. (*clerk, *report)

Version Ref: 4.5

PFLONGVARDOT=OLD

filePro used to accept a period in variable names. This is now not allowed (it never should have been allowed in the first place), in order to permit enhanced
functionalities. To revert to the old behavior and allow periods in variable names, you can set PFLONGVARDOT=OLD. Note, however, that this will
disable certain features, such as access to ODBC and biometrics, which require that periods not be allowed here.

Version Ref: 5.0.14

PFLOOKWIZPROT=ON | OFF

Changes the lookup wizard's "protect record". PFLOOKWIZPROT=ON will change the lookup wizard's "protect record" default to "Y". (*cabe)



Version Ref: 5.0.6

PFLX=ON | OFF

Globally disables the ability to create a browse lookup using the F6 key wherever it was possible to do so. Equivalent to the "-lx" command line flag. (*clerk)

Version Ref: 4.8

PFMASSUPDATE=off

Turns off the F4 Mass Update feature

Version Ref: 5.6

PFMBTO=nnn

(Unix only) Allows automatic timeout to any popup message boxes. PFMBTO=nn will cause all message boxes to time-out after nnn seconds, and act as if
the user had pressed ENTER. (*clerk, *report)

Version Ref: 4.5.8 NIX

Version Ref: 5.8.00 Windows

PFMENBRK=OLD

Restores 4.1 behavior when pressing break in a menu. (*clerk, *report)

Version Ref: 4.5

PFMISSINGARG=OLD

PFMISSINGARG=OLD reverts back to old 4.1 behavior of ignoring missing arguments to command line flags, such as "-pn".

Version Ref: 4.8

PFMU=OFF

Turns off "protect lookup" in cabe lookup. (*cabe)

Version Ref: 4.5

 
PFNODF=ON

Disables ddefine, dexpand free-diskspace check. (ddefine, dexpand). Use for large disk drives when there is an error reporting "Insufficient Disk Space" and
there is obviously plenty of free disk space.

 
PFNODFMSG=OFF

Turns off ddefine's "PFNODF=ON" notice. (Default: ON)

Version Ref: 5.6.2

PFNOHELP=ON | OFF

Displays "No Help Available" if ON. (*clerk, *report)

Version Ref: 4.1

PFNOQUAL=OFF

Turns off "[NONE]" from the qualifier list. (*clerk, *report, dxmaint)

Version Ref: 5.0

PFOLDMEMO

New variable PFOLDMEMO, default value is ON. Setting it to OFF will enable the new tokenizing code that was causing rclerk/rrport to crash on blobs.

IMPORTANT:  This is used in conjunction with the new maximum length parameter used in MEMO edit for use with WEBfilePro.   Any attempt to use
old compiled .tok processing tables with BLOBS will result in errors in memo handling.  When using the new parameter and tokenized processing tables
requires this set to OFF and the tok table recompiled.

Version Ref: 5.8.03

PFOLDONCE=ON

Although @ONCE in *report is documented as being run prior to any output being done, it was run while sitting on the last record read during the sort/select
process. Some people thought that this meant that it was sitting on a selected record.

@ONCE has now been fixed to be not sitting on any record. However, some people depend on their incorrect interpretation of the old behavior, so setting
PFOLDONCE=ON will "revert back" to a modified version of the old behavior, where it will now be run while sitting on the last record _selected_ during
the sort/select process.

Version Ref: 5.0.14

PFOUTS=parameters



Specifies serial communication parameters. (*clerk, *report)

Version Ref: 4.1

PFPDFCOMPRESSMODE

"PFPDFCOMPRESSMODE=nnn" to set the PDF compression mode. Default: 2 (images only.  Possible values are the sum of:

1 = text

2 = images

4 = meta data

15 = all

PFPOSTPRINT=cmdline

(4.8.05K3) When set to "cmdline", filePro will execute "cmdline filename" after any printout or hardcopy, if destination is a filename.

Version Ref: 4.8

PDPOSTPRINT=ON|OFF

This variable needs to set to ON and will add additional behavior to PFPOSTPRINT (see PDPOSTPRINT notes)

Version Ref: 6.0

PFQUAL=qualifier

Qualified data set to use. (ddir, dexpand, *clerk, *report, dxmaint)

Version Ref: 3.0

PFQUALMESG="text"

Replace "Enter File Name Qualifier" prompt spawned by '-md' flag with prompt of your own choosing. (ddir, dexpand, *clerk, *report, dxmaint)

Version Ref: 5.0

PFREADONLYWARNING=OFF

If:  LOCKED(-) support has been added.

Version Ref: 5.7.01

PFREFRESHRATE=nnn

Sets the screen refresh rate during sort/select and output phases to once every "nnn" seconds. (dxmaint/*report)

Default = 1

Version Ref: 5.0.6

PFRETRY=nnn

Number of retries for locked read. (*clerk, *report)

Version Ref: 4.5

PFSCC=ON

This will enable the "!scc" shell-escape within dclerk and rclerk, which has been disabled by default. (*clerk)

Version Ref: 4.8

PFSELECTBOXCASE
This variable can be set in the config file to determine the default case value so that it does not need to be programmed on the command line.          

PFSELECTCASE=n (n = "0", "1", or "2", default=0)

Version Ref: 5.8.02

PFSEMTIMEOUT
Watchdog code added to the session count code in filePro to prevent semaphore lockups. The value defaults to 3
seconds before it will unlock a broken semaphore. A value of 0 disables the new timeout.

 
PFSELFORMPWD

Password protection of  .sel formats

By setting the environment variable PFSELFORMPWD to ON, one can then select certain .sel formats and assign a password to protect against
unauthorized changing and saving of the .sel format. Without knowing the password assigned to the .sel format and PFSELFORMPWD set to OFF (default
if not set) you will not be able to modify and save.   With this set to ON, you will see a new Password option when accessing browse format in *clerk
(IUA).

Version Ref: 6.0.00



PFSKIPLOCKED=nnn

Allows locked records to be skipped after nnn seconds. Records skipped not included in @rp. (*report)

Version Ref: 4.8

PFSKIPPEDLOG=filename

Log records skipped by PFSKIPLOCKED=nnn. (*report)

Version Ref: 4.8

PFSP=xxx

Overrides the site password stored in fppath. (*cabe)

Version Ref: 4.5

PFSYNC=ON | ALL

ON = sync after expanding file, ALL = sync after all writes. (*clerk, *report)

Version Ref: 4.5

PFTOKSIZE=nnn

Override the default token table size. If not set, default value is "20000" prior to 5.6.0 and "100000" with 5.6.0 and later. (*cabe, *clerk, *report)

Version Ref: 4.1

PFVER=ON

Show individual filePro program version.

Version Ref: 1.0

PFWGT0=ON

Forces dreport and rreport to do @WGTprocessing even if no records are selected. (*report)

Version Ref: 4.8

PFXFERDOS=OLD

(4.5, SCO Unix only) PFXFERDOS=OLD tells xferdos to use the old dosdir/doscp command syntax. Default is to use SCO's new syntax. (xferdos)

Version Ref: 4.5

PFZEROLENWARN

This setting allows you to turn off the compiler warning for assigning a value to a zero length field.

Version Ref: 6.0.00



Environment Variables - Operating System Specific
 

AIX/UNIX/LINUX
 

PFQUIT=OFF

Disables the ability of UNIX users to press the CTRL \ to exit a program.

Version Ref: 4.8
 

PFROOTFIX=OFF

Some *NIX systems prevent a setuid program running with a real uid of root from executing child processes. The previous workaround (setting
the real uid to "filepro" when running as root) causes some things (such as printer banner pages) to report "filepro" as the user.
"PFROOTFIX=OFF" turns off the fix for systems that don't require it.

Version Ref: 5.0.12
 

PFSYSEUID=OFF

If OFF, then SYSTEM command will be executed without the filePro setuid. Some systems may not allow a program to reclaim a setuid after
giving it up. On these systems, setting this variable will cause bad things to happen to filePro. SCO OSV5 does not have a problem with this.
LINUX kernels prior to 1.1.37 have a problem. The default is ON

Version Ref: 4.8
PFTERM=terminal

Type of terminal being used. Must match termcap file (UNIX). Same as TERM except exclusive to filePro.

Version Ref: 4.0
PFUMASK=nnn

Controls the umask value when creating files using HTML:CR and JSFILE :CR and PDF files

Note: Use a decimal value for nnn, hex value 0xNNN or Octal value 0nnn (version 5.0 or later).

Basically, the easiest way to think about it is to take whatever base number you have 8 (octal) 10 (decimal) 16 (hex) and convert it to base 8
(octal)

Then to figure out the resulting permissions of your PFUMASK, take 777 minus whatever you got in base 8.  

For example, 777 minus PFUMASK 111 would give you 666 permissions on a created file.
PFUMASK 222 would give you 555 for your created file permissions, 333 would be 444 and so on

Version Ref:  4.8.9
TERM=terminal

Type of terminal being used. Must match termcap file (UNIX). See PFTERM also.

Version Ref: 1.0
TERMCAP=filename

Filename overrides "/etc/termcap" file (UNIX).

Version Ref: 1.0
 

Windows/Network
 

PFCLOCK=ON | OFF

Enables or disables clock displayed in menus. Default is "OFF".

Caution: Setting PFCLOCK=ON will cause filePro to use excessive CPU time, while the clock is displayed at the menu, and may degrade
performance of other programs.

Version Ref: 4.8
PFCURSOR=nnn

(Native windows version only) Allows you to set the height of the cursor within filePro. (Similar to obsolete CURSOR=LINE.) Enhanced to allow
PFCURSOR=nnn, where "nnn" is a number from 1 to 100, which indicates the percentage of the height of the character cell that is filled by the
cursor. PFCURSOR=LINE is equivalent to setting PFCURSOR=10. Default value is 99. Setting PFCURSOR=0 will cause filePro to use
whatever is the current cursor height.

Version Ref: 4.8
PFFILES=nn



filePro uses more than 20 file handles.

Version Ref: 4.5 (Obsolete)
PFLICFILE
 

Override the default license path for fileProODBC.

Set PFLICFILE = %pfprog%\fp\license\licfp.dat

Default path is %pfprog%\fp\lib\licfp.dat

Version Ref: ODBC 1.0.01
 

PFKEYTAB=table

Changes filePro key table as specified.

Version Ref: 4.5  Default is filepro.key    dos.key emulates Windows default keystrokes

Version Ref: 5.8    filepro-del.key file added to the lib folder to support using the DELETE key on Windows as the BREAK key. All other keystrokes remain
the same as default filepro.  

Set PFKEYTAB=filepro-del in the config file.
 

PFLABEL=OLD

Allow invalid characters in a prc tables.

Version Ref: 4.5
PFNET=ON

Use Network calls. (DOS only)

Version Ref: 3.0
PFNEWNTCONSOLE=ON

Forces startup code to create a new console for java RunMenu to execute. (Native95 only)

Version Ref: 4.8
PFSERVROOT=path

Sets the path to the implied "root" directory for HTML and JSFILE commands.

Version Ref: 4.8
PFSKHEX=ON (Native windows only)

Version Ref: 5.0

Some copies of 4.8 native windows were accidentally released with debugging code enabled, that caused @SK to contain the hex value of any
keystroke that didn't have a "real" @SK value. Since this breaks the ability to test @SK="", it has been turned off. But, since several people
have commented that they like the behavior, setting PFSKHEX=ON will re-enable it.

PFSHOWWINERROR=ON

Shows value of GetlastError() when a system error occurs.

Default is OFF

Version Ref:  5.0.6
 

FileProGI
 

PFNEWSK=ON

Allows new @sk values to be seen by processing. Specifically, the only value right now is "MOUS", which will be seen as "ENTR" if this
variable is not set to "ON".

Default is OFF

Version Ref:  5.0.6
PFFORCECURSORPATH=OFF

Cursor path is enforced within the GUI environment. Cursor path will not be enforced if value is set to "OFF"

Default is ON

Version Ref:  5.0.6



FileProODBC
PFODBCCOMMITTYPE=n

Selects the open-commit-type to use for high-level ODBC data sources, where:

0 = "SELECT * FROM tablename" (default)

Very slow on some data sources with very large files, but uses nothing non-standard.

1 = "SELECT * FROM tablename WHERE id_field = nnn" (Where "id_field" is the name of the ID field, and "nnn" is a valid ID.)

Usually faster, but may be slower on some systems, as filePro must first determine a valid ID to use.

2 = "SELECT TOP 1 FROM tablename"

Fastest version, but "TOP 1" is non-standard and not supported everywhere. Will cause ODBC failure on those DSNs that don't support it.

Version Ref:  5.0.14



Environment Variables - Other
 

PFCMARK=nn (Default (unset) operation = 00)

Marks the beginning of the century. " nn " is a 2 digit year between 00 and 99 (inclusive). Causes all 2 digit years before " nn " to be interpreted
as 20nn and all 2 digit years from " nn " through 99 to be interpreted as 19nn.

Version Ref: 4.5

Default: 00, 2 digit dates span 1900 to 1999.
PFDIRFILTER=ON  

Turns on the filter that verifies that only directories appear in the filePro filename list. Some Unix users had serious slowdowns with the filter
enabled.

Version Ref: 4.8

(Default: OFF)
PFERRKEY=k

Where " k " is the key to return from a filePro/system error screen.

Version Ref: 4.5

Example:

PFERRKEY=#

Note: Set PFERRKEY to some symbol that isn't likely to be accidentally pressed before seeing the error message.
Using "X" as the exit key is not recommended, as it will
conflict with the case where the normal choices are Enter to continue or X to exit, as this will now be "X to continue or X to exit".

PFLANG=language

Allows different collating sequences for different language character sets.

Version Ref: 4.5

Syntax:

PFLANG=language or PFLANG=/full/path/to/collate/file

If only a language is specified, filePro uses the "language.col" file in the "fp/lib" directory. If a full path is specified, you must include the full
filename, including ".col" if necessary. If not set, filePro uses its built-in tables, based on the default 8-bit extended ASCII character set (code
page 437) and the English language.

Example:

Assuming filePro is installed in the "/appl/fp" directory, the following both load the Norwegian language file:

PFLANG=norway

PFLANG=/appl/fp/lib/norway.col
PFME=ON

Waits for Return key to be pressed for next field. Default is OFF. (*clerk)

Controls data entry. With PFME=ON, the user must press ENTER in order to move out of the field, or select a menu choice. With
PFME=OFF, filePro moves cursor automatically whenever field is filled or menu choice is selected.

Version Ref: 1.0

Default: OFF
PFNAME=filename

Same as using Set/Change filename from menu.

Version Ref: 1.0
PFOLDWRITE=ON

WRITE in processing was not properly holding variable field data
PFOLDWRITE=ON will revert back to the original behavior if this fix effects an application

Default is OFF Version Ref: 6.0
PFREADONLY=ON

Forces read-only attribute on session/file.

Version Ref: 4.8
PFSYSYR4=ON | OFF



Forces @TD, @CD, @UD, and @BD to 4-digit years.

Version Ref: 4.8
PFUFLAG=ON  

Forces "-u" equivalent in *report.

Version Ref: 4.8.8



Environment Variables Output

 
PFNB=ON

Turn banner printing off.

Version Ref: 3.0
PFNTPRTERR 

(Native windows only)

If a printer error other than ERROR_NOT_READY, ERROR_WRITE_FAULT, or ERROR_IO_DEVICE occurs, the error might not be reported correctly, and you
can get "error -1" rather than the usual "printer not ready" warning.

Default: Unset is OFF.

Version Ref: 4.8.10
PFONEHEAD=ON

Report prints header lines only once.

Version Ref:  4.5
PFPQ=ON

Acts as if the "-PQ" flag was passed to *clerk/*report.

Version Ref: 5.8.01
 PFPQEXCLUDE

 PFPQEXCLUDE=<arguments> where arguments are printername1,printername2, etc.. These printers will be excluded from the selection list when using -PQ
This setting can be in the config file or in the environment.

 
Version Ref: 6.0.00
 

PFPDFFONTSIZE=nnn

Sets default font size for fpml/pdf
 
PFPRINTER=printertype

Sets the printer type and destination.

PFPRINTER=printertype - Default (unset) operation = none

PFPRINTER=local - Like -pt will send to local LPT1 even if network printer or captured port.

PFPRINTER=screen - Like -pv will print to the screen.

Default: Default printer type and destination.
 
PFPRINTERxx= Default:

set to default printer

PFPRINTERxx=name,type,destination,description

(Default (unset) operation = default printer)

1-99 sets the characteristics of the specified printer. These are normally defined in Printer Maintenance and stored in the filePro plus configuration file. The
Printer Maintenance editor allows the definition of the first 9 printers. The file must be edited manually or with the Configuration Editor found through the filePro
Directory choice on the filePro Plus Main Menu. All printers added after #9 must be sequential and not skip any number. If you have PRINTER10, PRINTER11
and PRINTER13 defined, nothing higher than PFPRINTER12 will be recognized.

Version Ref: 4.8

Example:

PFPRINTER18=deskjet,hp-1600,PRN,send output to color printer.
 
PFPRT=device/file

Directs output to a device or filename.

Version Ref: 3.0
PFPRTC=printer_type

Sets the printer type.

Version Ref: 4.0
PFPT=ON



Local printing on (AIX/LINUX/UNIX only).

Version Ref: 4.0
PFSELECTBOXCASE
 

This sets a global method for SELECTBOX()
Version Ref: 5.8.03
 

PFPTO=nnn

Wait time in sec. for "Printer Ready".

(Windows only)

Version Ref: 4.0
PFTIMEOUT=nn

Same as PFPTO. Default 10 seconds.

Version Ref: 4.0
PFSPOOL=spooler

Selects spooler/printer attached to spooler.

Example: PFSPOOL="lp -s -dlaser"

Version Ref: 3.0
PFHCFF=ON

Page eject sent to printer after "H" for Hardcopy is pressed. (*clerk)

Version Ref: 4.1

SHOWPROGRESS=ON (GI & Web)

Default OFF
When set to ON, while the report processing is being run (not the
selection processing), the center text is suppressed. This allows
for things such as progress bars and status information to be
drawn without being overwritten on the screen.



Environment Variables - Path
PFCONFIG=path

Overrides default path for config where the default path is /fp/lib/config.

Version Ref: 4.8
PFDATA=drive:

Drive letter for the "/filePro" directory.

Version Ref: 1.0
PFDATA=/dirname

Sets drive where filePro data files are located.

Version Ref: 1.0

Example: /hd1 (UNIX) or C: (Windows).

Also see: fppath
PFDIR=path

Path for the "/filePro" directory.

Also see: fppath

Version Ref: 1.0
PFDLDIR=path

Sets the path to the directory where a file to downloaded to a printer resides. PFDLDIR is used with %"filename" print code.

Version Ref: 4.1
PFDSK=drive_list

Identifies data drives. Overrides PFIGN. Do not use drive Z: on Windows OS since this drive letter is reserved for use in some systems such
as Novell so is ignored by filePro.

Version Ref: 3.0
PFGLOB=filename

Sets the file to use as the global edits table. The file must reside in fp/lib directory and should contain the edits from the original global edits file.
Note: The file name must be an acceptable Windows or UNIX path with the file name.

Version Ref: 4.1

Default: filePro uses default global edits file in the lib directory, " edits " .

Example: PFGLOB=/appl/fp/lib/myedits will use file named "myedits" instead of the default filename "edits" as the global edits table.
PFIGN=drives

Drives to ignore. (Windows only)

Version Ref: 1.0

Default: All drives are scanned for data directories

Example: PFIGN=AB tells filePro to ignore drives A and B when looking for data.

NOTE: Where possible, use PFDSK rather then PFIGN.
PFMENU=path

Set path for user menus.

Version Ref: 4.1
PFPERL=path

Identifies the path for the PERL executable used for PERL scripts in menus.

Version Ref: 5.0

Allow dmakemenu to create Perl scripts, not just shell scripts.  If you have Perl on your system, these scripts can be portable, even between Windows and
Unix.  You mark the script as Perl by preceding the "/fp/menus/menuname.-x" command with "++".  (You have to add this mark manually at the
moment.)  This will execute the script via "perl scriptname".  You can set the environment variable PFPERL to point to the executable (ie:
PFPERL=c:\bin\perl.exe) if it's not in the PATH.  Further, you can use any environment variable to point to any command processor by placing the name of the
environment variable that points to the executable between the "+" signs.  For example, "+MYSHELL+/fp/menus/menuname.-3" will use the program pointed to
by the MYSHELL environment variable.

 
PFPPROG=path



Path to the "/fp" directory.

Default: blank, so " fp " is appended to nothing and /fp or \fp becomes filePro program directory.

Sets the path to the " fp " directory, where filePro programs are located. Used by appending " fp " to the contents of the variable.

Version Ref: 1.0

Example: set PFPROG=C:\fpdemo would look for filePro program files in C:\fpdemo\fp

 Also see: fppath
PFTMP=directory

Tells filePro where to place temporary files when sorting and selecting records in Request Output and Index Maintenance.

Version Ref: 1.0

NOTE: The specified directory must already exits.

Default: under Windows, same directory as file  s map. Under UNIX, /tmp.



Environment Variables - Screen Display
 

DIALOGINVERSE=0xNN

Sets the foreground and background inverse colors for filePro dialog boxes.

Version Ref: 4.1

Default: Value of POPUPINVERSE

(for color-values see color charts )
DIALOGNORMAL=0xNN

Sets the foreground and background colors of filePro dialog boxes.

Version Ref: 4.1

Default: Value of POPUPNROMAL
ERRORINVERSE=0xNN

Version Ref: 3.0
ERRORNORMAL=0xNN

Controls colors of error boxes.

Version Ref: 3.0
HELPINVERSE=0xNN

Sets the foreground and background inverse colors for help screens.

Version Ref: 3.0

Default: Value of TEXTINVERSE
HELPNORMAL=0xNN

Sets the foreground and background colors of help screens.

Version Ref: 3.0

Default: Value of TEXTNORMAL
MENUBORDER=0xNN

Sets foreground and background colors of filePro menu borders.

Version Ref: 3.0
MENUINVERSE=0xNN

Controls menu inverse colors.

Version Ref: 3.0
MENUNORMAL=0xNN

Controls menu normal colors.

Version Ref: 3.0

 

PFBRWFORMPWD
 

By setting the environment variable PFBRWFORMPWD to ON, one can then select certain .brw formats and assign a password to protect
against unauthorized changing and saving of the .brw format. Without knowing the password assigned to the .brw format and
PFBRWFORMPWD set to OFF (default if not set) you will not be able to modify and save.
 
Version Ref: 5.8.03

 
PFDDEFCOLOR=ON|OFF (default ON)
 

When on, ddefine will create color screens, when off, monochrome.
 

Version Ref: 6.0.00
 

PFDIALOGPROMPT=LEFT/RIGHT/CENTER

Controls location of dialog box prompts. (Only first character is significant.)

Version Ref: 5.0



PFDROPSHADOW=ON|OFF

Turns the drop shadow on or off.

Version Ref: 3.0

PFENTSELDISABLE=list
This overrides the default options for *clerk and allows you to disable keystrokes (and remove prompts for) for the "Enter Selection" prompt.
Any of the keys normally listed by filePro at the prompt e.g. D, H, U, X, F, and B can be disabled by including them as a "list" values. 
For example, PFENTSELDISABLE=DF would disable (and remove the prompts for) "D-Delete" and "F-Print Form". It would also cause the
new HELP prompt to appear as '?' if not included in the list.
A question mark ('?') represents HELP. Note that the HELP key cannot be disabled with this variable, although you can keep the new prompt
from appearing. The default value is "?", which causes the same prompts as before to appear. Any "invalid" keys listed are ignored.
Note that any @KEY events are not disabled. Only filePro's default behavior for the keystrokes is affected. Also note that if the HELP key label
is longer than 3 characters, enabling all of the prompts will not fit in 80 columns.
 

PFINSERTMODE=ON

Set insert mode on by default in *cabe/*clerk.

Version Ref: 5.0.9
PFMEMOINSERTMODE=ON

Sets default memo editor insert mode to " on " .

Version Ref: 5.0.10
PFNOBOX=ON

Eliminates the boxes around menus, headers, etc.

Version Ref: 4.1
PFSHADOWCOLOR=0xNN

Sets the color of the drop shadow. Default = 0x08 (dark gray on black)
PFSHOWROWCOL=OFF

Turns off the row/column display in programs like dscreen, dmoedef, and *cabe. It can confuse screen readers for the blind as the numbers
are read every time you press a key.

Version Ref: 5.0.9
POPUPNORMAL=OxNN

Color code for popup windows foreground.

Version Ref: 3.0
POPUPINVERSE=OxNN

Color code for popup windows background.

Version Ref: 3.0
TEXTINVERSE=0xNN

Sets the foreground and background colors of menus, prompts, screens, fields, help text.

Default: Black foreground, white background.

Version Ref: 3.0
TEXTNORMAL=0xNN

Sets the foreground and background colors of menus, prompts, screens, fields, help text.

Version Ref: 3.0

Default: White foreground, black background.
PFMONO=ON

Tells filePro to use monochrome screens with a color video card.

(Windows only) - used primarily with dscreen.

Version Ref: 4.1



Setting Environment Variables

To set an environment variable for filePro WITHOUT using the built-in ENVIRONMENT CONFIGURATION EDITOR, you must follow the proper
procedure based on the operating system you are using. (The configuration editor is ideal for setting variables in a global manner for all users.
There are many times when you will not want to do this.)

Windows
Syntax: set variable=value

Normally, these environment variables would be put into the installation created batch file e.g. fulldev.bat or a personalized .bat file, which calls
a filePro program. Under Windows, CASE is not significant for environment variables, i.e., setting ABE, aBE and Abe are all the same and will
work.

Unix
Syntax: variablename=value ; export variablename

Under Unix, variables not exported will not be available to filePro. Normally, these environment variables would be put into the " .profile " file of
the user who will be calling the filePro program. Or, environment variables can be put into a personalized script file, which calls a filePro
program specifically.

IMPORTANT: Under Unix, CASE is VERY significant for environment variables, i.e., assigning values to ABE, aBE and Abe and exporting
them, is defining three separate variables and filePro will only " see " or " use " the one that is ALL IN CAPS. Remember to keep all filePro
environment variables under Unix ALL UPPERCASE or they will not work.



Background Processing Problems
If an error occurs while an operation is running in background, the message related to the error appears at the cursor position with the following
addendum.
Error while Running filePro in Background.
The message is also "mailed" to you for later reference (see "mail" command in your operating system manual). You don't have to break out of the
program but you may want to refresh your screen by pressing the <REDRAW> key (usually <CTRL> <L>). Refer to the Terminal Guide or termcap
definition for the applicable key.



Error Initializing a Port
If an error occurs when attempting use a port on NIX systems such as "Error initializing serial port for 'OUTS'" with the command OUTS or
PFOUTS, the permission and/or owner settings may need to be set. Try the following.

chmod 600 /dev/ttyXX
chown filepro /dev/ttyXX
chgrp uucp /dev/ttyXX

where XX is the actual port e.g. (1a, 1A, 2a, 2A etc..)



Unlocking Files
To control access to various parts of filePro, filePro maintains a locking system to prevent simultaneous access to various parts of the system when such access can cause problems. For instance,
only one user can expand a file and only if nobody else is using the file at that point in time. The locking system will create a flag in the appropriate file to prevent file integrity problems. These files
exist on multi-user and network systems in each filePro directory and qualifier as LOCKFILE, LOCKFQ1, LOCKFQ2, etc. (where Q1 and Q2 are qualifiers) and are maintained and accessed by all the
applicable programs.
Although filePro manages the locking and unlocking processes routinely, unexpected events like power interruptions, hard disk failures, or inadvertent machine resets can leave a corrupted lock file if
files were open when the interruption occurred. If this happens, you will have to unlock the files using filePro's unlock feature. Use the directory option to delete lock files by selecting the file and then
pressing "D" to delete. Select "M" to delete the lock file for each file open during the unexpected event. You can also use a menu Flag "-L" to delete a lock file with the ddir or dprodir program. Refer to
flag options. Keep in mind that lock files are created for each set of data so you may have to set the qualifier name when using the directory option. When using the menu flags, the "-M" flag must be
used in conjunction with the "-L" flag to unlock qualified data files.



filePro Error Messages
 
Code Description

001 File not found
You may be trying to reference a file that has never existed, has been renamed or has been deleted from the system. Return to processing table and check the name for
typographical errors.

002 No or invalid map
A disk drive error occurred while the program was reading or saving the map file. You may have to rewrite or re-save the file format using Define Files.

003 Sentence contains too many selection sets. Maximum is 5.
You can reference no more than five sets in any one selection sentence.

004 Group not found in selection set.
You mistyped a group or set name, listed a group or set that was never defined or used the restricted words "AND" or "OR" in your group names. Check your group names and
list of selection sets using the filePro directory option.

005 Selection sentence too complex.
There are too many groups and sets involved. Simplify your sentence.

006 Process contains a syntax error at position indicated.
This error occurs when running a syntax check or when running a program if you didn't check the syntax of the processing table. The line of processing containing the error will
have a caret " "̂ beneath the point of the error. If there appears to be no error at the point of the " "̂, check for errors preceding the caret. Another difficult thing to spot is an
"undefined" dummy variable. The " "̂ will point to the undefined variable. The error will also occur when in Inquire,Update,Add and a lookup variable is not found.
Example:
1=cust(2)
^
In this case, field 2 in cust was not found. Make sure that you have included a NOT condition to prevent this error when the value cannot be found in the lookup file.
Example:
If: NOT cust
Then: END
 

007 Invalid selection set.
You have somehow named a set incorrectly or used the wrong selection set name on a command line. Check the list of selection set names using the filePro directory option.

008 Selection contains self-reference.
In the selection sentence. You have typed the name of a set you are currently defining or you have referred to a set that, in turn, refers to this set. Check your selection set
names using the filePro directory option.

009 Error in termcap file.
Alert your system administrator.
LINUX/UNIX/XENIX versions of filePro: The termcap file (the file that contains information on the types and configuration of the terminals attached to your system) has an error in it.
The file /appl/fp/termcap applies. Correct the file or restore from a backup.

010 Terminal type not found.
Alert your system administrator.
LINUX/UNIX/ZENIX versions of filePro: The termcap file may be missing an entry for your terminal type. Either add the terminal type or set the terminal type to a different termcap
entry that exists in /appl/fp/termcap.

011 Required terminal feature not available.
Alert your system administrator.
Either a feature (for example a hardware instruction that clears the screen) or crucial configuration information (for instance - how to position the cursor) is missing. Refer to
your system manuals and procedures on how to correct the problem.

012 Standard i/o has been redirected.
You have redirected input or output incorrectly on the command or menu action line. You will not be able to run the filePro program until the redirection problem is resolved.

013 Too many filePro files open at once. Maximum is 60.
You are looking up form or posting to too many files. Rewrite the process. Note that although you can use up to 60 files with filePro, the operating system can impose limitations.
Although filePro closes some files when no longer needed, it cannot close all of them so the system limit could be exceeded.

014 Out of memory.
The Central Processing Unit (CPU) doesn't have enough RAM to handle the filePro operation or program. You may need to add more memory to the unit or tune your system. Refer
to minimum system and configuration requirements.

015 Processing tables element too complex.
Simplify your processing.

016 Too many lookups.
Maximum is 32 per processing set.

017 Automatic index too unbalanced.
Run Index Maintenance to rebuild the index.

018 Disk error.
This error usually indicates a hardware problem. Refer to your computer's operations manual.

019 Invalid index.
Run Index Maintenance to rebuild the index or delete the invalid index.

020 Lookup failed. Correct the key field(s) and try again.
While processing, the program could not find the record needed for the lookup. Check that you are using the right cross-reference data and that the data is listed in the lookup file.
Also make sure that you are trapping for the non-existence of a data value by using a NOT condition following the lookup.

021 Checksum error: Format has been illegally modified.
Either someone has tried to change the format from outside filePro or someone has made a copy of a format under another name and you have accessed the new copy. Re-
create the format using the relevant filePro creation program.



022 Incorrect password.
You have typed a password incorrectly for the third time. When you press <RETURN>, you are returned to the menu item from which you came.

023 Can't do this in automatic processing.
Operation at position indicated is allowed in input processing only.

024 Bad assignment at position indicated.
Indicates a mismatch in field assignments. For example, you are trying to post data to a system maintained field or trying to move data from one field to another with a incompatible
field type e.g. moving a date from a date field to a decimal field. Correct the processing table.

025 Invalid screen format.
Something is called "screen.n" but is not a valid filePro screen. Try re-saving the screen using Define Screens . If that doesn't correct the problem, delete the invalid screen from
the operating system prompt or in Define Screens .

026 Math overflow.
This error occurs when you are attempting to perform math on non-numeric fields or have exceeded the limits of the math functions.

027 Bad argument on command line
You have a logical or typographical error on your command line. The "command line" is the line on which you type program names and parameters (file, selection set names, etc.)
when defining user menus or when accessing programs from the operating system prompt.

028 Invalid field in processing set.
The field being used for a lookup doesn't exist. Correct the field number.

029 Invalid index in processing set.  (DOS only - Obsolete)
The index being used for a lookup doesn't exist. Either build the index or change the index number/letter in Define Processing to refer to a valid index. Also, the program may have
too many open files. Increase the number of files by setting the PFFILES variable.

030 Lookup without a field.
The lookup has been defined without specifying the field to be used. This error occurs in Define Processing . You forgot the key-field number. Use the Define Lookups option key
to prevent this type of mistake.

031 Required index hasn't been specified.
You forgot to put your index number/letter in your LOOKUP statement. Use the define lookups key <F5> to avoid this error.

032 Goto destination not found.
You have misspelled or forgot to define the label that a GOTO or GOSUB statement is suppose to access.

033 Not available.
Somebody else is using it; try again later.
You have attempted to modify a format while somebody else is using it or somebody else is modifying the same format. This error may also occur if the system is reset, in the
middle of modifying a format or when files are open. Refer to UNLOCK procedures.

034 User edit too complex.
The edit is referencing itself or is nested too deeply. (A nested edit is one that refers to a second edit type that refers to a third edit etc.). Correct by simplifying the edit. The
nesting limits are 15 for DOS; 20 for LINUX,UNIX,XENIX.

035 Edit name not found.
This error occurs in Define Edits. You have referenced an edit that does not exist. Check the list of global and local edits for the existence of the edit and typographical errors.

036 Incomplete file.
A disk drive error may have occurred while you were changing and/or saving a file. Have you had recent hardware problems? You may have to restore data from backups or
rewrite your formats.

037 Selection sentence contains a syntax error at position indicated.
This message occurs when you have a selection set containing a syntax error. Fix the problem at the specified position.

038 Not a menu.
You have attempted to use a corrupted menu or a file that is not a menu.

039 Field not found. Lookup has not been performed.
This error occurs in Inquire,Update,Add or Request Output when the processing table is written in such a way that the program skips the lookup. For example, you may have a
GOTO in the wrong place or be using the same destination file name for two separate lookups. The error can also occur when using LOOKUP -N ("don't report an error") without
checking to see if the lookup failed.

040 Edit type not found.
This error occurs when defining dummy fields in processing tables and when accessing the file in Inquire,Update,Add . You have listed an edit type that doesn't exist or your
PFGLOB variable is set wrong. Update the edit table using Define Edits , change the edit type used for the field in Define Files or correct the PFGLOB variable setting.

041 File not available.
Somebody else is modifying the file; try again later.
You cannot run the requested program while someone else is modifying the file. This error occurs when the system is inadvertently shutdown while filePro files are open or a
session is not properly closed when in a window. Refer to UNLOCK procedures.

042 Invalid parameter .
A parameter to TOT, MIN, MAX, AVG or MID is bad. The field you are tring to use is alphanumeric when it should be numeric, a date when it should be a decimal number, etc.
Since the error appears during syntax checking, you can press <RETURN> to return to the processing table and change the field numbers, operation, etc.

043 Merge name incompatibility.
Word processor or spreadsheet merge has been given two different names. You can't use the same file name more than once on the same processing table. Check for the same
merge name being used in 2 different elements on the processing table.

044 RETURN without a GOSUB.
You have a RETURN but no GOSUB. Check your processing to make sure that you haven't used a GOTO instead of a GOSUB or that you are not skipping the GOSUB function.

045 Too many nested GOSUBs.
A "nested GOSUB" is a subroutine that calls another subroutine that call's a third subroutine, etc. The limit is 16. Rewrite your subroutine to reduce the number of nested
GOSUBs.

046 Edit failed.
When processing data, you may have copied information from one field that doesn't pass the edit of the second field. Change your processing or change the edit type or method.



047 Invalid data-capture format.
If you are using a filePro data transfer program, this message indicates that the format has been incorrectly defined or can't be used by filePro. Consult the transfer manual for
instructions.

048 Error Reading Text Index.

049 Error Reading Message File.
This error occurs if the "errmsg" file is missing or corrupted. Re-install the filePro software to correct.

050 Segment lengths do not match.
Key and data segments contain differing number of records. This error occurs if there is a disk drive "write" problem or if a file-restructuring fails or is canceled improperly. Use
the Expand File option to expand the file by one record to synchronize the key and data segments. If this does not work, restore your files from your most recent backups and
start over.
 

051 Bad Import Format. Not a valid DIF file.
The spreadsheet file from which you want to read data is not recognizable by filePro. Recreate or revise the DIF file and try again.

052 Merge Conflict.
Cannot import and export same file. You have set up an IMPORT statement with the same name as EXPORT statement. Change one of the names.

053 Attempt to read past end of merge file.
When importing data from a DIF file, you have come to the end of the file without telling the program when to end. Add a line to the processing routine that tells the program to
move onto something else e.g. if: NOT filename (no more data), then: END or something else.

054 Function not available for this file type.

055 Unknown alien file type.
Different versions of filePro may support different types of alien file formats. The version you are using cannot access this particular format. Upgrade to the most recent version
of filePro.

056 The tokenization table is too small.
Use '-t biggersize' to make it bigger in your user menu or from a system prompt. Refer to FLAGS.

057 Wrong index type.
Re-build the index with the correct Index Maintenance version.
The index was built using and older version of filePro than the version of *clerk or *report that you are using. Make sure that you are using the correct version of the Index
Maintenance (dxmaint) program.

058 The processing table is not encoded.
Use Define Processing to encode the processing table before using.

059 Too many locks.
On network DOS systems only, the operating system of filePro plus limits the number of files locked at any one time. You have exceeded this number (usually 200); to fix the
problem, simply close some of the files used in processing.

060 Duplicate files found while scanning drives.
Occurs if filePro detects more than one copy of the same file name on multiple drives. Set the environment variable PFDSK to limit filePro's view of the multiple drives or remove
one of the copies.

061 Can't Find the Printer.
Make sure that your printer destination and mapping is correct.

062 Reference to a field that doesn't exist.
You may have re-defined a file structure when using Define Files and failed to modify your processing to match.

063 Invalid runtime format .
Use correct version of 'rcabe' to re-compile processing table.

064 Index Is Too Big.
Rebuild the index using a smaller key.

065 Too many users
You have exceeded the number of registered user licenses. Limit the use of system calls from processing tables or upgrade your license to add more users.

066 Too many users
You have exceeded the number of registered user licenses. Limit the use of system calls from processing tables or upgrade your license to add more users.

067 Screen must be at least 80x24.
You are attempting to use a screen resolution that is less than 80x24. Update or re-configure hardware.

068 No such printer.
You are attempting to use a printer that is not defined. Refer to Printer Maintenance options.

069 Can't nest CALL's
Remove the CALL from the CALLed processing table.

070 TOK table exceeds 64K (only for 16 bit systems)
Reduce the size of the processing table.

071 Invalid key-map table.
Check the setting of the PFKEYTAB variable.

072 Invalid language (sort/collate) table.
Check the value of the PFLANG variable to make sure that it is a valid table.

073 Exceeded demo version limits.
You are limited to 100 records per file and 200 lines per processing table.
Create test files that do not exceed these limits.

074 Cannot establish connection to license server.
Make sure that the license server is running.



075 lm error: NO LICENSES REGISTERED
Contact fP Technologies technical support.

076 lm error: LICENSE EXPIRED
Contact fP Technologies technical support.

077 lm error: NO LICENSES FOUND FOR THIS PRODUCT
Contact fP Technologies technical support.

078 Lm error: UNKOWN REPLY FROM LICENSE MANAGER
Contact fP Technologies technical support.

079 fileProODBC Error: Cannot open DSN.
Use Define Files (High Level ODBC) or Define Processing (Low Level) to set the correct DSN.

080 fileProODBC Error: Cannot open table.
Ensure that the table name is correct and exists in the data source.

081 Spellcheck error.
Contact fP Technologies technical support.

082 Feature not licensed.
You have attempted to use a feature that is not included in your license.
Contact fP Technologies sales to purchase the licensed feature.

083 License error.
This error will occur if the license is in the wrong place, improperly named or is corrupted.
Check that "licfp.dat" exists in your $PFPROG/fp/lib directory. Use program "licinfo" to check the licence. Contact fP Technologies technical support and provide the results
returned by "licinfo".

084 License manager platform mismatch.
The license that you are attempting to use does not match the platform that you are using it on.
If you have multiple licenses, make sure that you are using the correct license. Use program "licinfo" to check the license and provide the results of this program to fP
Technologies sales to obtain a new license or correct version of filePro.

085 Generic XML error.

086 Failed to decrypt record.

087 Failed to verify encryption key in map.

088 This file is not licensed to run on this system.

089 Encrypted file / grace period mismatch.



Other System Errors
Cannot Open File
Example:
C:\fp50\filepro\test: No such file or directory
Error occurs when the parent \filePro directory is missing or a filePro sub-directory is missing or invalid. Check your path environment settings and make sure that the \filePro directory exists for the
path specified by PFDSK and PFDIR or the values in fppath.
Memory could not be read from
This error occurs in Windows and indicates that a file is invalid. These errors are sometimes difficult to isolate but if approached logically can be resolved. Make a note of the error and what menu
option this error occurs on e.g. Define Files, IUA, Request Output, etc.
Examples:
When using Define Files you receive the following error.
The Instruction at 00401128 referred memory at ffffffff the memory could not be read from. This program has performed an illegal operation and will be shutdown.
The above error is probably due to an invalid MAP file. Somebody may have inadvertently revised the MAP using a non-filePro editor or you may have had a disk error that corrupted the map. Restore
the MAP and MAP.TMP from a backup and try again. If you don't have a backup, try copying MAP.TMP to MAP after renaming MAP to something else like MAP.OLD.
Note: An invalid local edits file can also cause this type of error in Define Files since the local edits table is accessed when defining a file. Try renaming the EDITS file to EDITS.OLD to isolate as to
whether the map or edits file is the problem. If renaming the EDITS file solves the problem, print the EDITS file using a text editor and reenter your local edits for this file.
If you get the "Instruction error" when defining local edits, the problem can be due to an invalid MAP file or invalid EDITS file. Try renaming the EDITS file to EDITS.OLD and go to the Define Files option.
If you still get the error, you have an invalid map file. Go to above section and resolve the map problem.
If you get the "Instruction error" when using Inquire/Update/Add or "Request Output", these are the most difficult to resolve and can be due to any of following. Use the following chart to isolate your
problem.
 
Problem Process

 

Environment not properly set. Isolate by determining if the error occurs on more than one file or all files. If the error occurs for all files, check your environment
settings and try again. Refer to setting path environment variables.

Corrupted Index Try removing all indexes and rebuilding one at a time until the error re-occurs.
Make sure that you are using the same versions of the index maintenance program, *clerk and *report. Contact filePro sales if the
version numbers are different.

Corrupted key or Data file Use the fpCopy utility to create a duplicate file using "Copy formats only". Try entering data into the new file. If you are able to enter data
into the new file, you more than likely have a corrupted key or data files.

Corrupted edits file Rename the edits file to edits.old or edits.sav and try to define files. If you cannot view the map with the Define Files option, the problem
has been isolated to the map file. If renaming the edits solves your problem, print the edits.old or edits.sav file using a text editor and re-
enter the local edits for the filePro file.

Corrupted map file Use fpCopy to copy the file without data e.g. "Copy formats only". If you cannot copy the map file, it is corrupted. If you are able to copy
the map file, try entering data. If you cannot enter data into the new file, you probably have a corrupted local edits file. Follow the
procedure for correcting a corrupted edits file.

Divide by 0 Divide by zero "/D0" is caused by invalid math expressions that include a zero as a divisor. This can also be caused by attempting to
use a string as a divisor. Make sure that fields used in math formulas use numbers and not strings and divisors are not equal to zero.

Overflow "/OV" is an overflow when attempting to use an invalid date or date math expression. If PFCMARK has not been properly set, some 2
digit years will not be considered as valid and will create this error.

Error Expanding File This error may appear if the data segment has been corrupted. You may also see "Error Reading Free Chain Pointer" meaning that
filePro is having trouble finding the next free record due to the corrupted file. Restore a recent backup of your data prior to system
failure.



System Errors
 

Code Description
   #0 System error has occurred - System Error 0

Something is wrong but the system can't tell exactly what. You may be out of disk space, the program or operating system may have overwritten memory, have a bad copy of a
program, etc. Reboot the system (according to proper procedures) and try the operation again. If the problem persists, re-install the filePro programs and try again.
Note: This error can also occur when there are too many open files. Refer to System Error #4.

#1 Bad function number.
An internal and uncommon error. Follow the instructions for System error #0.

#2 File not found.
The operating system cannot find a file. If the file does exist, follow
The instructions for System error #0.

#3 No such path.
The operating system cannot find a directory or folder. Follow the instructions for System error #0.

#4 Too many open files.
You have reached the operating system limit for open files. Change the file number setting in your system configuration to at least 20 and make more liberal use of the CLOSE
command for your lookups. Although filePro closes some files when no longer needed, it cannot close all of them so the system limit may be exceeded.

#5 Access denied.
This error occurs on network systems when you are denied access to certain files. Make sure that you have proper rights and access to filePro files and have isolated the
problem by logging in with supervisor or administrator rights.

#6 Invalid handle.
An internal and uncommon error. Follow the instructions for System error #0.

#7 Memory control blocks destroyed.
An internal and uncommon error. Follow the instructions for System error #0.

#8 Not enough memory.
You don't have enough RAM to run the program. There are a variety of solutions depending on the operating system and system configuration.
Refer to system configuration and minimum system requirements in our FAQ for recommended config.sys settings and hardware requirements.

#9 Invalid memory block address.
Part of a program may have been overwritten. Refer to instructions for System error #0.

#10 Invalid environment
An internal and uncommon error. Follow the instructions for System error #0.



Windows Error Messages
No. Code Error
0 0x0000 The operation completed successfully.

1 0x0001 Incorrect function.

2 0x0002 The system cannot find the file specified.

3 0x0003 The system cannot find the path specified.

4 0x0004 The system cannot open the file.

5 0x0005 Access is denied.

6 0x0006 The handle is invalid.

7 0x0007 The storage control blocks were destroyed.

8 0x0008 Not enough storage is available to process this command.

9 0x0009 The storage control block address is invalid.

10 0x000A The environment is incorrect.

11 0x000B An attempt was made to load a program with an incorrect format.

12 0x000C The access code is invalid.

13 0x000D The data is invalid.

14 0x000E Not enough storage is available to complete this operation.

15 0x000F The system cannot find the drive specified.

16 0x0010 The directory cannot be removed.

17 0x0011 The system cannot move the file to a different disk drive.

18 0x0012 There are no more files.

19 0x0013 The media is write protected.

20 0x0014 The system cannot find the device specified.

21 0x0015 The device is not ready.

22 0x0016 The device does not recognize the command.

23 0x0017 Data error (cyclic redundancy check)

24 0x0018 The program issued a command but the command length is incorrect.

25 0x0019 The drive cannot locate a specific area or track on the disk.

26 0x001A The specified disk or diskette cannot be accessed.

27 0x001B The drive cannot find the sector requested.

28 0x001C The printer is out of paper.

29 0x001D The system cannot write to the specified device.

30 0x001E The system cannot read from the specified device.

31 0x001F A device attached to the system is not functioning.

32 0x0020 The process cannot access the file because it is being used by another process.

33 0x0021 The process cannot access the file because another process has locked a portion of the file.

34 0x0022 The wrong diskette is in the drive. Insert %2 (Volume Serial Number: %3) into drive %1.

36 0x0024 Too many files opened for sharing.

38 0x0026 Reached end of file.

39 0x0027 The disk is full.

50 0x0032 The network request is not supported.

51 0x0033 The remote computer is not available.

52 0x0034 A duplicate name exists on the network.

53 0x0035 The network path was not found.

54 0x0036 The network is busy.

55 0x0037 The specified network resource or device is no longer available.

56 0x0038 The network BIOS command limit has been reached.

57 0x0039 A network adapter hardware error occurred.

58 0x003A The specified server cannot perform the requested operation.

59 0x003B An unexpected network error occurred.

60 0x003C The remote adapter is not compatible.

61 0x003D The printer queue is full.

62 0x003E Space to store the file waiting to be printed is not available on the server.

63 0x003F Your file waiting to be printed was deleted.



64 0x0040 The specified network name is no longer available.

65 0x0041 Network access is denied.

66 0x0042 The network resource type is not correct.

67 0x0043 The network name cannot be found.

68 0x0044 The name limit for the local computer network adapter card was exceeded.

69 0x0045 The network BIOS session limit was exceeded.

70 0x0046 The remote server has been paused or is in the process of being started.

71 0x0047 No more connections can be made to this remote computer at this time because there are already as many connections as the
computer can accept.

72 0x0048 The specified printer or disk device has been paused.

80 0x0050 The file exists.

82 0x0052 The directory or file cannot be created.

83 0x0053 Fail on INT 24

84 0x0054 Storage to process this request is not available.

85 0x0055 The local device name is already in use.

86 0x0056 The specified network password is not correct.

87 0x0057 The parameter is incorrect.

88 0x0058 A write fault occurred on the network.

89 0x0059 The system cannot start another process at this time.

100 0x0064 Cannot create another system semaphore.

101 0x0065 The exclusive semaphore is owned by another process.

102 0x0066 The semaphore is set and cannot be closed.

103 0x0067 The semaphore cannot be set again.

104 0x0068 Cannot request exclusive semaphores at interrupt time.

105 0x0069 The previous ownership of this semaphore has ended.

106 0x006A Insert the diskette for drive %1.

107 0x006B Program stopped because alternate diskette was not inserted.

108 0x006C The disk is in use or locked by another process.

109 0x006D The pipe has been ended.

110 0x006E The system cannot open the device or file specified.

111 0x006F The file name is too long.

112 0x0070 There is not enough space on the disk.

113 0x0071 No more internal file identifiers available.

114 0x0072 The target internal file identifier is incorrect.

117 0x0075 The IOCTL call made by the application program is not correct.

118 0x0076 The verify-on-write switch parameter value is not correct.

119 0x0077 The system does not support the command requested.

120 0x0078 This function is only valid in Win32 mode.

121 0x0079 The semaphore timeout period has expired.

122 0x007A The data area passed to a system call is too small.

123 0x007B The filename, directory name, or volume label syntax is incorrect.

124 0x007C The system call level is not correct.

125 0x007D The disk has no volume label.

126 0x007E The specified module could not be found.

127 0x007F The specified procedure could not be found.

128 0x0080 There are no child processes to wait for.

129 0x0081 The %1 application cannot be run in Win32 mode.

130 0x0082 Attempt to use a file handle to an open disk partition for an operation other than raw disk I/O.

131 0x0083 An attempt was made to move the file pointer before the beginning of the file.

132 0x0084 The file pointer cannot be set on the specified device or file.

133 0x0085 A JOIN or SUBST command cannot be used for a drive that contains previously joined drives.

134 0x0086 An attempt was made to use a JOIN or SUBST command on a drive that has already been joined.

135 0x0087 An attempt was made to use a JOIN or SUBST command on a drive that has already been substituted.

136 0x0088 The system tried to delete the JOIN of a drive that is not joined.



137 0x0089 The system tried to delete the substitution of a drive that is not substituted.

138 0x008A The system tried to join a drive to a directory on a joined drive.

139 0x008B The system tried to substitute a drive to a directory on a substituted drive.

140 0x008C The system tried to join a drive to a directory on a substituted drive.

141 0x008D The system tried to SUBST a drive to a directory on a joined drive.

142 0x008E The system cannot perform a JOIN or SUBST at this time.

143 0x008F The system cannot join or substitute a drive to or for a directory on the same drive.

144 0x0090 The directory is not a subdirectory of the root directory.

145 0x0091 The directory is not empty.

146 0x0092 The path specified is being used in a substitute.

147 0x0093 Not enough resources are available to process this command.

148 0x0094 The path specified cannot be used at this time.

149 0x0095 An attempt was made to join or substitute a drive for which a directory on the drive is the target of a previous substitute.

150 0x0096 System trace information was not specified in your CONFIG.SYS file, or tracing is disallowed.

151 0x0097 The number of specified semaphore events for DosMuxSemWait is not correct.

152 0x0098 DosMuxSemWait did not execute; too many semaphores are already set.

153 0x0099 The DosMuxSemWait list is not correct.

154 0x009A The volume label you entered exceeds the label character limit of the target file system.

155 0x009B Cannot create another thread.

156 0x009C The recipient process has refused the signal.

157 0x009D The segment is already discarded and cannot be locked.

158 0x009E The segment is already unlocked.

159 0x009F The address for the thread ID is not correct.

160 0x00A0 The argument string passed to DosExecPgm is not correct.

161 0x00A1 The specified path is invalid.

162 0x00A2 A signal is already pending.

164 0x00A4 No more threads can be created in the system.

167 0x00A7 Unable to lock a region of a file.

170 0x00AA The requested resource is in use.
173 0x00AD A lock request was not outstanding for the supplied cancel region.

174 0x00AE The file system does not support atomic changes to the lock type.

180 0x00B4 The system detected a segment number that was not correct.

182 0x00B6 The operating system cannot run %1.

183 0x00B7 Cannot create a file when that file already exists.

186 0x00BA The flag passed is not correct.

187 0x00BB The specified system semaphore name was not found.

188 0x00BC The operating system cannot run %1.

189 0x00BD The operating system cannot run %1.

190 0x00BE The operating system cannot run %1.

191 0x00BF Cannot run %1 in Win32 mode.

192 0x00C0 The operating system cannot run %1.

193 0x00C1 %1 is not a valid Win32 application.

194 0x00C2 The operating system cannot run %1.

195 0x00C3 The operating system cannot run %1.

196 0x00C4 The operating system cannot run this application program.

197 0x00C5 The operating system is not presently configured to run this application.

198 0x00C6 The operating system cannot run %1.

199 0x00C7 The operating system cannot run this application program.

200 0x00C8 The code segment cannot be greater than or equal to 64KB.

201 0x00C9 The operating system cannot run %1.

202 0x00CA The operating system cannot run %1.

203 0x00CB The system could not find the environment option that was entered.

205 0x00CD No process in the command subtree has a signal handler.

206 0x00CE The filename or extension is too long.



207 0x00CF The ring 2 stack is in use.

208 0x00D0 The global filename characters, * or ?, are entered incorrectly or too many global filename characters are specified.

209 0x00D1 The signal being posted is not correct.

210 0x00D2 The signal handler cannot be set.

212 0x00D4 The segment is locked and cannot be reallocated.

214 0x00D6 Too many dynamic link modules are attached to this program or dynamic link module.

215 0x00D7 Can't nest calls to LoadModule.

230 0x00E6 The pipe state is invalid.

231 0x00E7 All pipe instances are busy.

232 0x00E8 The pipe is being closed.

233 0x00E9 No process is on the other end of the pipe.

234 0x00EA More data is available.

240 0x00F0 The session was cancelled.

254 0x00FE The specified extended attribute name was invalid.

255 0x00FF The extended attributes are inconsistent.

259 0x0103 No more data is available.

266 0x010A The Copy API cannot be used.

267 0x010B The directory name is invalid.

275 0x0113 The extended attributes did not fit in the buffer.

276 0x0114 The extended attribute file on the mounted file system is corrupt.

277 0x0115 The extended attribute table file is full.

278 0x0116 The specified extended attribute handle is invalid.

282 0x011A The mounted file system does not support extended attributes.

288 0x0120 Attempt to release mutex not owned by caller.

298 0x012A Too many posts were made to a semaphore.

299 0x012B Only part of a Read/WriteProcessMemory request was completed.

317 0x013D The system cannot find message for message number 0x%1 in message file for %2.

487 0x01E7 Attempt to access invalid address.

534 0x0216 Arithmetic result exceeded 32 bits.

535 0x0217 There is a process on other end of the pipe.

536 0x0218 Waiting for a process to open the other end of the pipe.

994 0x03E2 Access to the extended attribute was denied.

995 0x03E3 The I/O operation has been aborted because of either a thread exit or an application request.

996 0x03E4 Overlapped I/O event is not in a signalled state.

997 0x03E5 Overlapped I/O operation is in progress.

998 0x03E6 Invalid access to memory location.

999 0x03E7 Error performing inpage operation.

1001 0x03E9 Recursion too deep, stack overflowed.

1002 0x03EA The window cannot act on the sent message.

1003 0x03EB Cannot complete this function.

1004 0x03EC Invalid flags.

1005 0x03ED The volume does not contain a recognized file system. Please make sure that all required file system drivers are loaded and
that the volume is not corrupt.

1006 0x03EE The volume for a file has been externally altered such that the opened file is no longer valid.

1007 0x03EF The requested operation cannot be performed in full-screen mode.

1008 0x03F0 An attempt was made to reference a token that does not exist.

1009 0x03F1 The configuration registry database is corrupt.

1010 0x03F2 The configuration registry key is invalid.

1011 0x03F3 The configuration registry key could not be opened.

1012 0x03F4 The configuration registry key could not be read.

1013 0x03F5 The configuration registry key could not be written.

1014 0x03F6 One of the files in the Registry database had to be recovered by use of a log or alternate copy. The recovery was
successful.

1015 0x03F7 The Registry is corrupt. The structure of one of the files that contains Registry data is corrupt, or the system's image of the
file in memory is corrupt, or the file could not be recovered because the alternate copy or log was absent or corrupt.



1016 0x03F8 An I/O operation initiated by the Registry failed unrecoverably. The Registry could not read in, or write out, or flush, one of the
files that contain the system's image of the Registry.

1017 0x03F9 The system has attempted to load or restore a file into the Registry, but the specified file is not in a Registry file format.

1018 0x03FA Illegal operation attempted on a Registry key which has been marked for deletion.

1019 0x03FB System could not allocate the required space in a Registry log.

1020 0x03FC Cannot create a symbolic link in a Registry key that already has subkeys or values.

1021 0x03FD Cannot create a stable subkey under a volatile parent key.

1022 0x03FE A notify change request is being completed and the information is not being returned in the caller's buffer. The caller now
needs to enumerate the files to find the changes.

1051 0x041B A stop control has been sent to a service which other running services are dependent on.

1052 0x041C The requested control is not valid for this service

1053 0x041D The service did not respond to the start or control request in a timely fashion.

1054 0x041E A thread could not be created for the service.

1055 0x041F The service database is locked.

1056 0x0420 An instance of the service is already running.

1057 0x0421 The account name is invalid or does not exist.

1058 0x0422 The specified service is disabled and cannot be started.

1059 0x0423 Circular service dependency was specified.

1060 0x0424 The specified service does not exist as an installed service.

1061 0x0425 The service cannot accept control messages at this time.

1062 0x0426 The service has not been started.

1063 0x0427 The service process could not connect to the service controller.

1064 0x0428 An exception occurred in the service when handling the control request.

1065 0x0429 The database specified does not exist.

1066 0x042A The service has returned a service-specific error code.

1067 0x042B The process terminated unexpectedly.

1068 0x042C The dependency service or group failed to start.

1069 0x042D The service did not start due to a logon failure.

1070 0x042E After starting, the service hung in a start-pending state.

1071 0x042F The specified service database lock is invalid.

1072 0x0430 The specified service has been marked for deletion.

1073 0x0431 The specified service already exists.

1074 0x0432 The system is currently running with the last-known-good configuration.

1075 0x0433 The dependency service does not exist or has been marked for deletion.

1076 0x0434 The current boot has already been accepted for use as the last-known-good control set.

1077 0x0435 No attempts to start the service have been made since the last boot.

1078 0x0436 The name is already in use as either a service name or a service display name.

1100 0x044C The physical end of the tape has been reached.

1101 0x044D A tape access reached a filemark.

1102 0x044E Beginning of tape or partition was encountered.

1103 0x044F A tape access reached the end of a set of files.

1104 0x0450 No more data is on the tape.

1105 0x0451 Tape could not be partitioned.

1106 0x0452 When accessing a new tape of a multivolume partition, the current blocksize is incorrect.

1107 0x0453 Tape partition information could not be found when loading a tape.

1108 0x0454 Unable to lock the media eject mechanism.

1109 0x0455 Unable to unload the media.

1110 0x0456 Media in drive may have changed.

1111 0x0457 The I/O bus was reset.

1112 0x0458 No media in drive.

1113 0x0459 No mapping for the Unicode character exists in the target multi-byte code page.

1114 0x045A A dynamic link library (DLL) initialization routine failed.

1115 0x045B A system shutdown is in progress.

1116 0x045C Unable to abort the system shutdown because no shutdown was in progress.

1117 0x045D The request could not be performed because of an I/O device error.



1118 0x045E No serial device was successfully initialized. The serial driver will unload.

1119 0x045F Unable to open a device that was sharing an interrupt request (IRQ) with other devices. At least one other device that uses
that IRQ was already opened.

1120 0x0460 A serial I/O operation was completed by another write to the serial port. (The IOCTL_SERIAL_XOFF_COUNTER reached zero.)

1121 0x0461 A serial I/O operation completed because the time-out period expired. (The IOCTL_SERIAL_XOFF_COUNTER did not reach
zero.)

1122 0x0462 No ID address mark was found on the floppy disk.

1123 0x0463 Mismatch between the floppy disk sector ID field and the floppy disk controller track address.

1124 0x0464 The floppy disk controller reported an error that is not recognized by the floppy disk driver.

1125 0x0465 The floppy disk controller returned inconsistent results in its registers.

1126 0x0466 While accessing the hard disk, a recalibrate operation failed, even after retries.

1127 0x0467 While accessing the hard disk, a disk operation failed even after retries.

1128 0x0468 While accessing the hard disk, a disk controller reset was needed, but even that failed.

1129 0x0469 Physical end of tape encountered.

1130 0x046A Not enough server storage is available to process this command.

1131 0x046B A potential deadlock condition has been detected.

1132 0x046C The base address or the file offset specified does not have the proper alignment.

1140 0x0474 An attempt to change the system power state was vetoed by another application or driver.

1141 0x0475 The system BIOS failed an attempt to change the system power state.

1150 0x047E The specified program requires a newer version of Windows.

1151 0x047F The specified program is not a Windows or MS-DOS program.

1152 0x0480 Cannot start more than one instance of the specified program.

1153 0x0481 The specified program was written for an older version of Windows.

1154 0x0482 One of the library files needed to run this application is damaged.

1155 0x0483 No application is associated with the specified file for this operation.

1156 0x0484 An error occurred in sending the command to the application.

1157 0x0485 One of the library files needed to run this application cannot be found.

1200 0x04B0 The specified device name is invalid.

1201 0x04B1 The device is not currently connected but it is a remembered connection.

1202 0x04B2 An attempt was made to remember a device that had previously been remembered.

1203 0x04B3 No network provider accepted the given network path.

1204 0x04B4 The specified network provider name is invalid.

1205 0x04B5 Unable to open the network connection profile.

1206 0x04B6 The network connection profile is corrupt.

1207 0x04B7 Cannot enumerate a non-container.

1208 0x04B8 An extended error has occurred.

1209 0x04B9 The format of the specified group name is invalid.

1210 0x04BA The format of the specified computer name is invalid.

1211 0x04BB The format of the specified event name is invalid.

1212 0x04BC The format of the specified domain name is invalid.

1213 0x04BD The format of the specified service name is invalid.

1214 0x04BE The format of the specified network name is invalid.

1215 0x04BF The format of the specified share name is invalid.

1216 0x04C0 The format of the specified password is invalid.

1217 0x04C1 The format of the specified message name is invalid.

1218 0x04C2 The format of the specified message destination is invalid.

1219 0x04C3 The credentials supplied conflict with an existing set of credentials.

1220 0x04C4 An attempt was made to establish a session to a network server, but there are already too many sessions established to that
server.

1221 0x04C5 The workgroup or domain name is already in use by another computer on the network.

1222 0x04C6 The network is not present or not started.

1223 0x04C7 The operation was cancelled by the user.

1224 0x04C8 The requested operation cannot be performed on a file with a user mapped section open.

1225 0x04C9 The remote system refused the network connection.

1226 0x04CA The network connection was gracefully closed.



1227 0x04CB The network transport endpoint already has an address associated with it.

1228 0x04CC An address has not yet been associated with the network endpoint.

1229 0x04CD An operation was attempted on a non-existent network connection.

1230 0x04CE An invalid operation was attempted on an active network connection.

1231 0x04CF The remote network is not reachable by the transport.

1232 0x04D0 The remote system is not reachable by the transport.

1233 0x04D1 The remote system does not support the transport protocol.

1234 0x04D2 No service is operating at the destination network endpoint on the remote system.

1235 0x04D3 The request was aborted.

1236 0x04D4 The network connection was aborted by the local system.

1237 0x04D5 The operation could not be completed. A retry should be performed.

1238 0x04D6 A connection to the server could not be made because the limit on the number of concurrent connections for this account has
been reached.

1239 0x04D7 Attempting to login during an unauthorized time of day for this account.

1240 0x04D8 The account is not authorized to login from this station.

1241 0x04D9 The network address could not be used for the operation requested.

1242 0x04DA The service is already registered.

1243 0x04DB The specified service does not exist.

1244 0x04DC The operation being requested was not performed because the user has not been authenticated.

1245 0x04DD The operation being requested was not performed because the user has not logged on to the network. The specified service
does not exist.

1246 0x04DE Return that wants caller to continue with work in progress.

1247 0x04DF An attempt was made to perform an initialization operation when initialization has already been completed.

1248 0x04E0 No more local devices.

1300 0x0514 Not all privileges referenced are assigned to the caller.

1301 0x0515 Some mapping between account names and security IDs was not done.

1302 0x0516 No system quota limits are specifically set for this account.

1303 0x0517 No encryption key is available. A well-known encryption key was returned.

1304 0x0518 The NT password is too complex to be converted to a LAN Manager password. The LAN Manager password returned is a
NULL string.

1305 0x0519 The revision level is unknown.

1306 0x051A Indicates two revision levels are incompatible.

1307 0x051B This security ID may not be assigned as the owner of this object.

1308 0x051C This security ID may not be assigned as the primary group of an object.

1309 0x051D An attempt has been made to operate on an impersonation token by a thread that is not currently impersonating a client.

1310 0x051E The group may not be disabled.

1311 0x051F There are currently no logon servers available to service the logon request.

1312 0x0520 A specified logon session does not exist. It may already have been terminated.

1313 0x0521 A specified privilege does not exist.

1314 0x0522 A required privilege is not held by the client.

1315 0x0523 The name provided is not a properly formed account name.

1316 0x0524 The specified user already exists.

1317 0x0525 The specified user does not exist.

1318 0x0526 The specified group already exists.

1319 0x0527 The specified group does not exist.

1320 0x0528 Either the specified user account is already a member of the specified group, or the specified group cannot be deleted
because it contains a member.

1321 0x0529 The specified user account is not a member of the specified group account.

1322 0x052A The last remaining administration account cannot be disabled or deleted.

1323 0x052B Unable to update the password. The value provided as the current password is incorrect.

1324 0x052C Unable to update the password. The value provided for the new password contains values that are not allowed in
passwords.

1325 0x052D Unable to update the password because a password update rule has been violated.

1326 0x052E Logon failure: unknown user name or bad password.

1327 0x052F Logon failure: user account restriction.

1328 0x0530 Logon failure: account logon time restriction violation.



1329 0x0531 Logon failure: user not allowed to log on to this computer.

1330 0x0532 Logon failure: the specified account password has expired.

1331 0x0533 Logon failure: account currently disabled.

1332 0x0534 No mapping between account names and security IDs was done.

1333 0x0535 Too many local user identifiers (LUIDs) were requested at one time.

1334 0x0536 No more local user identifiers (LUIDs) are available.

1335 0x0537 The subauthority part of a security ID is invalid for this particular use.

1336 0x0538 The access control list (ACL) structure is invalid.

1337 0x0539 The security ID structure is invalid.

1338 0x053A The security descriptor structure is invalid.

1340 0x053C The inherited access control list (ACL) or access control entry (ACE) could not be built.

1341 0x053D The server is currently disabled.

1342 0x053E The server is currently enabled.

1343 0x053F The value provided was an invalid value for an identifier authority.

1344 0x0540 No more memory is available for security information updates.

1345 0x0541 The specified attributes are invalid, or incompatible with the attributes for the group as a whole.

1346 0x0542 Either a required impersonation level was not provided, or the provided impersonation level is invalid.

1347 0x0543 Cannot open an anonymous level security token.

1348 0x0544 The validation information class requested was invalid.

1349 0x0545 The type of the token is inappropriate for its attempted use.

1350 0x0546 Unable to perform a security operation on an object which has no associated security.

1351 0x0547 Indicates a Windows NT Server could not be contacted or that objects within the domain are protected such that necessary
information could not be retrieved.

1352 0x0548 The security account manager (SAM) or local security authority (LSA) server was in the wrong state to perform the security
operation.

1353 0x0549 The domain was in the wrong state to perform the security operation.

1354 0x054A This operation is only allowed for the Primary Domain Controller of the domain.

1355 0x054B The specified domain did not exist.

1356 0x054C The specified domain already exists.

1357 0x054D An attempt was made to exceed the limit on the number of domains per server.

1358 0x054E Unable to complete the requested operation because of either a catastrophic media failure or a data structure corruption on
the disk.

1359 0x054F The security account database contains an internal inconsistency.

1360 0x0550 Generic access types were contained in an access mask which should already be mapped to non-generic types.

1361 0x0551 A security descriptor is not in the right format (absolute or self-relative).

1362 0x0552 The requested action is restricted for use by logon processes only. The calling process has not registered as a logon
process.

1363 0x0553 Cannot start a new logon session with an ID that is already in use.

1364 0x0554 A specified authentication package is unknown.

1365 0x0555 The logon session is not in a state that is consistent with the requested operation.

1366 0x0556 The logon session ID is already in use.

1367 0x0557 A logon request contained an invalid logon type value.

1368 0x0558 Unable to impersonate via a named pipe until data has been read from that pipe.

1369 0x0559 The transaction state of a Registry subtree is incompatible with the requested operation.

1370 0x055A An internal security database corruption has been encountered.

1371 0x055B Cannot perform this operation on built-in accounts.

1372 0x055C Cannot perform this operation on this built-in special group.

1373 0x055D Cannot perform this operation on this built-in special user.

1374 0x055E The user cannot be removed from a group because the group is currently the user's primary group.

1375 0x055F The token is already in use as a primary token.

1376 0x0560 The specified local group does not exist.

1377 0x0561 The specified account name is not a member of the local group.

1378 0x0562 The specified account name is already a member of the local group.

1379 0x0563 The specified local group already exists.

1380 0x0564 Logon failure: the user has not been granted the requested logon type at this computer.



1381 0x0565 The maximum number of secrets that may be stored in a single system has been exceeded.

1382 0x0566 The length of a secret exceeds the maximum length allowed.

1383 0x0567 The local security authority database contains an internal inconsistency.

1384 0x0568 During a logon attempt, the user's security context accumulated too many security IDs.

1385 0x0569 Logon failure: the user has not been granted the requested logon type at this computer.

1386 0x056A A cross-encrypted password is necessary to change a user password.

1387 0x056B A new member could not be added to a local group because the member does not exist.

1388 0x056C A new member could not be added to a local group because the member has the wrong account type.

1389 0x056D Too many security IDs have been specified.

1390 0x056E A cross-encrypted password is necessary to change this user password.

1391 0x056F Indicates an ACL contains no inheritable components

1392 0x0570 The file or directory is corrupt and non-readable.

1393 0x0571 The disk structure is corrupt and non-readable.

1394 0x0572 There is no user session key for the specified logon session.

1395 0x0573 The service being accessed is licensed for a particular number of connections. No more connections can be made to the
service at this time because there are already as many connections as the service can accept.

1400 0x0578 Invalid window handle.

1401 0x0579 Invalid menu handle.

1402 0x057A Invalid cursor handle.

1403 0x057B Invalid accelerator table handle.

1404 0x057C Invalid hook handle.

1405 0x057D Invalid handle to a multiple-window position structure.

1406 0x057E Cannot create a top-level child window.

1407 0x057F Cannot find window class.

1408 0x0580 Invalid window, belongs to other thread.

1409 0x0581 Hot key is already registered.

1410 0x0582 Class already exists.

1411 0x0583 Class does not exist.

1412 0x0584 Class still has open windows.

1413 0x0585 Invalid index.

1414 0x0586 Invalid icon handle.

1415 0x0587 Using private DIALOG window words.

1416 0x0588 The listbox identifier was not found.

1417 0x0589 No wildcards were found.

1418 0x058A Thread does not have a clipboard open.

1419 0x058B Hot key is not registered.

1420 0x058C The window is not a valid dialog window.

1421 0x058D Control ID not found.

1422 0x058E Invalid message for a combo box because it does not have an edit control.

1423 0x058F The window is not a combo box.

1424 0x0590 Height must be less than 256.

1425 0x0591 Invalid device context (DC) handle.

1426 0x0592 Invalid hook procedure type.

1427 0x0593 Invalid hook procedure.

1428 0x0594 Cannot set non-local hook without a module handle.

1429 0x0595 This hook procedure can only be set globally.

1430 0x0596 The journal hook procedure is already installed.

1431 0x0597 The hook procedure is not installed.

1432 0x0598 Invalid message for single-selection listbox.

1433 0x0599 LB_SETCOUNT sent to non-lazy listbox.

1434 0x059A This list box does not support tab stops.

1435 0x059B Cannot destroy object created by another thread.

1436 0x059C Child windows cannot have menus.

1437 0x059D The window does not have a system menu.



1438 0x059E Invalid message box style.

1439 0x059F Invalid system-wide (SPI_*) parameter.

1440 0x05A0 Screen already locked.

1441 0x05A1 All handles to windows in a multiple-window position structure must have the same parent.

1442 0x05A2 The window is not a child window.

1443 0x05A3 Invalid GW_* command.

1444 0x05A4 Invalid thread identifier.

1445 0x05A5 Cannot process a message from a window that is not a multiple document interface (MDI) window.

1446 0x05A6 Popup menu already active.

1447 0x05A7 The window does not have scroll bars.

1448 0x05A8 Scroll bar range cannot be greater than 0x7FFF.

1449 0x05A9 Cannot show or remove the window in the way specified.

1450 0x05AA Insufficient system resources exist to complete the requested service.

1451 0x05AB Insufficient system resources exist to complete the requested service.

1452 0x05AC Insufficient system resources exist to complete the requested service.

1453 0x05AD Insufficient quota to complete the requested service.

1454 0x05AE Insufficient quota to complete the requested service.

1455 0x05AF The paging file is too small for this operation to complete.

1456 0x05B0 A menu item was not found.

1500 0x05DC The event log file is corrupt.

1501 0x05DD No event log file could be opened, so the event logging service did not start.

1502 0x05DE The event log file is full.

1503 0x05DF The event log file has changed between reads.

1700 0x06A4 The string binding is invalid.

1701 0x06A5 The binding handle is not the correct type.

1702 0x06A6 The binding handle is invalid.

1703 0x06A7 The RPC protocol sequence is not supported.

1704 0x06A8 The RPC protocol sequence is invalid.

1705 0x06A9 The string universal unique identifier (UUID) is invalid.

1706 0x06AA The endpoint format is invalid.

1707 0x06AB The network address is invalid.

1708 0x06AC No endpoint was found.

1709 0x06AD The timeout value is invalid.

1710 0x06AE The object universal unique identifier (UUID) was not found.

1711 0x06AF The object universal unique identifier (UUID) has already been registered.

1712 0x06B0 The type universal unique identifier (UUID) has already been registered.

1713 0x06B1 The RPC server is already listening.

1714 0x06B2 No protocol sequences have been registered.

1715 0x06B3 The RPC server is not listening.

1716 0x06B4 The manager type is unknown.

1717 0x06B5 The interface is unknown.

1718 0x06B6 There are no bindings.

1719 0x06B7 There are no protocol sequences.

1720 0x06B8 The endpoint cannot be created.

1721 0x06B9 Not enough resources are available to complete this operation.

1722 0x06BA The RPC server is unavailable.

1723 0x06BB The RPC server is too busy to complete this operation.

1724 0x06BC The network options are invalid.

1725 0x06BD There is not a remote procedure call active in this thread.

1726 0x06BE The remote procedure call failed.

1727 0x06BF The remote procedure call failed and did not execute.

1728 0x06C0 A remote procedure call (RPC) protocol error occurred.

1730 0x06C2 The transfer syntax is not supported by the RPC server.

1732 0x06C4 The universal unique identifier (UUID) type is not supported.



1733 0x06C5 The tag is invalid.

1734 0x06C6 The array bounds are invalid.

1735 0x06C7 The binding does not contain an entry name.

1736 0x06C8 The name syntax is invalid.

1737 0x06C9 The name syntax is not supported.

1739 0x06CB No network address is available to use to construct a universal unique identifier (UUID).

1740 0x06CC The endpoint is a duplicate.

1741 0x06CD The authentication type is unknown.

1742 0x06CE The maximum number of calls is too small.

1743 0x06CF The string is too long.

1744 0x06D0 The RPC protocol sequence was not found.

1745 0x06D1 The procedure number is out of range.

1746 0x06D2 The binding does not contain any authentication information.

1747 0x06D3 The authentication service is unknown.

1748 0x06D4 The authentication level is unknown.

1749 0x06D5 The security context is invalid.

1750 0x06D6 The authorization service is unknown.

1751 0x06D7 The entry is invalid.

1752 0x06D8 The server endpoint cannot perform the operation.

1753 0x06D9 There are no more endpoints available from the endpoint mapper.

1754 0x06DA No interfaces have been exported.

1755 0x06DB The entry name is incomplete.

1756 0x06DC The version option is invalid.

1757 0x06DD There are no more members.

1758 0x06DE There is nothing to unexport.

1759 0x06DF The interface was not found.

1760 0x06E0 The entry already exists.

1761 0x06E1 The entry is not found.

1762 0x06E2 The name service is unavailable.

1763 0x06E3 The network address family is invalid.

1764 0x06E4 The requested operation is not supported.

1765 0x06E5 No security context is available to allow impersonation.

1766 0x06E6 An internal error occurred in a remote procedure call (RPC).

1767 0x06E7 The RPC server attempted an integer division by zero.

1768 0x06E8 An addressing error occurred in the RPC server.

   

1769 0x06E9 A floating-point operation at the RPC server caused a division by zero.

1770 0x06EA A floating-point underflow occurred at the RPC server.

1771 0x06EB A floating-point overflow occurred at the RPC server.

1772 0x06EC The list of RPC servers available for the binding of auto handles has been exhausted.

1773 0x06ED Unable to open the character translation table file.

1774 0x06EE The file containing the character translation table has fewer than 512 bytes.

1775 0x06EF A null context handle was passed from the client to the host during a remote procedure call.

1777 0x06F1 The context handle changed during a remote procedure call.

1778 0x06F2 The binding handles passed to a remote procedure call do not match.

1779 0x06F3 The stub is unable to get the remote procedure call handle.

1780 0x06F4 A null reference pointer was passed to the stub.

1781 0x06F5 The enumeration value is out of range.

1782 0x06F6 The byte count is too small.

1783 0x06F7 The stub received bad data.

1784 0x06F8 The supplied user buffer is not valid for the requested operation.

1785 0x06F9 The disk media is not recognized. It may not be formatted.

1786 0x06FA The workstation does not have a trust secret.



1787 0x06FB The SAM database on the Windows NT Server does not have a computer account for this workstation trust relationship.

1788 0x06FC The trust relationship between the primary domain and the trusted domain failed.

1789 0x06FD The trust relationship between this workstation and the primary domain failed.

1790 0x06FE The network logon failed.

1791 0x06FF A remote procedure call is already in progress for this thread.

1792 0x0700 An attempt was made to logon, but the network logon service was not started.

1793 0x0701 The user's account has expired.

1794 0x0702 The redirector is in use and cannot be unloaded.

1795 0x0703 The specified printer driver is already installed.

1796 0x0704 The specified port is unknown.

1797 0x0705 The printer driver is unknown.

1798 0x0706 The print processor is unknown.

1799 0x0707 The specified separator file is invalid.

1800 0x0708 The specified priority is invalid.

1801 0x0709 The printer name is invalid.

1802 0x070A The printer already exists.

1803 0x070B The printer command is invalid.

1804 0x070C The specified datatype is invalid.

1805 0x070D The Environment specified is invalid.

1806 0x070E There are no more bindings.

1807 0x070F The account used is an interdomain trust account. Use your global user account or local user account to access this server.

1808 0x0710 The account used is a Computer Account. Use your global user account or local user account to access this server.

1809 0x0711 The account used is an server trust account. Use your global user account or local user account to access this server.

1810 0x0712 The name or security ID (SID) of the domain specified is inconsistent with the trust information for that domain.

1811 0x0713 The server is in use and cannot be unloaded.

1812 0x0714 The specified image file did not contain a resource section.

1813 0x0715 The specified resource type can not be found in the image file.

1814 0x0716 The specified resource name can not be found in the image file.

1815 0x0717 The specified resource language ID cannot be found in the image file.

1816 0x0718 Not enough quota is available to process this command.

1817 0x0719 No interfaces have been registered.

1818 0x071A The server was altered while processing this call.

1819 0x071B The binding handle does not contain all required information.

1820 0x071C Communications failure.

1821 0x071D The requested authentication level is not supported.

1822 0x071E No principal name registered.

1823 0x071F The error specified is not a valid Windows RPC error code.

1824 0x0720 A UUID that is valid only on this computer has been allocated.

1825 0x0721 A security package specific error occurred.

1826 0x0722 Thread is not cancelled.

1827 0x0723 Invalid operation on the encoding/decoding handle.

1828 0x0724 Incompatible version of the serializing package.

1829 0x0725 Incompatible version of the RPC stub.

1898 0x076A The group member was not found.

1899 0x076B The endpoint mapper database could not be created.

1900 0x076C The object universal unique identifier (UUID) is the nil UUID.

1901 0x076D The specified time is invalid.

1902 0x076E The specified Form name is invalid.

1903 0x076F The specified Form size is invalid

1904 0x0770 The specified Printer handle is already being waited on

1905 0x0771 The specified Printer has been deleted

1906 0x0772 The state of the Printer is invalid

1907 0x0773 The user must change his password before he logs on the first time.

1908 0x0774 Could not find the domain controller for this domain.



1909 0x0775 The referenced account is currently locked out and may not be logged on to.

2000 0x07D0 The pixel format is invalid.

2001 0x07D1 The specified driver is invalid.

2002 0x07D2 The window style or class attribute is invalid for this operation.

2003 0x07D3 The requested metafile operation is not supported.

2004 0x07D4 The requested transformation operation is not supported.

2005 0x07D5 The requested clipping operation is not supported.

2202 0x089A The specified username is invalid.

2250 0x08CA This network connection does not exist.

2401 0x0961 This network connection has files open or requests pending.

2402 0x0962 Active connections still exist.

2404 0x0964 The device is in use by an active process and cannot be disconnected.

3000 0x0BB8 The specified print monitor is unknown.

3001 0x0BB9 The specified printer driver is currently in use.

3002 0x0BBA The spool file was not found.

3003 0x0BBB A StartDocPrinter call was not issued.

3004 0x0BBC An AddJob call was not issued.

3005 0x0BBD The specified print processor has already been installed.

3006 0x0BBE The specified print monitor has already been installed.

4000 0x0FA0 WINS encountered an error while processing the command.

4001 0x0FA1 The local WINS can not be deleted.

4002 0x0FA2 The importation from the file failed.

4003 0x0FA3 The backup Failed. Was a full backup done before ?

4004 0x0FA4 The backup Failed. Check the directory that you are backing the database to.

4005 0x0FA5 The name does not exist in the WINS database.

4006 0x0FA6 Replication with a non-configured partner is not allowed.

6118 0x17E6 The list of servers for this workgroup is not currently available



Flags - Define Processing Tables (rcabe, dcabe)
The following flags can be used within filePro menus or from the command line with program "rcabe" or "dcabe".
 
Syntax: dcabe filename flags

 
-C Tokenize the specified processing table(s) without going into interactive mode.

-CI Same as -C, but the user is put into interactive mode if an error occurred.

-CA Tokenize all .prc tables with one request.

-CIA Tokenize all .prc tables, but the user is put into interactive mode if an error occurred.

-CS With ABE set to ASCII, -cs will recompile all processing tables in ASCII.  Automatic except when a creation password is required.

-T nnnnn Sets scan/output processing tokenization table size.

-TY nnnnn Sets automatic processing tokenization table size.

-Y name Sets the automatic processing table name if other than "automatic" (UNIX) "auto" (DOS, Windows).



Flags - Directory (ddir & dprodir)
 
The following flags can be used within filePro menus or from the command line with program "dprodir".
 
Syntax: dprodir filename flags or ddir filename flags
 
-A Delete entire file including formats & qualifiers.

-Ftype name name ... deletes individual formats specified by format type & format name.
(E)dit, (S)creen, (P)rocessing table, (O)output, (B)rowse, (T)oken table, browse (L)ookup.
NOTE: the L code deletes ALL of the browse lookup formats in the file.

-H "heading" Screen heading (must be used with another flag).

-I n Deletes an index. "n" is index letter or number.

-KA  Deletes all data in key & data segments; empties all indexes for the file.

 -K  Deletes all data in key & data segments for main file only, empties indexes.
(Use "-M qual" to delete a qualifier's key and data, and empty its indexes.)

-L Deletes the lockfile.

-M qual Sets the qualifier name.

-MD  Prompts user for a qualifier.

-MQ "msg" Prompts user for qualifier using "msg".



Flags - Expand Files (dexpand)
 
The following flags can be used within filePro menus or from the command line with program "dexpand".
 
Syntax: dexpand filename flags
 
-H "heading" Screen heading.

-M name Uses the given qualifier.

-MD Prompts user for a qualifier.

-MQ "msg" Prompts user for qualifier using "msg".

 Switch Allows users to check free disk space and switch drives - must occur before the heading.

Nnn     Number of records to add.



Flags - Index Maintenance (dxmaint)
 
Syntax: dxmaint filename flags
 
The following flags can be used within filePro menus or from the command line with program "dxmaint".
 
-C comment Adds a comment to an index

-E Exit to user menu upon completion.

-H "heading" Screen heading.

-KN Save with rebuild. (default) Version 5.0.6 or greater

-KY Save without rebuild. Version 5.0.6 or greater

-LN Exclude from lists. Note: Version 5.0.6 or greater

-LY Include in lists. Note: Version 5.0.6 or greater

-M name Uses the given qualifier.

-MD Prompts user for a qualifier.

-MQ "msg" Prompts user for qualifier using "msg".

-MN Hide [NONE] qualifier from the qualifier list.

-On  Indicates the output index name - "n" can be any automatic or demand index.

-R  Rebuilds the index on the same key(s).

-RA Rebuilds all automatic indexes in named file.

-RF n,l,o:n,l,o. ...
 

Rebuilds an index on a specified field, length & sort order (a=ascending, d=descending) where n = field Number, l = Length and o = Order
of sort.
Example:
dxmaint filename -RF 1,10,d:2,5 -Oa
Builds index.a using field 1, length of "10" in Descending order and then on field 2, length of "5".
 

-RF @filename
 

Has been enhanced to allow you to specify a filename of a file that contains the sort order you want to use

-SX (Version 5.8.03) - Sets the selection set for automatic indexes
An example is: dxmaint testfile -RF 1,6 -E -SX "W and X":W,12,ne,98:X,12,ne,99 -OK

(Demand indexes only)  

-A Selects all records.

-In Builds index using index "n" as input.

-N   No sorting.

-S name Use selection set "name".

-Xn Use same sort criteria as index "n".

(*NIX only)  

-BG Build index in the background.

-BS Suppresses "background task completed" message when -BG option is being used.



Flags - IUA (rclerk, dclerk)
 
The following flags can be used within filePro menus or from the command line with program "rclerk" or "dclerk".
Syntax: dclerk filename flags
 
-B Turns browse on - can be used with XI or XS.

-B name Turns browse on using the given browse format.

-BD name Like -B, but also allows switching formats & format maintenance (create,update,delete).

-BX Turns browse off and removes option 5.

-D Suppresses all bottom-of-the-screen messages.

-DB Turns on processing debugger.

-DE Turns off only the @entsel prompts, leaving the update mode
prompts intact for GUI.

-DL Forces filePro to display the prompts even if xkeys are included. Note: the brwlook xkey prompts have been changed back to the old
behavior i.e. if any xkeys are listed, filePro does not put up the default brwlook prompts.

-DM To remove Index Mode label from screen  Version 6.0.02

-DU Turns off only the update mode prompts, leaving the @entsel
prompts intact for GUI.

-FP filename Run a specified processing table without having an output format associated with it.

-FX Disables the format selection window.

-H "heading" Screen heading.

-J Turns indexed scan on for one operation.

-JN Turns indexed scan off for one operation.

-LX Disables creation, deletion and modification of browse lookups.

-M name Uses the given qualifier.

-MD Prompts for a qualifier using default prompt.

-MQ "msg" Prompts for qualifier using "msg" as prompt.

-MN Hide [NONE] qualifier from the qualifier list.

-N Puts user in update mode on each selected record - used with X flags.

 -P name Send printer output to "name".

-PC type Sets the printer type.

-PN name Sets the printer name.

-PQ Prompts user for printing to printer, file or display.

-PV  Shows printer output on screen, one page at a time.

-R "value" Sets value for system-maintained field @PM.

-RO Designates files as read only.

-RW data Works like the -R flag, i.e., passes a variable to a processing table. The processing table uses the @PW system-maintained field to retrieve
the variable's contents.

-RX data Same as -RW but uses the @PX system-maintained field.

-RY data Same as -RW but uses the @PY system maintained field.

-RZ data Same as -RW but uses the @PZ system maintained field.

-Sn Screen to use.

-T nnnnn Sets input processing tokenization table size.

-TF nnnnn Sets output processing tokenization table size.

-TY nnnnn Sets automatic processing tokenization table size.

-XA User goes immediately into add records mode.

-XE Skips IUA menu, goes directly to @ENTSEL processing in input processing.

 -XI User goes immediately to index-mode prompt.

-Xin  User goes immediately to index-mode on "index.n".

-XS name User enters the file via given selection set.

-Y name Choose alternate automatic processing table. Use nonexistent table name (or "") to skip automatic processing.

-Z name Choose alternate input processing table. Use nonexistent table name (or "") to skip processing.

  



(UNIX/Linux only)  

-PT  Print to local printer if codes are in termcap entry, otherwise print to the screen.



Flags - Request Output (rreport, dreport)
 
The following flags can be used within filePro menus or from the command line with program "rreport" or "dreport".
Syntax: dreport filename flags
 
-A All records.

-AS n Start processing beginning at record number n instead of record #1.

-DB Activates the debugger for processing table.

-F name Selects the output format.

-FP filename Run a specified output-processing table without having an output format associated with it.

-FO path/filename *report .out to use when not in the local directory

-H "heading" Screen heading.

-In Selects an index.

-M name Uses the given qualifier.

-MD Prompts user for a qualifier.

-MQ "msg" Prompts user for qualifier using "msg".

-MN Hide [NONE] qualifier from the qualifier list.

-N No sorting.

-On Saves the selected records as demand index n.

-P name Selects the printer name.

-P file  Selects the file to put the output.

-PC type Sets the printer type.

-PN name Sets the printer name.

-PQ Prompts user for printing to printer, file or display.

-PV Shows printer output on the screen a page at a time.

-R "value" Sets value for system-maintained field @PM.

-RF nnn,lll[,ad]
-RF @filename

Specify a sort order to be used. You can either specify the sort order directly on the command line or point to a file that contains
the sort order.

-RH disable the automatic record number reporting in the middle of the screen  Version 6.0.02

-RO Designates files as read only.

 
-RW data

Works like the -R flag, i.e., passes a variable to a processing table. The processing table uses the @PW system-maintained field to
retrieve the variable's contents.

-RX data Same as -RW but uses the @PX system-maintained field.

-RY data Same as -RW but uses the @PY system maintained field.

-RZ data Same as -RW but uses the @PZ system maintained field.

-S name Sets the selection set.

-SR n Run on a single specific record number n.

-SX Prevent user from saving revised selection sets to disk.

-T nnnnn Sets scan/output process tokenization table size.

-TY nnnnn  Sets automatic process tokenization table size.

-V name Uses named sort/selection table.

-W Prompt user between pages. (Multi-user needs -P also).

-X Halt at sort screen, needs -F & either -S or -A.

-Y name Choose alternate automatic processing table. Use nonexistent table name to skip automatic processing.

-Z name Choose alternate output processing table.  Use nonexistent table name to skip output processing.

 (LINUX/UNIX/XENIX/Network)

-U Prevents users from being locked out of a file when "Request Output" is processing records. (LINUX/UNIX/XENIX/Network
versions)
Warning: Do not use when; "Request Output" is posting data; do not let a user and "Request Output" simultaneously update the
same record.

 (UNIX only)

-BG Generate report in the background.

-BS  Suppress the "background task completed" message when -BG option is used.



-PT Print to local printer (if printer) else to screen.

  



HTML Functions
Version Ref:  4.8 (not included in filePro Lite)
  5.0 (enhancements)
Syntax:

HTML id :Tag_Code Tag_Value :Attribute Value
"id" can be used to create multiple HTML files.

"Tag_Code" is a filePro code similar to a HTML "TAG".

"Tag_Value" a value related to the Tag_Code.

"Attribute" filePro code to identify HTML attributes.

"Value" the attribute value.

Description:
Create HTML files using filePro HTML functions.
Example:
HTML "1" :CR "fp.htm" :TI "filePro Page" :BI "fpback.gif"
The above example creates a single html document "fp.htm" with a title of "filePro Page" with :BI attribute (background image) named "fpback.gif".
 
"1" - Create HTML id = "1" :CR - CReate a document "fp.htm"
:TI - TItle "filePro Page" :BI - Background Image "fpback.gif"
 
The filePro HTML functions are presented in table format to show related functions and attributes that can be used.
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

 
Terms Description

 
HTML Function The standard HTML function name

TAG HTML TAG returned for the filePro Tag Code.

Tag Code filePro code related to a HTML function.

Tag Value "Literal" or filePro variable.

Attribute filePro code to specify HTML attributes.

Value HTML attribute value as a "Literal" or filePro variable.

# of Val Number of values allowed per attribute.

 
Legend for # of val (values)

0 - No values allowed.
1 - Exactly one value.
? - Single value optional.
+ - Text, comma-delimited list of values.
* - Text, comma-delimited list of values optional.
Note: filePro uses "Tag Codes" for functions with no corresponding HTML <TAG> such as :CR (CReate file), :CL (CLose file).



HTML(Address)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML :AD
 

HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Address <ADDRESS> :AD "address" <>   

 
Note: If value given, its text is used and </ADDRESS> is automatically closed.



HTML(Anchor)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML:AN "Any Text" :HR
 

HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Anchor
 

<A> :AN Optional :HR Href 1

   Text :TA Table 1

5.0    :RL Rel 1

5.0    :RV Rev 1

5.0    :TI Title 1

    :NA Name 1

Close
Anchor

 :AN- See Note    

 
Note:
If you do not include a "Tag_value" after "Tag_Code" :AN, you must close the anchor with an HTML :AN- command. When a Tag_value is used, filePro will automatically return the closing </A> code
after the "Tag_value".



HTML(Area)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML:AR :HR "Image.bmp"
 The :AR tag defines each "hotzone" region within tag :MA

 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Area <AREA> :AR <none> :NA Name 1

    :HR HRef 1

    :SH Shape 1

    :CO Coord. +

    :NO No HRef 0

    :AL Alternate 1

 
Description:
The :HR attribute specifies the URL for the destination that should be chosen if this area was selected. If you specify :NO instead, this area won't do anything.
 
:SH and :CO define the actual region.
 
:SH can be a rectangle, circle or polygon and :CO should contain a set of coordinates describing that shape. This is done with a comma separated list of numbers, enclosed in quotes. The syntax for
:CO depends on what shape you choose.

rect - rectangle
 
A rectangle has four coordinates. The first specifies the top left corner, and the second the bottom right corner of the rectangle.
 
Example:
:SH = "rect" :CO = "0,0,9,9" would specify a rectangle of 10x10 pixels, starting in the top left corner of the image.

circle - circle
A circle is defined by its center and radius. The :CO attribute first specifies the coordinates of the center, and then the radius of the circle, in pixels.
 
Example
:SH = circle :CO = "10,10,5" would specify a circle with radius 5 at location (10,10) in the image.
 
  poly - polygon
 
A polygon is built up by a list of coordinates. They are all connected in the order you present, and the last coordinate pair is connected to the first. This way you can build arbitrary figures.
 
Example:

:SH=poly :CO="10,50,15,20,20,50" would specify a triangle,
 
:AL is used by text browsers to present the URLs in the imagemap in a more readable fashion. If you leave those off, the browser can only display the "bare" URLs. The ALT text is required if you
want your document to be valid.



HTML(Base)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML :BA :HR http://www.fptech.com
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Base <BASE> :BA <none> :HR Href 1

 
Description:
Can be used to record the document's location in the form of an absolute URL, which can be used to resolve a relative URL if the document is not accessed in its original location.
 
Example:
<IMG_SRC="/../../images/fplogo.gif"> would result in http://www.fptech.com/../../images/fplogo.gif
 
Note: The relative URL is added to the BASE, so if you only need to specify what is to be added to the BASE for the relative URL's.



HTML(Blockquote)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

H TML :BQ
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Blockquote  :BQ Optional <> <none>  

 
Description:
Allows you to include quoted text from another author.
 
Notes:
If a value is given, its text is used and </BLOCKQUOTE> automatically closes <BLOCKQUOTE>.
If you are quoting more than a few lines from a document, use a :BQ to indicate this. Block quotations are often rendered with indented margins, and possibly in italics, although a rendering with the
standard quotation symbol for E-mail, "> ", is of course also possible.



HTML(Body)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML :BO "Any text" :BI "filepro.gif"
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

/HEAD
<BODY>

<BODY> :BO <none> :BI BG
Image

1

  :BC <none> <> BG Color 1

   <none> :TE Text Color 1

    :LI Link Color 1

    :VL Visit Link Color  
1

    :AL Active Link
Color

 
1

    :FR Frame 0

    :ZZ Your Own
Text

+



HTML (Caption, Frameset)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML:TC
 HTML:FS
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Caption <CAPTION> :TC Optional Text :AL Align 1

       

Frameset <FRAMESET> :FS <none> :RO Rows +

    :CO Columns +

    :FB Frame
Border

1

    :BO Border ?

    :BC Border
Color

1



HTML(Center)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML :CE "Text"
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Center <CENTER> :CE Optional <> <none>  

 
Note: If value given, its text is used, and </CENTER> automatically closed.



HTML (Comments)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML:CO "This is a comment"
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Comments <! - -> :CO Optional text <>   

       



HTML (Create)
Version Ref:  4.8 (not included in filePro Lite)
HTML(Close)
Syntax:

HTML :CR "test.htm" :T1 "Test Page"
HTML :CL

 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Create <HTML>
<HEAD>

:CR "Title
Text"

:T1 "Test
Page"

1

Close </BODY>
</HTML>

:CL <none> <>   

5.0    :DT Document
Type

1

    :TX Text +

 
Example:

:TA- (Closes a table)
 
Note: Many of the HTML commands allow you to explicitly CLOSE the command by using the command followed by using a "-" [dash].



HTML(Definition Term, Definition Data)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML :LI
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Mark List <LI> :LI Optional :TT Type 1

    :VA Value 1

       

 
Description:
The LI tag is used to mark list items within a list. When the list used is an "ordered list", the :LI tag will be rendered with a number. The appearance of that number can be controlled with the :TY
attribute. Similarly, inside an unordered list the type of bullet that is displayed can be controlled with :TY.



HTML(Divisions)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML :DI "Text" :AL "center"
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Divisions <DIV> :DI Optional :AL Align 1

 
Description:
The :DI tag is used to mark up divisions in a document. It can enclose paragraphs, headers and other block elements. Currently, you can only use it to set the default alignment for all enclosed block
elements.
 
Note: If value given, its text is used, and </DIV> is automatically closed.



HTML(Font)
Version Ref: 5.0 (not included in filePro Lite)
Syntax:

HTML :FN "This is big text" :SI "+2" :CO "ffffff"
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Font <FONT> :FN Optional
Text

:CO Color 1

    :SI Size 1

    :TX Any text +

 
Description:
Controls font color and size.
 
Note: If the optional value is given, it is output as text, and a closing </FONT> is automatically generated. The following generate identical output:
 
Examples:
 
Method 1
 
HTML :FN :SI "+2"
HTML :TX "This is big text."
HTML :FN-
 
Method 2
 
HTML :FN "This is big text." :SI "+2"
 
Result
 
<FONT SIZE="+2">This is big text.</FONT>



HTML (Form)
Version Ref:  5.0 (not included in filePro Lite)

Syntax:
  HTML:FO
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

FORM <Form> :FO <none> :AC Action 1

5.0    :EN Encode 1

    :ME Method 1

    :NA Name 1

    :ZZ Other +



HTML (Frame)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML:FR
 HTML:FR-
 HTML:NF
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Frame <FRAME> :FR <none> :SR Source 1

    :MW Margin Width 1

    :MH Margin
Height

1

    :SC Scroll Flag ?
 

    :FB Frame
Border

1

    :BC Border
Color

1

Close Frame </FRAME> :FR-     

No Frame
 

<NO FRAME> :NF <none>  <none>  



HTML (Header)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML:TH
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Header <HEADER> :TH <none> :AL Alignment 1

    :VL Vertical Alignment 1

    :NO  0

    :CO Colspan 1

    :RO Rowspan 1

    :WI Width 1

    :BG Backgrnd
Color

1



HTML (Heading Text)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML :H1 "This is a header" :AL "CENTER"
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Header <H1> :H1 Optional
Text

:AL Align 1

 Thru      

 <H6> :H6     

 
Description:
Allows you to control header text alignment for six levels of header text.
Notes:
1) including the "Tag_value" will cause filePro to return </H1> at the end of the header line.
2) To include multiple lines in <H1> header, use the HTML :H1command without the "Tag_value" and HTML :TX commands for the other lines followed by an HTML :H1- to close the <H1> Header.



HTML (Horizontal Rule)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML:HR :SI "80"
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Horizontal Rule <HR> :HR <none> :AL Align 1

    :SI Size 1

    :WI Width 1

    :NS  0



HTML(Image)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML:IM :AL "CENTER"
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Image <IMAGE> :IM <none> :AL Alignment 1

    :SR Source 1

    :AT Alternate 0

    :HT Height 1

    :BO Border 1

    :WI Width 1

    :HS Horizontal
Space

1

    :VS Vertical Space 1

    :US USEMAP 1

    :IS ISMAP 1

 
Description:
The :IM tag is used to insert images within text. These are often called "inline" images.
Note: The :IM tag is not a block tag by itself, so it must be used only within a block element. The location of the image file should be specified in the :SR attribute. It can be a relative or an absolute URL.
When the image cannot be displayed, the browser should display the :AT text instead. The :WI and :HI attributes should contain the image's dimensions. This allows a browser to lay out the page in
advance, as it now knows where the text below the image should be drawn.

:AL controls the alignment of the image with respect to the text.
:VS and :HS is a numeric value indicating the number of pixels that should be left free around the image.
:BO is used when the image is a link. It indicates that the browser should draw a border of the indicated size around the image to show that it is a link. It's most often used as :BO=0 to turn it
off.
:IS and :US are used for imagemaps. The :IS attribute specifies that the link that this image is in goes to an imagemap program on the server, so the browser can send the coordinates of the
selected location to the server. USEMAP is used for the client-side imagemap. It specifies the URL of the imagemap information. Support for this is limited, especially if the URL points to a
different document rather than an inline anchor. See the section on the MAP tag for more information about client-side imagemaps.



HTML (Input)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML:IN
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

INPUT <INPUT> :IN <none> :TY Type 1

    :NA Name 1

    :VA Value 1

    :CH  0

    :SI Size 1

    :ML MaxLen 1

    :SR Source 1

    :AL Align 1

    :ZZ Events +



HTML(ISINDEX)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML:IS :PR "Test Prompt"
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

ISINDEX <ISINDEX> :IS <none> :PR Prompt 1

 
Description:
<ISINDEX> was used before <FORM> became more popular. When inserted in a document, it will allow the user to enter keywords that are then sent to the server. The server then executes a search
and returns the results. The :PR attribute can be used to override the default text in the dialog box.



HTML(Link)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML:LN :HR "test.htm"
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Link <LINK> Link <none> :HR Href 1

    :RL Rel 1

    :RV Rev 1

    :TI Title 1

 
Description:

:LN is used to indicate relationships between documents. There are two possible relationships.
The :RL attribute indicates a normal relationship to the document specified in the URL.
The :RV attribute is a reverse relationship. In other words, the other document has the indicated relationship with this one. The :TI attribute can be used to suggest a title for the referenced
URL.

 
Usage:
Attrib Value Description

:RL "copyright" Indicates the location of a page with copyright information and such on the site.

:RL "glossary" Indicates the location of a glossary of terms for this site.

:RL "help" Indicates the location of a help file for this site. This can be useful if the data is complex or if the current document may
require explanations to be used correctly (for example a large fill-in form).

:RL "home" Indicates the location of the homepage, or starting page in this site

:RL "index" Indicates the location of the index for this site. This doesn't have to be the same as the table of contenets. The index could
be alphabetical.

:RL "stylesheet" This indicates the location of the appropriate style sheet for the current document. The following link tags allow advanced
browsers to automatically generate a navigational button bar for the site. For each possible value, the URL can be either
absolute or relative.

:RL "toc" Indicates the location of the table of contents, or overview of this site.

:RL "next" Indicates the location of the next document in a series, relative to the curent document.

:RL "previous" Indicates the location of the previous document in a series, relative to the current document.

:RL "up" Indicates the location of the document which is logically directly above the current document.

:RV "made" Indicates the creator of the document. Usually the URL is a "mailto: URL with the creator's address. Advanced browsers
will now let the reader comment on the page with just one button or keystroke.



HTML(Map)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML:MA :NA "imagemap"
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Map <MAP> :MA <none> :NA Name 1

Description:
<MAP> identifies imagemap for showing information on the "hot spots"(clickable areas) in an image mentioned in an :AR tag.
Every selectable area should be mentioned in the :AR tag inside the :MA tag. The :NA attribute on the MAP tag assigns a name to the imagemap. The URL for the imagemap should point to this.
 
Example:
You have a map named "foo", you could reference to it with <IMG <../special/img.html> SRC="map.gif" USEMAP="#foo"> if the image was on the same page.



HTML(Meta)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:
  HTML:ME:CO "Aprils Fools Day"
The :ME tag is used to convey meta-information about the document,
but can also be used to specify headers for the document.
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Meta <META> :ME <none> :HT HTTP-EQUIV 1

    :NA Name 1

    :CO Content 1

 
Description:
You can use either :HT or :NA to name the meta-information, but :CO "Content" must be used in both cases. By using :HT, a server should use the name indicated as a header, with the specified
content as its value.
 
Example:

 
HTML :ME :HT="Expires" :CO="Sat, 01 Apr 2000 00:00 GMT

HTML :ME :HT="Keywords" :CO="April, Fools"

HTML :ME :HT="Reply-to" :CO="Test@fPtech.com (Ernie)"

 
The server will include the following response headers when the document is requested:
 
Expires: Sat, 01 Apr 2000 00:00:01 GMT
Keywords: April, Fools
Reply-to: test@fptech.com (Ernie)
 
Usage:
Common uses for META include:

 
META Name Content Description

   
"generator" :CO="Some program" This indicates the program used to generate

  this document. It is often the name of the
  HTML editor used.

   

"author" :CO="Name" This indicates the name of the author.

   

"keywords" :CO="keyword" Provides keywords for search engines such
  as Infoseek or Alta Vista. These are added
  to the keywords found in the document
  itself. If you insert a keyword more than
  seven times here, the tag will be ignored



HTML (Option)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML:OP
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Option <OPTION> :OP Optional :VA Value 1

   Text :SE Selected Flag 0



HTML(Ordered List, Unordered List, Definition List)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML:OL
 HTML:UL
 HTML:DL
 HTML:DT
 HTML:DD
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Ordered List <OL> :OL <none> :TY Type 1

    :ST Start 1

    :CO Compact 1

      1

Unordered List <UL> :UL <none> :TY Type 1

    :CO Compact 1

       

Definition List <DL> :DL <none> :CO Compact 1

       

Term <DT> :DT Optional <>   

       

Definition <DD> :DD Optional <>   

 
Description:
The :OL tag marks up an ordered list of items. Each item should be marked up with a :LI and it will be displayed with a number in front of it. The appearance of the number can be controlled with the
:TY attribute:

1 Arabic numbers (default) (1, 2, 3, 4, ...)

A Alphanumeric, lowercase (a, b, c, d, ...)

A Alphanumeric, uppercase (A, B, C, D, ...)

I Roman numbers, lowercase (i, ii, iii, iv, ...)

I Roman numbers, uppercase (I, II, III, IV, ...)

The :TY attribute is the type of bullet. You have three possible styles: "disc" for a closed bullet, "square" for an open square and "circle" for an open bullet.
The :ST attribute indicates where the list should start.
The :CO attribute indicates that the list contains only short list items, so it may be rendered in a more compact way.
Notes:
If you want a list with bullets rather than numbers, use :UL. The :UL tag indicates an unordered list. Every item in a list is marked with <LI> and usually appears with a bullet of some sort in front of it. If
you need numbering, use :OL for an ordered list.



HTML(PRE)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML :PR "Optional text" :WI "400"
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

 <PRE> :PR Optional Text :WI Width 1

 
Description:
:PR is used to include text in which formatting is critical.
 
Notes: If value given, its text is used, and </PRE> automatically closed.
Unlike in the other HTML options, text with the PRE tag will only be wrapped at the line breaks in the source, and spaces will not be collapsed. You can even use tabs, although it is better to use
multiple spaces since those will always be the right number.
Text inside this tag will be displayed in a mono-spaced font to retain the formatting. This is the reason you cannot include font-changing tags inside PRE text. Images are excluded because they can
introduce problems with alignment. An image can't be translated to a certain number of characters. The optional :WI attribute can be used to indicate how wide the text is (for example, :WI=80 for a
typical text file). This would allow the browser to pick a font that fits all the text in the current window.



HTML(Script)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML:SC :SR "appl\html\test.scp"
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Script <SCRIPT> :SC Text :SR Source 1

Language  :LA     

 
Note : If Flag :LA not used, the default language is JavaScript e.g. <script language=Javascript>. HTML 4.0 and later permit various Script Language values including JAVASCRIPT, JSCRIPT,
VBSCRIPT, VBS.



HTML (Selection)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML:SE
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Selection <SELECTION> :SE <none> :NA Name 1

    :SI Size 1

    :MU Multiple Flag 0

    :ZZ Events +



HTML(Span)
Version Ref:  5.0 (not included in filePro Lite)
Syntax:

HTML :SP
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Span <SPAN> :SP Optional Value <>   

 
Note: If value given, its text is used, and </SPAN> automatically closed.



HTML (Table, Data)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML:TD
 HTML:TA-
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Table Data <TD> :TD <none> :AL Align 1

    :VL Vertical Align 1

    :NO  0

    :CO Colspan 1

    :RO Rowspan 1

    :WI Width 1

    :BG Backgrnd
Color

1

End Table </TABLE> :TA- <none>  <none>  



HTML (Table, Table Row)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML:TA
 HTML:TR
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Table <TABLE> :TA  :CO Columns 1

    :BO Border ?

    :CS Cell Spacing 1

    :CP Cell Padding 1

    :WI Width 1

    :ZZ  +

Table Row <TR> :TR <none> :AL Align 1

    :VL VerticalAlign 1



HTML (Text)
HTML (Paragraph), HTML (Break)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML:TX
 HTML:PA :AL "LEFT"
 HTML:BR
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

General Text  :TX Text or memo field <>   

Paragraph <P> :PA Optional
Text

:AL Align 1

Break <BR> :BR <none> <>   



HTML (Text area)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML:TE
 
HTML
Function

TAG Tag
Code

Tag Value Attr Value # of
Values

Text Area <TEXTAREA> :TE <none> :RO Rows 1

    :CO Columns 1

    :NA Name 1

    :WA  1



HTML (:ZZ)
Version Ref:  4.8 (not included in filePro Lite)
Syntax:

HTML:ZZ
The :ZZ flag is available for every HTML command, to allow you to add your own attributes to the command such as event processing statements etc. It takes a comma-separated list.
 
Example:
HTML "1" :AN :HR "#name" :ZZ "target=_top", "onMouseOver()='foo()'", foo=bar"
 
Generates <A HREF="#name" target=_top onMouseOver='foo()' foo=bar>
If you do not specify optional text right after the :AN code, you must close the anchor with an HTML :AN- command. If you specify option text, filePro will automatically insert the </A> code after the
optional text. A simple processing table used to manually create a "Hi There document" follows:
 
HTML Sample
If: ' Create hithere.htm document
Then: HTML "1" :CR "hithere.htm" :TI "Hi There"
-----------------------------------------------------------
If: ' Start Body
Then: HTML "1" :BO
-----------------------------------------------------------
If: ' Header1 Text Line
Then: HTML "1" :H1 "Hi There America!"
-----------------------------------------------------------
If: ' Close Document
Then: HTML "1" :CL
-----------------------------------------------------------



JSON

Version Ref: 6.1 (USP 6.1.01)

filePro now has the ability to import and export JSON files using the JSON command.

Export - Create a JSON file
Use these commands to create a JSON file using Processing.
JSON [id] :CR fname
 Creates a JSON file with fname as the filename. The id is optional and defaults to "0" if only one file is open at a time. If two or more are open, the id must be supplied ("0"-"99").
JSON [id] :CR-|:CL
 Closes an open JSON file.
JSON [id] :OB [name]
 Starts an object in a JSON file with name as the key.
JSON [id] :OB-
 Closes an object.
JSON [id] :AR [name]
 Starts an array in a JSON file with name as the key.
JSON [id] :AR-
 Closes an array in a JSON file.
JSON [id] :IT name [value]
 Adds an item to a JSON file. If a value is not supplied, the resulting value will be null.
JSON [id] :NO name [value]
 Adds a number to a JSON file. If a value is not supplied, the resulting value will be null.
JSON [id] :BL name [value]
 Adds a boolean value to a JSON file. If a value is not supplied, the resulting value will be null.
NOTE: JSON files are created by appending one item at a time. When an array or object is started, any items added afterward will be added as direct "children" of the array or object until that array or
object is closed.

Example - Create a JSON file
Processing:

  Then: JSON :CR "/tmp/myfile.json"
  Then: JSON :OB
  Then: JSON :OB "name"
  Then: JSON :IT "first" "Tom"
  Then: JSON :IT "last" "Anderson"
  Then: JSON :OB-
  Then: JSON :NO "age" "37"
  Then: JSON :AR "children"
  Then: JSON :IT "" "Sara"
  Then: JSON :IT "" "Alex"
  Then: JSON :IT "" "Jack"
  Then: JSON :AR-
  Then: JSON :IT "fav.movie" "Deer Hunter"
  Then: JSON :OB-
  Then: JSON :CL
 

Output (/tmp/myfile.json):

{
  "name": {
    "first":        "Tom",
    "last": "Anderson"
  },
  "age":  37,
  "children":     ["Sara", "Alex", "Jack"],
  "fav.movie":    "Deer Hunter"
}
   
 

Import - Read a JSON file
Use these commands to read data from a JSON file.
JSON [id] :RO fname
 Opens a JSON file for reading. The id is optional and defaults to "-" if only one file is open at a time. If two or more are open, the id must be supplied ("0"-"99").
value = JSON [id] :GV key
 Get a value from a JSON file using a path to a key (see Key Syntax below).

Key Syntax
Keys are a way to reference part of a JSON document using dot syntax. An example of dot syntax would be a key, such as "name.first" or "age". There are reserved symbols used in key
syntax that can be used to retrieve certain values from the JSON:
'#' is used to get the number of elements inside of an object or array. 
'@' is used to specify a literal, or if at the end of the path, get the name of the current object. 
Index positions can also be used to reference specific elements by numeric position inside of an object or an array. Indexes in Key Syntax start at position 1. 
x = JSON :GV "fruits.10" will attempt to find the tenth (10) item inside a fruits object or array. 
x = JSON :GV "fruits.@10" will attempt to find a key named "10" inside a fruits object and return its value.

Example - Read a JSON file
Input (/tmp/myfile.json):

  {
    "name": {
      "first": "Tom",
      "last": "Anderson"
    },
    "age": 37,



    "children": ["Sara", "Alex", "Jack"],
    "fav.movie": "Deer Hunter"
  }      
 

Processing:

  Then: JSON :RO "/tmp/myfile.json" ' open the JSON file for reading
  Then: x=JSON :GV "name.first"     ' x contains "Tom"
  Then: x=JSON :GV "name.1.@"       ' x contains "first"
  Then: x=JSON :GV "age"            ' x contains "37"
  Then: x=JSON :GV "children.#"     ' x contains "3"
  Then: x=JSON :GV "children.1"     ' x contains "Sara"
  Then: x=JSON :GV "fav\.movie"     ' x contains "Deer Hunter"
  Then: JSON :CL                    ' close the JSON file
  
 

NOTE: If a JSON file is missing, malformed, or broken upon attempting to open it, the file will not be opened and HTMLERRNO() will contain a non-zero number:

   1  -------   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -
        · If:                                                                   ·
        Then: JSON :RO "/tmp/mybrokenfile.json"                                 ·
   2  -------   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -
        · If: HTMLERRNO() ne "0"                                                ·
        Then: errorbox "Something is wrong with your JSON file!"; exit          ·
   3  -------   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -
        · If: ' If no errors, we're okay to get values from the JSON            ·
        Then: xx = JSON :GV "name.first"; msgbox "Hi," < xx                     ·
   4  -------   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -
 
 



XML

Version Ref: 6.1 (USP 6.1.02)

filePro now has the ability to import and export XML files using the XML command.

Export - Create an XML file
Use these commands to create an XML file using Processing.
XML [id] :CR fname
 - Creates an XML file with fname as the filename. The id is optional and defaults to "0" if only one file is open at a time. If two or more are open, the id must be supplied ("0"-"99")
XML [id] :CR-|:CL
 - Closes an open XML file.
XML [id] :EL name
 - Starts an element in an XML file with name as the key.
XML [id] :EL-
 - Closes an element.
XML [id] :AT name value
 - Adds an attribute to an XML element with name as the key and value as the value.
XML [id] :TX text
 - Adds a text element to an XML document with text being the value.
NOTE: XML files are created by appending one item at a time. When an element is started, any items added afterward will be added as direct "children" of the element until that element is closed.

Example - Create an XML file
Processing:

  Then: XML :CR "/tmp/myfile.xml"
  Then: XML :EL "EmployeeData"
  Then: XML :EL "employee"
  Then: XML :AT "id" "21"
  Then: XML :EL "firstName"
  Then: XML :TX "Tom"
  Then: XML :EL-
  Then: XML :EL "lastName"
  Then: XML :TX "Anderson"
  Then: XML :EL-
  Then: XML :EL-
  Then: XML :EL-
  Then: ML :CL
 

Output (/tmp/myfile.xml):

  <?xml version="1.0"?>
  <EmployeeData>
    <employee id="21">
      <firstName>Tom</firstName>
      <lastName>Anderson</lastName>
    </employee>
  </EmployeeData>
 

Import - Read an XML file
Use these commands to read data from an XML file.
XML [id] :RO fname
 - Opens an XML file for reading with fname as the filename. The id is optional and defaults to "0" if only one file is open at a time. If two or more are open, the id must be supplied ("0"-"99")
v = XML [id] :GV key [attr]
 - Get a value from an XML file using a path to a key. An attribute name can optionally be provided to return an attribute value rather than the text element value (see Key Syntax below).

Key Syntax
Keys are a way to reference part of an XML document using dot syntax. An example of dot syntax would be a key, such as "name.first" or "age". There are reserved symbols used in key
syntax that can be used to retrieve certain values from the XML:
'#' is used to get the number of child elements inside of an element. 
'@' is used to specify a literal, or if at the end of the path, get the name of the current object. 
Index positions can also be used to reference specific elements by numeric position inside of an XML document. Indexes in Key Syntax start at position 1. 
x = XML :GV "food.10" will attempt to find the tenth (10) item inside a food element. 
x = XML :GV "food.@10" will attempt to find a key named "10" inside a food element and return its value. 
x = XML :GV "food.fruit[10]" will attempt to find the tenth (10) fruit element inside of the food element and return its value. 
x = XML :GV "food.fruit[#]" will return the number of fruit elements inside of the food element.

Example - Read an XML file
Input (/tmp/myfile.xml):

  
  <EmployeeData>
    <employee id="21">
      <firstName>Tom</firstName>
      <lastName>Anderson</lastName>
    </employee>
    <employee id="99">
      <firstName>Tiffany</firstName>
      <lastName>Anderson</lastName>
    </employee>
  </EmployeeData>
 

Processing:

  Then: XML :RO "/tmp/myfile.xml"              ' open the XML file for reading
  Then: x=XML :GV "EmployeeData.employee.firstName"  ' x contains "Tom"



  Then: x=XML :GV "EmployeeData.employee[1]" "id"    ' x contains "21"
  Then: x=XML :GV "EmployeeData.employee.1.@"        ' x contains "firstName"
  Then: x=XML :GV "EmployeeData.#"                   ' x contains "2"
  Then: x=XML :GV "EmployeeData.2.firstName"         ' x contains "Tiffany"
  Then: x=XML :GV "EmployeeData.2" "id"              ' x contains "99"
  Then: XML :CL                                      ' close the XML file
  
 

NOTE: If an XML file is missing, malformed, or broken upon attempting to open it, the file will not be opened and HTMLERRNO() will contain a non-zero number:

   1  -------   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -
        · If:                                                                   ·
        Then: XML :RO "/tmp/mybrokenfile.xml"                                 ·
   2  -------   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -
        · If: HTMLERRNO() ne "0"                                                ·
        Then: errorbox "Something is wrong with your XML file!"; exit          ·
   3  -------   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -
        · If: ' If no errors, we're okay to get values from the XML            ·
        Then: xx = XML :GV "name.first"; msgbox "Hi," < xx                     ·
   4  -------   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -
 
 



Simple Math
PLUS SIGN
MINUS SIGN
MULTIPLICATION SIGN
DIVISION SIGN
Description:

 
+ Adds fields or literals

- Subtracts fields or literals

* Multiplies fields or literals

/ Divides fields or literals

^ Raises to a number to a power of an exponent.



Exponents
Use the " "̂ caret symbol to raise a base number to the power of the exponent

Syntax
z = x  ̂y

Return value
X raised to the power of Y. (Y can be fractional.)

Example:
MSGBOX "2 to the 10th power is" < ( "2"  ̂"10" )
AA = "10"  ̂"0.5" ---- Same as AA = SQRT("10")

Notes:
0^0 returns 1. Fractional powers of negative numbers and negative powers of zero return 0.



Math, Financial
Description
Financial Math Functions allow you to calculate the "Time-value-of-money".

  Version Ref:  5.0
Formulas    Description

N = TVM_N(i,pv,pmt,fv) Calculates the number of compounding periods.

I = TVM_I(n,pv,pmt,fv) Calculates the value of interest.

PV = TVM_PV(n,i,pmt,fv) Calculates the present value.

PMT = TVM_PMT(n,i,pv,fv) Calculates the payment value.

FV = TVM_FV(n,i,pv,pmt) Calculates the future value.

 
The formula used is:

 
   100
  ( 1 - sppv ) * pmt *  ---- + pv = -fv * sppv
     i
  where "sppv" is the single payment present value:
    i -n
  sppv = ( 1 + ----- )
    100

 Note: It is assumed that payments are made at the end of each period.



Log Functions
Version Ref:  4.8
 

LOG(n) Natural logarithm (base e)

LOG10(n) Common logarithm (base 10)

EXP(n) Exponent function (e^n)

EXP10(n) Base 10 exponent (10^n)

 
Examples:

 
When na = "100"; nb = "4.6051702", nc = "2.000000"

xx = LOG(na) returns natural log value "4.6051702"

xx = LOG10(na) returns common log value "2.000000"

xx = EXP(nb) returns antilog(base e) value "100.00000"

xx = EXP10(nc) returns antilog(base 10) value "100"

Note:
Natural Logarithms (also called Napierian logarithms) are logarithms to the base 'e' where e = 2.71828 (5 dec. places).



Trig Functions
Version Ref:  4.8

 
Function Description

ASIN(xx) Returns Arcsine for angle in radians.

ACOS(xx) Returns Arccosine for angle in radians.

ATAN(xx) Returns Arctangent for angle in radians.

ATAN(ry,rx) Returns Arctangent for sides in radians.

  

DASIN(xx) Returns Arcsine for angle in degrees.

DACOS(xx) Returns Arccosine for angle in degrees.

DATAN(xx) Returns Arctangent for angle in degrees.

DATAN(dy,dx) Returns Arctangent for sides in degrees.

  

DSIN(xx) Returns sine for angle in degrees.

DCOS(xx) Returns cosine for angle in degrees.

DTAN(xx) Returns tangent for angle in degrees.

  

SIN(xx) Returns sine for angle in radians.

COS(xx) Returns cosine for angle in radians.

TAN(xx) Returns tangent for angle in radians.

  

DTOR(xx) Converts angle in degrees to radians.

RTOD(xx) Converts angle in radians to degrees.

PI() Returns the value of PI or 3.14159265

Note:
ATAN/DATAN functions can be used with a single or two parameters. Using ATAN(o,a) and DATAN(o,a) with two parameters provides for entering two sides of the right triangle in the function
instead of entering the tangent value. For example, with a 3,4,5 triangle, where the two legs are 3 and 4, then entering ATAN(3,4) will return .6435011 and DATAN(3,4) returns 36.86989765. The
functions are calculating the angle formed by the hypotenuse and the side opposite ("o" leg). To calculate the angle formed by the hypotenuse and side adjacent ("a" leg), you can switch the
parameters.



Hyperbolic Functions
Hyperbolic Functions SINH/COSH/TANH/ASINH/ACOSH/ATANH.
Version Ref:  5.0
Examples:

xx = SINH(yy)
zz = ASINH(xx)



Objects
In order to accommodate memo printing, you can include fields in a report as objects. Although this feature was added in support of memo field printing, it is not limited to memo field types and can be
used for any field.
When using the " Define Output " option, an extended function option " J " allows you to place and modify an object.
 

Press [J] - Place/ Modify Object
 

 
You can identify the Object Properties e.g. the field number and specify the area occupied by the Object on your output. Enter a field number and place the object by identifying the starting Row and
Column, the number of rows in the Height parameter and the number of columns in the Width parameter.
 

 
In the above case, we have identified field number 1 as the object and specified an area starting in row 5, column 1 with a height of 2 rows and width of 40. When pressing [Save], you will see the
placement of the object presented in your output format as follows.
 

 
As previously stated, objects can be used to control memo printing on your output but objects are not limited to memo fields and thus can be used for any real field or dummy variables defined in
processing.



Fill-In-The-Blank PDF Documents

Version Ref: 6.1 (USP 6.1.01)

filePro now has the ability to place fill-in-the-blank PDF objects on output formats and also retrieve values from PDF documents that have fill-in-the-blank fields to be used in Processing. See PDF
Printing for information on configuring an output destination to use a PDF format. This page will explain how to create basic form elements using this new feature.
There are four types of PDF Form Objects that can be used:

Textbox
Dropdown
Checkbox
Radio

When a PDF output is generated, placed objects will be interactive in any supporting PDF viewer/editor. These PDF files can be saved after filling in fields, and processing can be written to retrieve
values from these fields.
NOTE: Using the new generation features in a report can lead to unintended results. Fields are shared across records and pages. Updating one field updates all matching instances of that field
throughout the document. It is recommended to use output forms over output reports.

Placing a PDF Form Object on an Output Format
In Update Mode on an output format, press F8 for Extended Functions, then J to place an object. From here, one can press F to place a PDF Form Object.

A window will appear with several options - which type of object to add, as well as this object's properties, such as width, height, and the row and column this field should be placed on.

Move the cursor to select one of the Field Type options and press SPACE to select one of the four field types. Configure the properties as desired. Press RECORD to place the field on the output
format.
When the cursor is placed on an object, the object's Field property will be displayed in the bottom-left corner of the screen. The space occupied by an object is represented by ~ characters.

Form Object Properties
Refer to the table below for a breakdown of each object property. If an object cannot use a particular property, it will not be shown in the properties window.

Property Description Used By

Field Placeholder data that goes in this object. Accepts real fields or dummy fields. All Form Objects

Data The comma separated list of options that can be selected when the dropdown arrow is used. Dropdown

Row The row of the output format to place this object on. All Form Objects

Column The column of the output format to place this object on. All Form Objects

Height The number of rows this object uses, starting from the Row and moving down. Textbox

Width The number of columns this object uses, starting from the Column and moving right. Textbox, Dropdown

Textbox
A Textbox is a simple area where the user can input text, up to a certain length. Multiple rows can be included for large text areas spanning multiple lines. These are useful for things like names,
addresses, and long descriptions.
To set a placeholder using a field, create and set a dummy variable or use a real field in the format's Output Processing that has the same value as the object's Field property.
For example, to set a Textbox object's value to "Hello, world!", create a dummy variable aa(13,*)="Hello, world!" and make sure the object's Field property is set to AA. Make sure the width
is long enough to accommodate the data in the field, or the text will be chopped off!



Output Processing:

    Then: aa(13,*)="Hello world!"
  

The resulting output using the example and images above looks like this:

Since this is a fill-in-the-blank form object, the "Hello, world!" can still be modified by the user - using a dummy variable simply sets the field's initial value.

Dropdown
Dropdown objects have an additional Data property that refers to a field containing a list of comma separated entries that are predetermined and can be picked by the user.
Similar to the Textbox, the optional Field property can be used to assign a default value to the field. The placeholder Field property does not have to match one of the options from the Data list field.

Output Processing:

  1  -------   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -
       · If: ' The default option ("Field" property)                           ·
       Then: aa(25,*)="Choose an Animal...";                                   ·
  2  -------   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -
       · If: ' List of animals to pick from a dropdown ("Data" property)       ·
       Then: op="Cat,Dog,Horse,Platypus,Triceratops";                          ·
 

The resulting output using the example and images above looks like this:

Selecting an entry from the dropdown list will replace the default text.
NOTE: Once a selection is made, it is not possible to revert back to the default text.

Checkbox
The checkbox is a 1x1 box that can be toggled on or off. Each checkbox should have its own (1,yesno) field reference. Setting a field in Processing to "Y" will generate the field's checkbox as
"checked".



Each Field on the output is its own yesno checkbox object with fields TA, TB, TC, TD, and TE.

Output Processing:

  1  -------   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -
       · If: ' Toppings A thru E                                               ·
       Then: ta(1,yesno); tb(1,yesno); tc(1,yesno); td(1,yesno); te(1,yesno);  ·
  2  -------   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -
       · If: ' Mark "Cheese" and "Pepperoni" as checked                        ·
       Then: ta="Y"; tb="Y";                                                   ·
 

The resulting output using the example and images above looks like this:

Radio
Radio buttons are similar to checkboxes, but are grouped together under the same field, meaning only one option in the radio button group can be selected. Instead of a (1,yesno) field, radio
buttons are referenced by their index number and should use an appropriately sized numeric edit such as (1,.0).

Each Field on the output has the same Field property, SZ. This will group all the objects together in the same radio button "group".

  1  -------   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -   -
       · If: ' Mark the fourth shirt size, "L", as selected                    ·
       Then: sz(1,.0)="4";                                                     ·
 

The resulting output using the example and images above looks like this:



Reading a Fill-In-The-Blank PDF Document
Processing can also be used to read in values from a PDF Document.
If the PDF was created with filePro, field names will be either the real-field or dummy field used to create the PDF object. 
e.g. "1", "42", "aa", "ab".
Use these commands to read filled-in PDF documents:
handle = PDF_OPEN(pdf_path)
 Returns a handle value (10,.0) that points to a PDF document with pdf_path as the filename. Returns a negative value on error.
error_value = PDF_CLOSE(handle)
 Frees all values and memory associated with a PDF handle and closes the document. Returns a non-zero number on error.
num_fields = PDF_GETNUMFIELDS(handle)
 Returns the number of fields in the PDF document.
name = PDF_GETFIELDNAME(handle, index)
 Returns the full name of a field in a PDF document, given its index. The index is a number between "1" and the num_fields value returned by PDF_GETNUMFIELDS.
type = PDF_FIELDTYPE(handle, fieldname)
 Returns the field type name of the specified field fieldname, which is one of:

NONE
BUTTON
RADIO
CHECKBOX
TEXT
RICHTEXT
CHOICE
UNKNOWN

name = PDF_FIELDTYPE2(handle, index)
 Returns the field type name of the specified field index, which is one of:

NONE
BUTTON
RADIO
CHECKBOX
TEXT
RICHTEXT
CHOICE
UNKNOWN

 The index is a number between "1" and the num_fields value returned by PDF_GETNUMFIELDS.
value = PDF_GETVALUE(handle, fieldname [, richtext])
 Returns the field value, e.g. the text in the field, checkbox status, combo box index, etc. for the given field name fieldname. Optionally, richtext can be set to "1" to return rich text data if it
exists.
value = PDF_GETVALUE2(handle, index [, richtext])
 Returns the field value, e.g. the text in the field, checkbox status, combo box index, etc. for the given field index index. Optionally, richtext can be set to "1" to return rich text data if it exists.
 The index is a number between "1" and the num_fields value returned by PDF_GETNUMFIELDS.



Differences between DOS/Windows and Unix
NOTE: This sections refers to the old DOS file formats and does not apply to 32 bit Windows versions that support long filenames.
This Section Contains
Overview
The Unix and DOS filename limitations
Color
The USER Command
Case Sensitivity
The Slash and the Backslash in filenames
File Permissions (Attributes)
Filesystems
 
Overview:
There are several differences between these operating systems that affect filePro. The most important is the old filename limitation from early versions of DOS. When DOS was
originally designed it allowed for 8 character filenames and a 3 character extension to that name (the extension follows a "." period). This naming convention has come to be known
as 8.3, eight characters a period and three more characters. When you see a DOS directory, (by issuing the DIR command) as in:
DIR
You might see:
 
Volume in drive C has no label
Volume Serial Number is 3C5C-1EF1
Directory of C:\FILEPRO\STATES
 

.  <DIR>  03-18-97 3:48p .

..  <DIR>  03-18-97 3:48p ..

DATA   0 12-04-89 4:55p DATA

DEFAULT OUT  1,344 12-30-88 5:01p DEFAULT.OUT

INPUT PRC    344 12-30-88 5:21p INPUT.PRC

INDEX A    923 01-11-89 2:15p INDEX.A

KEY   3,618 11-08-88 6:30p KEY

MAP     110 05-16-89 1:07p MAP

MAP TMP    110 05-16-89 1:07p MAP.TMP

SCREEN 0  3,282 06-30-92 1:19p SCREEN.0

       

 7 file(s)      9,387 bytes   

 2 dir(s) 57,999,360 bytes free  

 
The actual name of the files and directories appears on the right side of this display. The left shows a space when there is really a period in the name. If you wanted to erase a file,
you could not type:
       erase INDEX A
You would have to type:
       erase INDEX.A
 
The Unix and DOS filename limitations
The 8.3 and 14 character limitations of the early versions of both these operating systems constrains your creativity just a bit... or challenges it. Because of this 8.3 file naming
convention, filePro changed some of its component names from their original Unix(Xenix) names. Under Unix the name would be "out.default", under DOS it is "default.out". This is
true of some other filePro filenames, processing tables are "prc.name" and "name.prc", selection sets are sel.name and name.sel, etc. This does not ever present a problem for you as
a filePro user since filePro always handles all these names for you automatically. However, there is one caveat that is important. If you are writing filePro programs that you want to
work both under Unix and DOS, you must make sure not to exceed the 8.3 filename constriction when designing your application. This impacts most heavily on screens. Under Unix,
screen names can be up to 7 characters long, under DOS the limitation is 3 characters.
Example:
Unix        screen.bigname
DOS         screen.big
This was the one filePro component which did not take advantage of reversing the order from Unix to DOS.
In any case, if you are going to want to run your apps under both DOS and Unix, remember to pick only eight character names for most filePro components and the name of the
actual filePro directory, and only 3 character names for screens. In this way, you can transfer the application from one side to the other without too much problem at all.
Color
DOS supports full color screen design. The Unix system only supports full color on ANSI based terminals/consoles, however, Unix filePro will only display color screens correctly.
That is, Unix filePro does not allow you to design a color screen, but it will display a color screen designed under DOS and transferred to Unix.
Unix does have six native color allocations. You can set these six colors (under SCO Unix) with the "setcolor" command. The six associations are for foreground and background
text, foreground and background reverse video, and foreground and background graphic lines. These six global settings will be displayed by Unix filePro.
       Login ID's (users)
The Unix O/S assigns a user name (and ID#) to every login session. Unix filePro can take advantage of this unique ID. There is no analog for this under DOS or Network-based



filePro..
The USER Command
Under Unix, filePro can hand values a "user-based" program that is executed by the operating system and gather back returned values from that program. This is not possible under
DOS. However, Windows 7 and higher added the ability for the USER command to work so it was added to the Windows compiles.
Case Sensitivity
The older DOS operating systems were case-insensitive. This means that you could type in either lower or UPPER case and the system would convert your input to UPPER case
automatically. If you executed the command:
       ERASE truck
DOS would remove the filename TRUCK.
This is important because filePro uses the system to find files and is also case insensitve in this regard. If you ask filePro to look into a file called "truck" or one called "TRUCK" it
will get the file called "TRUCK".
Under Unix, case is VERY important. If you ask to do something to a file called "truck" and there is only a file called TRUCK, Unix will say something like "truck not found". The
following filenames are all completely different and unique under Unix:
       filename
       FILENAME
       fileNAME
       FiLeNaMe
       (etc.)
The Slash and the Backslash in filenames
DOS uses the backslash "\", Unix uses the slash "/". An easy way to remember which is which: The slash is the one used in fractions, i.e., ½, ¾, etc. The backslash is the other one.
It is important to use the right one for each operating system, but more and more programs (including filePro) are allowing you to use either and making the necessary substitution
for you automatically. However, at the command line, or in scripts (and batch files) the shells of either O/S will NOT make this substitution... you must get it right. Slash / for Unix,
backslash \ for DOS.
File Permissions (Attributes)
Each operating system protects its files from being removed, overwritten and abused by unauthorized people. Under Unix, the system uses an elaborate permission scheme
involving the owner of a file, his or her group and the rest of the world. The permissions can be set by the owner of the file to allow or dissallow read, write and execute permission
for this file to any of these users (owner, owner's group, world). The permissions also denote whether a file can be "executed", that means run as a program. You would not need to
make a word processing document executable, however, you would want to make a script that performs some work for you executable. The "chmod" (change modification) comand
is used to set a files permissions. See the index for more on Unix permissions and ownerships.
Unix also designates the "owner" of every file or directory in a filesytem. FilePro makes use of this security feature by naming all of its directories and files owned by the user
"filepro". This user is installed on the system before filePro will run on a Unix system. The "chown" (change owner) command is used to change a file's ownership. See the index for
more information.
DOS has a series of "attributes" for filenames and directories. These attributes denote a file's accessibility, whether it has been backed up since the last backup, etc. whether it is
hidden or visible, readable, etc. These settings are not important to filePro as long as the file(s) needed are not "read-only". There might be some sharing problems across various
networks, but that is something the network should handle correctly.
Filesystems
Filesystems under DOS are sometimes called "drives". C: is a filesystem, D: is another filesystem. The association is out of date now. It comes from a time when each drive was
turned into one filesystem. Now a hard drive can be partitioned into many filesystems, they are still given letter names in DOS D:, E:, F: etc.
Under Unix, filesystems are not called "drives". They are still, however, a partition of any particular drive. Under Unix, they may have a name like "/u/hd2" or /u, or /u/appl.
A typical filesystem is organized into directories. Under DOS/Windows these directories are also called "folders". A directory may contain other directories and/or files. A file can
be anything from a screen layout, an ouput format or a plain text file that describes the organization of your database. Files can be plain text files which can be read by humans or
they can be binary files which can only be deciphered by the computer. A file can be a program, a document, device description, etc. The computer opens files to do all of its work,
including loading its own brains into memory at startup... so it can do all the other things it does. The brains of the computer are also stored in a file somewhere on the hard disk. A
built in "startup" routine within the computer's Basic Input Ouput System (its BIOS) tells it how to find this file and how to load it into memory so that it can be a computer and not a
useless hunk of junk. Once the computer has loaded the files it needs into memory (for its own well being) then it can assist you in loading your files and programs.
FilePro is a collection of programs in a directory called "fp". This directory can sit anywhere (under any other directory or long chain of directories) as long as the program itself
knows where this directory is located. The filePro applications that you write and use are also a collection of files and directories. Each filePro "file" is really a directory under the
"filepro" directory. The name of the filePro file is the name of the directory. Under this directory are the various screens, output formats, processing tables and data which this file
uses. The two directories "fp" and "filepro" are very important to filePro and it must know how to locate these files. Special environment variables are used by filePro to find these
directories. If these environment variables that point to "fp" and "filepro" are empty, filePro uses default values.



DOS and Network Versions
filePro is compiled through version 4.8 for single user DOS and Networks. This version continues to use the DOS4GW extender software to make use of extended memory.
 
With filePro version 5.0, the compile was done on a Windows 32 bit systems and no longer required the DOS4GW extender.  For newer Operating Systems it is important to be on
supported versions of filePro 5.6 and higher



Environment
Unix, DOS, Windows, O/S2... all operating systems start you off at a "shell." A shell is a command interpreter. It takes your keyboard entries and hands them to the computer in a
way it can understand and act upon. When you are positioned at a shell prompt (DOS=C:\, Unix=$ or # or %, Windows=GUI Desktop interface) you are sitting in a special
environment. There are two very important aspects of this environment:

The environment uses variables to control your operation.
You can change these variables to customize your environment to taste.

 
Environment Variables
 
This section contains
Setting Environment Variables (DOS)
Setting Environment Variables (UNIX/LINUX/XENIX)
Exporting Variables
Unsetting Environment Variables
Listing Environment Variables
 
·    DOS/WINDOWS

Setting Environment Variables
This is an easy matter under DOS. You use the "set" command. The syntax is:
       SET VARIABLENAME=VALUE
Example:
       SET MINE=C:\WORDPERFECT\WPDOCS\MYFILES
Once a variable is set in DOS, you use it by obtaining its contents with a % sign directly in front of it and directly after it. For example, if you set a variable in the above manner, you
could use it like this:
       cd %MINE%
This tells the "cd" command (change directory) to change you to the long directory name contained in the variable MINE. A good shortcut. It is the very same thing as typing:
       cd C:\WORDPERFECT\WPDOCS\MYFILES
Unsetting Environment Variables
To unset a variable in DOS, use the syntax:
       set variablename=
By setting it equal to nothing, it goes away.
Listing Environment Variables
To list the envrionment variables in your environment (and their values) use the "set" command by itself. When you type "set" you might see a lising like this:
 
       BLASTER=A220 15 D1 H5 P330 T6 E620
       JAVA_HOME=C:\cafe\JAVA
       MINE=C:\WORDPERFECT\WPDOCS\MYFILES
       PATH=C:\cafe\JAVA;C:\WINDOWS;C:\WINDOWS\COMMAND;C:\FP
       PFDSK=C
       TEMP=C:\TEMP
To see the contents of just one environment variable, use the "echo" command, as in:
       echo %MINE%
You will see:
       C:\WORDPERFECT\WPDOCS\MYFILES
·    UNIX / LINUX / XENIX
Setting Environment Variables
Under Unix, setting variables is even easier than under DOS. You do not even need the "set" command. The syntax is just:
       variablename=value
Example:

       mine=/usr/tracy/wp/myfiles
Exporting Variables
Once a variable is set in Unix, it is only useful to your current shell. That is to say, if you call up another program like filePro or WordPerfect, these variables are completely lost...
they are simply not seen in that called environment. This is why you must always "export" any variable that you set under Unix. The syntax is very simple:
       export variablename
So, you can consider that setting any environment variable under Unix is a two-step process. First set it, then export it. You only have to export a variable one time. After that you
can change its value as many times as you like, it will remain exported and always send out the right value to programs that you call. The whole syntax is as follows:
       variablename=value
       export variablename
Example:
       mine=/usr/tracy/wp/myfiles
       export mine
To obtain a variable's contents just place a $ directly in front of it. For example, if you set a variable in the above manner, you could use it like this:
       cd $mine
This tells the "cd" command (change directory is the same command in both Unix and DOS) to change you to the long directory name contained in the variable mine. Again, it is the
very same thing as typing



       cd /usr/tracy/wp/myfiles
Unsetting Environment Variables
To unset an environment variable in Unix, use the "unset" command, as in:
       unset variablename
This will make it go away.
You can also set the variable equal to nothing as in:
;        e'#=""
But this will not clear it from the environment, just set it equal to nothing.
 
Listing Environment Variables
To list the envrionment variables in your environment (and their values) use the "set" command by itself. When you type "set" you might see a lising like this:
       PATH=/bin:usr/bin:/usr/$HOME/bin:/u/appl/fp
       PFTMP=/usr/tmp
       PS1=$
       TZ=EST5EDT
If you want to see which of these variables is exported, use the export command by itself, as in:
;        %äYou might see something like:
       export ABE=ASCII
       export PATH
       export PFTMP
       export PS1
       export TZ



LINUX
filePro has been compiled to run on this more recent Operating system. Linux is a UNIX like system which can be obtained from REDHAT, Caldera, and other vendors.
 
Beginning with filePro version 5.6, support for FreeBSD was added.
 
Installation instructions and library requirements could be different depending on the NIX distribution used.  filePro 32 bit requires the 32 bit compatibility libraries.  Refer to the
installation instructions provided with you media for the details of library installation.



Microsoft Windows
This version uses the native 32-bit code of this popular O/S from Microsoft Corp. and does not require any DOS extenders such as DOS4GW.



PATH
Of all the operating system and environment concepts that it is important for you to understand, PATH is probably the most important. It functions virtually the same under
Windows and Linux/Unix. PATH is very simple. It is an environment variable that lists the directories in which the system looks to find the command you have just entered. If it
does not find the command (or program) in any of these PATH directories, it returns an error and tells you it cannot find the command or program you requested. Most computer
systems have hundreds or thousands of directories... it would be impossible (or at least VERY slow) to check in every single directory for the command you are calling. Instead, a
few directories are specified (by convention) to hold your executable programs and scripts (batch files) and the O/S (actually your shell) looks in only these directories. This is why
the computer responds so quickly to your orders.
A typical PATH in Linux/Unix might be:
 

/bin:/usr/bin:/usr/$HOME/bin
(HOME is just another environment variable that is substituted automatically when the PATH value is obtained. This variable may be set to "tracy", "bill", "root", etc. (See
Unix=.profile, Windows = fpplus.bat, fulldev.bat, user.bat, etc. )
 
A typical PATH in Windows might be:
 

C:\WINDOWS;C:\WINDOWS\COMMAND
It is important that you know where your executable scripts (or batch files under Windows) live. If they are not inside a PATH directory, they will not be found unless you were to
issue their "full" pathname either at the command line or within your executable scripts. However, if the executable program you want is within a PATH directory you can just call it
by name, the system will automatically find it and execute it, as in:

sort filename
Under Unix the "sort" command would be found in /bin. Under DOS, it would be found under C:\WINDOWS\COMMAND, assuming these directories were in the PATH variable
list, the system will easily find the command for you and execute it. Otherwise, to operate the program, you would have to issue the command as:
 

Linux or Unix   /bin/sort
Windows C:\WINDOWS|COMMAND\SORT

The PATH variable is great shorthand for the user and the computer.



UNIX
filePro has been compiled to run on about all flavors of UNIX.



UNIXWARE 7
This powerful O/S from SCO has now been tested and approved. The standard UNIX version of filePro runs fine on this operating system.



XENIX
There was a separate version compiled for XENIX up through version 4.5 but, since this O/S is not being maintained beyond year 2000, later versions have not been compiled.
If you are currently running XENIX or any version of filePro prior to 5.0, you should contact sales to purchase an upgrade at a reduced price.



Alias Field Assignment

Syntax:

Then: aliasname:field

Description:

Alias field assignment substitutes an "alias" name for a field. The field may then be referred to by this alias as well as its number or letter(s).

Examples:

Simple Aliases
Then: BALANCEDUE:37

Then: YTDTOT:aa

Create and WordPerfect Merge File
File Name: Anyfile

Processing Table: wpmerge
      Then: ' out.wpmerge - makes a file called /tmp/wpmerge.wp

      Then: ' use this file to merge with wordperfect as the secondary file

      Then: ' map significant fields to aliases (for clarity and ease of use)

      Then: ' the array processing will 'close up' blank lines in the address

      Then: FNAME:4 ; LNAME:3 ; COMPANY:2 ; ADDRESS1:8 ; ADDRESS2:9

      Then: CITY:11 ; STATE:12 ; ZIP:13

      Then: export wordperfect merge=/tmp/wpmerge.wp

      Then: dim array[5](50) ; clear array

      Then: i(1,.0)="1"

       If: FNAME ne "" or LNAME ne ""

      Then: array[i] = "" { FNAME < LNAME ; i=i+"1"

        If: COMPANY ne ""

      Then: array[i] = "" { COMPANY ; i=i+"1"

        If: ADDRESS1 ne ""

      Then: array[i] = "" { ADDRESS1 ; i=i+"1"

        If: ADDRESS2 ne ""

      Then: array[i] = "" { ADDRESS2 ; i=i+"1"

        If: CITY ne "" or STATE ne "" or ZIP ne ""

      Then: array[i] = "" { CITY < STATE < ZIP ; i=i+"1"

      Then: merge(1)=array["1"]

      Then: merge(2)=array["2"]

      Then: merge(3)=array["3"]

      Then: merge(4)=array["4"]

      Then: merge(5)=array["5"]

      Then: end



Alias Filename Assignment

Syntax:

Then: COMMAND alias = filename <options>

Description:

Commands that access files, such as IMPORT, EXPORT and LOOKUP, let you give these files "alias" (assigned) names. From the point that the assignment is made, the file
(and its fields) MUST be referred to by the alias instead of the real filename.

Examples:

Then: lookup cust=customers r=free -e

The alias name "cust" must now be used to reference this file and the fields in it. The processing table will not recognize the real filename after an alias has been assigned.

Then: lookup cust=oldcusts k=1 i=a -nx

If: not cust

Then: show "@"{Customer"<1<"is not in the archive file." ; end

The alias name (just like a real filename) may be used as a positive or negative test for whether any lookup finds a match.

Then: export ASCII epp="C:\tmp\epayplan" -X

The alias "epp" would now be used to reference this file.

IMPORTANT: If the line on which an assignment is being made has not been executed at least once, you can not refer to it elsewhere on the table. After the assignment line
has been executed just once, you can refer to the assignment above or below that point on the table.



Assignment

=        EQUAL SIGN

Syntax:

 Then: f = v

"f" equals a real field, dummy field, or filename alias

"v" equals value to be assigned

"v" is an expression (only requires surrounding quotes around literal strings)

Description:

The equal sign operator (when used on a "then" line) assigns the value of the expression on its right to the field on its left. Assignments can be made to real field and
dummy fields. Assignments can NOT be made to system maintained fields, only the system can do this.

NOTE: It is important to understand that the entire expression on the right of an equals sign will be calculated (fully processed to its actual value) before it is assigned to the
field on the left.

In the case of numeric calculations, all operations are performed first (according to standard rules of precedence), then the assignment of the final value is made.

Examples:

 Then: aa = "12"/"4"

In the above, field aa will be set equal to "3" not "12"/"4".

In the case of string operations, all manipulations and substitutions are made first and then the final value is assigned.

 Then: aa=sales(12) { "," < sales(13) < sales(14)

In the above, the value of the three fields from the sales file will be joined in the designated manner and then assigned to the field aa.

VERY IMPORTANT: While it appears that filePro processing tables are working with algebraic equations, they are NOT. In algebra, the following would not be valid or
correct:

 Then: aa = aa + "1"

How could something be equal to itself plus 1? It can't. At least not in algebra and probably not too often in the real world either, but in filePro it makes perfect sense, and is
perfectly legal. The above statement means take the current value of aa, add 1 to it and assign that newly calculated value to aa. This is changing the value of aa to
something else, it is an assignment, not an equality.

NOTE: It is a quirk of filePro that the = operator is allowed on "if" lines. When used on "if" lines it is working as a comparison tool. In other words:

 If: 4 = "Smith"

is the same as

If: 4 eq "Smith"

The above says "Does the value in field 4 match the value "Smith". If the fields/expressions being compared are numeric, the compare is a numeric compare. If the
fields/expressions involved are strings an ASCII compare is performed.

HINT: It is STRONGLY suggested that you NEVER use the = (equals operator) on "if" lines. Always use "eq" instead. It will work for both numeric and string compares just
as the equals operator, but you will never confuse it with = on a then line. You will never mistake it for an assignment. Your code will be easier to read. Incidentally, "eq" can
never be used on a "then" line to replace the = operator. The strange behavior only works in one direction, this is another reason for not making use of the = operator quirk
and use it only on "then" lines where it really belongs.



BITWISE is for just working on the bits that make up a number. It allows you to store multiple flags in the same number and mask them. It's useful in encryption,
search algorithms, etc. You most likely would only really use them in something really complex. The average user probably won't get much use out of them but filePro
has the function for those who may need it. A bitwise operation operates on one or more bit patterns or binary numerals at the level of their individual bits. It is a fast,
simple action directly supported by the processor, and is used to manipulate values for comparisons and calculations.
Version 6.0.00
Sample Code

top:::
::end:
@once::declare candelete(3,.0,g); declare canpop(3,.0,g); declare cansave(3,.0,g):
::candelete="1":
::canpop="2":
::cansave="4":
::declare flags(3,.0,g); flags="0":
:':':
:' set candelete flag:flags=flags ~| candelete;:
:' set canpop flag:flags=flags ~| canpop:
:' set cansave flag:' flags=flags ~| cansave      ' not set:
::end:
@keyp:(flags ~& canpop) eq "0":msgbox "You are not authorized."; end:
::msgbox "Hello!": ::end:
@keys:(flags ~& cansave) eq "0":msgbox "You are not authorized to save."; end:
::msgbox "You can save": ::end:
@keyd:(flags ~& candelete) eq "0":msgbox "You are not authorized to delete."; end:
::msgbox "You can delete": ::end:
Examples
bitwise and (3 ~& 1)
(bin)11 (dec)3
(bin)01 (dec)1
result (bin)01 (dec)1

bitwise or (3 ~| 1)
(bin)11 (dec)3
(bin)01 (dec)1
result (bin)11 (dec)3

bitwise xor (3 ~  ̂1)
(bin)11 (dec)3
(bin)01 (dec)1
result (bin)10 (dec)2

right shift (3 ~> 1)
(bin)11 (dec)3
result (bin)01 (dec)1

left shift (3 ~< 1)
(bin)11 (dec)3
result (bin)10 (dec)2



Expressions

Description:

Throughout the Processing Reference section, you will see "exp" or "expression". This means any legal filePro code that will eventually resolve to a number, date, time, or string-of-
characters. Loosely translated, an expression is anything that can go on the right side of an equals sign on a "then" line.

Examples:
4

Z

Aa

3/"2"

3/aa

mid(@td,"1","2") & "/" & mid(4,"4","2") & "/" & mid(9,"7","2")

filename(n) This type of expression has some limitations when used in manyplaces where expressions would normally work.

array["2"]

dow(@td)

min(9)

ALIASNAME



Logic Operators

AND

OR

NOT

IMPORTANT: The logic operators can be used with selection set names, processing labels, and filenames.

Restrictions:

The logic operators can only be used on "if" lines of processing tables, and on the "sentence line" of selection sets.

Examples:

Selection Set:

If: not selsetname

Then: 15="O" ; end

Processing Label:

Secure If: @id eq "root" or @id eq "fred"

Then: x="OK" ; end

If: not secure

Then: x="BAD" ; exit("1")

Filename:

Then: lookup invoices k=ky i=a -ng

If: not invoices

Then: show "@There are no records in the invoice file.";end

 
Operator Description

AND The AND operator designates that more than one condition must be met.

OR The OR operator designates that either condition must be met.

NOT The NOT operator designates that the condition must not be TRUE.



Math Operators

PLUS SIGN
MINUS SIGN
MULTIPLICATION SIGN
DIVISION SIGN
EXPONENT SIGN

 
Description:
 

+ Adds fields or literals

- Subtracts fields or literals

* Multiplies fields or literals

/ Divides fields or literals

^ Raises a number to the power of an exponent



Punctuation and Operators

 
EVALUATION OPERATORS

SEMICOLON
COLON
APOSTROPHE
QUOTES
PARENTHESES
SQUARE BRACKETS
SPACES
CASE
OTHER OPERATORS ("<", "{", "%") - see STRING/EXPRESSION MANIPULATION OPERATORS

EQ, GT, LT, GE, LE, CO

Syntax:

Left side of test...    EVALUATOR    ...Right side of test

Description:

These are relational operators allowed only on "if" lines. You may use them to test how one value relates to another. They stand for what they appear to "spell." EQ means
"equal to," GT means "greater than," LT means "less than," GE means "greater than or equal to," LE means "less than or equal to," and CO means "contains."

IMPORTANT: Remember that the evaluation operators (EQ, NE, GT, GE, LT, LE, CO), are ALWAYS tests and may only be used on "if" lines. For example:

     If: 3 eq "14"

will work properly, and:

     Then: 3 eq "14"

has no meaning, and will generate a syntax error.

IMPORTANT: Numeric Compare vs. ASCII Compare

All of these evaluation operators perform the proper tests based on the type of data used in the evaluation. In other words, if you are testing one numeric field against
another numeric field, the evaluation will be numerical. If you are testing ASCII values (non-numeric data), the comparison will be an ASCII comparison. This is an important
concept to understand when performing tests.

@keyT  If:
       Then: aa(2)="bb" 
       If: aa gt "13"
       Then: show "@Yes, bb is greater than 13" ; end

The test shown above will prove true, and this may not be what you would expect. If the dummy variable aa is filled with the literal string "bb", this test will prove TRUE.
This is because the ASCII value of "bb" is higher than the ASCII value of "13". Just be careful to compare numbers against numbers if that is what you need to do.

Numeric compares (numeric data) will work the way you would expect. "3" will be less than "749". ASCII compares may not work the way you might expect, that is, until you
get used to the ASCII sorting order employed by all data base applications.

To further explain this difficult concept, examine the following:

@keyT If:

       Then: aa(2)="S"
       If: aa gt "Broadway"
       Then: show "@Yes, it is" ; end

This will test TRUE, simply because "S" is higher in ASCII value than "B", the first letter in Broadway. The "S" comes after (or higher than) "Broadway" in an ASCII sort. In
the same way, the string "1111" would come before "2" in an ASCII sort (or be less than 2 in an ASCII compare). Think of the alphabet or the numbers, not the length, when
you are thinking about an ASCII compare or an ASCII sort.

 
The EQ Operator

IMPORTANT: Evaluation vs. Assignment

The EQ operator is special in one regard. The equal sign maybe substituted for this operator. It is STRONGLY recommended that you do not use this convenience, as it will
make your processing tables harder to read. If you do use the equal sign "=" in place of the EQ operator, you will be using the equal sign to perform double duty on your
processing tables. Be aware of the significant difference between the two functions evaluation and assignmnet.

=        Evaulates to the same value in a compare. (Only on "if" lines.)

or

=        Assigns the value on the right side to the field on the left side.

In other words:

Then: aa="Hello"

the above code sets the value of field aa equal to "Hello", and:

If: 3 = "C"



tests for equality between the contents of field 3 and "C". Again, it is STRONGLY suggested that you do NOT ever do this. Instead, always use only the EQ operator to test
for equality, as in:

If: 3 eq "C"

This will make your code much easier to read, since the EQ operator and other relational tests are NOT ever allowed on "then" lines, and you will know that every "=" means
assignment.

 

The CO Operator

NOTE: The CO operator is very powerful and can be used in many different ways.

If: "TheForNotIfAnd" co 3

Then: show "@Yes, it does" ; end

If field 3 exactly contains any of the little words (The, For, Not, If, And), the test will prove TRUE. Of course, if field 3 is equal to "hef" or "rNo" or "fan", it will also prove
true. Be careful when doing such "backward" compares.

IMPORTANT: All the evaluation operators do not take case into account. Therefore, "good", "Good", "gOOd", etc., are all the same for purposes of the compare.
S

;        U Description:

Separates statements.

Examples:

Then: aa=min(2);screen "4" ; end

Use good judgment when separating statements on a line. If it makes more sense to put the statements on separate lines, there is no problem with doing this.

Then: a=4 ; aa=44 ; bb="fred" ; cc="temp" ; display ; RETURN

might be written as:

Then: a=4 ; aa=44 ; bb="fred" ; cc="temp" ; display

Then: RETURN

This places the RETURN command on a line by itself, and using upper case makes it stand out even more. Any tricks like this you can use to make your code easier to
understand are usually desirable. As with everything else in programming, consistency is more important than the style content.

 
:        COLON

Description:

Performs alias assignment. In other words, substitutes one way of referring to an item for another way of referring to that item.

Examples:

Then: BALANCE:14

The above sets the alias name BALANCE equal to field 14. BALANCE may then be used interchangeably with field 14 elsewhere on the table.

Then: dim TOTALS[10]:14

The above sets (or aliases) a 10 element array called TOTALS to overlay the file starting at field 14. The first element in the array would be equal to field 14, the second would
be equal to field 15, etc., up to the 10th element.

 
'        APOSTROPHE

Description:

An apostrophe placed anywhere on an "if" or "then" line, makes the rest of the line a comment or remark. These comments are ignored by filePro.

Restrictions:

You can NOT use a comment in a "label" field.

Examples:

If: tot(2) gt "4" 'is total of field 2 greater than "4".

It is STRONGLY suggested that you use comments liberally. Try to explain in words what the processing is going to accomplish. This will help you a great deal when
reading old code, and it's invaluable to others who might have to read your code.

It is allowable to have only comments in a processing element.

If: 'The following lines get a free record from invoice file

Then: 'and post the customer code and new inv# to the new record

Then: lookup invoice r=free -e



Then: invoice(1)=CUSTCODE ; invoice(2)=nn

Comments are what separate great programmers from good ones.
 

" "        QUOTATION MARKS

Description:

Indicate a literal. Literals are any string of characters, that are not an expression for something else. They are ment to be used exactly as they appear between the quotes.

Examples:

Then: ab="Hello"

Then: xx=asc("J")

It is VERY IMPORTANT that you DON'T use quotes around a filePro field, either real fields or dummy fields. It is equally IMPORTANT that you DO use quotes around
numbers which are meant to be literal values.

Correct:

Then: 4="96" 'sets field 4 equal to the value "96"

Unusual (but acceptable):

Then: 4=96 'sets field 4 equal to the value found in field 96

It may be that you WANT to do the "Unusual" statement shown above for some reason. This is fine, as long as you are SURE you know the difference between these two
very different lines of code.

Completely wrong:

Then: "4"=96 'this can never be done, it's illegal

 
( )        PARENTHESES

Description:

Parentheses perform several different functions.

a) Parentheses change operator precedence (as in algebra).

Then: aa=(ab + "1")/2

Expressions inside parentheses are resolved first. The above example would yield a much different result if written as:

Then: aa=ab + "1"/2

This is because multiplication and division are performed before additions and subtractions.

b) Parentheses hold arguments.

Then: aa=avg(14)

The value in field 14 on each record encountered is passed to the AVG function.

c) Parentheses hold variable filenames, screen names, and fields.

If: 3="V"

Then: ff="vendors"

If: 3="C"

Then: ff="customers"

Then: lookup (ff) r=free -ep

or

Then: ff="/tmp/file.asc"

Then: export ASCII (ff) -X

or

Then: screen (ff),(gg) 'puts cursor on screen "test" in field "2"

 
[ ]        SQUARE BRACKETS
 

Description:

Square brackets have only one use on filePro processing tables. They may be used with the DIM command instead of parentheses. It is STRONGLY recommended that you
do this to make your code easier to read. Every time you refer to arrays during their creation or use, employ square brackets.



Examples:

Then: dim inv[10]

Then: inv[3] = 14

The above are better than:

Then: dim inv(10)

Then: inv(3) = 14

this is because, it would be immediately obvious that inv[3] refers to an array rather than a lookup field. (NOTE: While it is true that the subscript of an array is "usually" in
quotes, the above code is legal. Using a real field as a subscript of an array is valuable only in limited circumstances, and truly it is only then that an array element might look
like a lookup field, but using square brackets for arrays nonetheless keeps them clearly set apart from lookup in general.)

 
SPACES        SPACES ON PROCESSING TABLES

Description:

SPACES have limited significance on processing tables. Unless they are a part of a literal (within quotes or a quoted string), or part of a command and its arguments,
SPACES do not change the way a filePro processing table will compile.

Examples:

Then: aa=24+"1"

Then: aa = 24+"1"

Then: aa= 24 + "1"

The above are all identical and legal.

Then: aa= 2 4 + "1"

The above is not legal, and will yield an syntax error.

Of course, any processing table command or function, and any filename or alias must be followed by a space.

You can not use:

Then: lookupfilenamek=1i=a

but you could use:

Then: lookup filename k=1i=a

However, it is STRONGLY suggested that you do not use SPACES improperly. For example, one small change in the above code makes it not work.

Then: lookup filename k=ii=a

The above will not pass a syntax check. Even though there might be an index.I (capital I) and even though filePro normally ignores case, it will get confused by the above.

If you are unsure, it is usually best to use a SPACE when you are in doubt.

FilePro will not compile a faster table if you try to remove all the unnecessary spaces. Use them liberally to make your code easier to read.

If: 23co oc

The above example will work, but it would be much better written as:

If: 23 co oc 'does field 23 contain the value in dummy OC?

and

Then: 16=3*mid(1,"1","2")+aa/"-1"

might be easier to read as:

Then: 16 = 3*mid(1,"1","2") + aa/"-1"

Whichever way you decide to use SPACES on processing tables, the very best thing you can do is be consistent. If you put a SPACE before and after each semicolon, do it
all the time.

Then: 4=b;aa="Ma" ; gosub xxx; k="" ; show "@hello"; end

The above example would be much easier to read as:

Then: 4=b ; aa="Ma" ; gosub xxx ; k="" ; show "@hello" ; end

or

Then: 4=b;aa="Ma";gosub xxx;k="";show "@hello";end

or

Then: 4=b; aa="Ma"; gosub xxx; k=""; show "@hello"; end



Since SPACES can be used in such a variety of ways, it is simply a matter of good style to pick a convention and use it all the time. Your coding will be easier to read and
debug if you use SPACES in a consistent manner.

NOTE: If you redirect processing with the GOTO command, anything following that command (even if separated by a semicolon) will NEVER be executed. The GOTO
command is always the last executed command of any line.

Also, the file-handling functions LOOKUP and EXPORT can not have anything following them on the line.

IMPORTANT: When you use @wlf and @wef processing, there is a small set of commands, one of which MUST be used to close-off or end the @when processing. These
commands are END, SCREEN, ESCAPE, RESTART and SKIP. @when processing MUST have one of these commands to end its work. Placing a semicolon and any
commands after one of these closure commands while inside @when processing will result in these commands NEVER being executed. This is without doubt the major cause
for improperly working tables among beginners and experts alike.

@wlf2   If:

Then: 5="OPEN" ; screen 2,7 ; gosub totals ; display ; end

The GOSUB, DISPLAY, and END commands will never be executed because the SCREEN command is one of the special ones that ends an @when routine.

Conversely, and equally IMPORTANT, the following code demonstrates a major source of problems:

@wlf2    If:

Then: 5="OPEN" ; popup update -,3

@wlf5    If: 5="CLOSED"

Then: aa=aa+"1" ; display ; end

Many filePro programmers first assume that since they have put the user onto SCREEN 3 with this code, the next time the user saves the record, the INPUT processing table
will start at the top. It will not! It will start running right where it left off immediately after the POPUP UPDATE command. This is because the @when processing @wlf2 has
not been properly closed with one of the special closure commands listed above. The code as shown here will incorrectly "fall through" to the @wlf5 processing that you do
not want to run unless the user is actually leaving field 5.

 
CASE        UPPER AND LOWER CASE

Description:

Upper and lower case letters are interchangeable on filePro processing tables. They have no special meaning except in literals, and filenames under Unix.

Examples:

Then: AA=aa+"1"

Then: Aa=aA+"1"

Then: aa=aa+"1"

The above are all identical and legal.

If: 3 eq "Mary"

If: 3 eq "mary"

The above are identical and test the same. This is because filePro ignores case when doing comparisons. (Unless you use the COMPARE function.)

However,

Then: show "Hello"

Then: show "HELLO"

will show exactly what is contained inside the quotes, respecting the case. This is how "literals" work. They mean "literally" what is contained within the quotes.



String/Expression Manipulation Operators

AMPERSAND
LESS THAN SIGN
LEFT FRENCH BRACE
PARENTHESES

 
&        AMPERSAND

Description:

The & joins two fields, starting the second field at exactly the end of the defined length of the field on the left.

Examples:

Then: aa(10)="Smith" ; bb(10)="Joe" ; cc(20)=bb&aa ; show cc

would yield:

Joe Smith

because the fields are joined (concatenated) at the defined length of the field on the left, regardless of how much of that field is filled.

Then: aa(8,mdy/)=@td ; show aa&4

would yield:

10/04/97ACME (assuming field 4="ACME")
 

<        LESS THAN SIGN

Description:

The < joins two fields by pushing the field on the right towards the left until there is exactly one space between the two fields. This operator is often called the "push left"
operator.

Examples:

Then: aa(10)="Smith" ; bb(10)="Joe" ; cc(20)=bb&aa ; show cc

would yield:

Joe Smith

because the fields are joined, leaving 1 space between the data, regardless of how much of each field is filled.

Then: aa(10)="123" ; bb(10)=" XYZ" ; cc(20)=aa<bb ; show cc

would yield:

123 XYZ

Again, 1 and only 1 space is left between the joined fields, because that is the way the push left operator "<" works.
 

{        FRENCH BRACE

Description:

The { joins and pushes left, leaving no spaces. Because this operator works in the same manner as the "push left" operator but leaves no spaces between the joined fields, it
is called the "squeeze left operator".

Examples:

Then: aa(10)="Joe" ; bb(10)="Smith" ; show aa{bb

would yield:

JoeSmith

 
( )        PARENTHESES

Description:

The set of ( ) groups and orders evaluations for the purpose of clarity and precedence of operation.

Examples:

If: ((3 gt aa) and (4 eq "C")) or (BALDUE gt "0" or 19 co bb)

Then: show "@ Customer has outstanding balance."



Print Precedence Directives
 
The following listing shows, which print controls, have precedence. The highest on the list are PRINT commands on processing tables as these are the last thing to run before the
output is sent wherever it is going, the spooler, a file, etc. The next highest priority is what is specified on the command line, i.e., "-p /tmp/filename" will override all settings (except
print commands in processing). PFPRT will override any of the lower print directives, but will be overridden by the two above it, and so forth. Using this logic, you can set a group
of defaults for your users and most standard reports, yet override these conventions at will by using any of the higher options. The best choice for most filePro output is to
designate where it should "normally" go directly on the options page of the output format. User's can generally be well directed with a PFSPOOL command. Again, special print jobs
can be directed with PFPRT/C or -p on the command line.
 

Print command in processing
Command line options
Printer designated on output format
PFPRT
PFPRINTER (default filePro printer)
PRINTER1 (default filePro printer, if no default printer)
PFSPOOL (default if no default printer destination)
LPDEST
 
Default system spooler "lp -s"



Special Key Labels
 
These Special keyboard keys are available to filePro for various uses. They can be tested using the @sk system maintained field. Testing for these keys with @wlf, @wef, @wuk
processing is a valuable tool for building robust applications. Using these keys with PUSHKEY and within SHOW statements allows you to build very user-friendly programs.
 
 

Note : INSC also applies for the Insert Key, and DELC also applies to the Delete key.



SHOWCODES
 
The following screen displays how special "show codes" can be used inside the message portion of the SHOW commands. (Show codes work in all formats of SHOW including:
show popup, showctr, showtocol.)
 

 
 
 
The following table displays SHOW codes available only to systems that support color.

 
Color Systems Only.
(See next table for color values of "n")

\I Toggle high- intensity on/off

\Ann Set attribute (background+foreground))

\Fn Set foreground color

\Bn Set background color

\C Display characters only (no color)
 
Color Attribute Code (\Ann, \Fn, \Bn) Values of "n" for above table.

 
Foreground/
Background

Foreground Only

"n" Color "n" Color

0 black 8 gray

1 blue 9 bright blue

2 green A bright green

3 cyan B bright cyan

4 red C bright red

5 violet D bright violet

6 brown or yellow E yellow or bright yellow

7 bright gray or white F white or bright white
 
\Ann - Sets background and foreground colors. The first "n" is the background color; the second "n" is the foreground color. If only one "n" is used, it sets the foreground color,
and the background color is set to black (0).
If you want to reset the background and foreground colors to the default colors, use a dash for "n" (\A-).
 
\Fn - Sets foreground color. Use values 8 to F for "n". If you want to reset the foreground color to the default color, use a dash (-) for "n".
 
\Bn - Sets background color. Use values 0 to 7 for "n". If you want to reset the background color to the default color, use a dash (-) for "n".
 
Blinking Colors
Using values 8 to F for the background does not affect the current background color, but will cause the foreground color to blink instead.
 
The following table displays key label codes (\Kn) values for "n", @SK labels, and DOS keys for SHOW codes.
(Note: Case is significant.)

 
"n" @SK DOS KEY "n" @SK DOS KEY

0 INSC Ins or F1 D PRTC F7

1 DELC Del or F2 E DPRT F8

2 INSL F3 F CRON N/A



3 DELL F4 G RVON Alt-F9

4 SAVE ESC H GRAF F9

5 DUPL F5 J HELP F10

6 UTAB PgUp Y BRKY Break

7 DTAB PgDn Z ENTR Enter

8 LTAB Shift-tab u CRUP Up arrow

9 RTAB Tab d CDWN Down arrow

A CLEF Ctrl-End l CLFT Left arrow

B DMAP F6 r CRGT Right arrow

C DRAW Ctrl-L h HOME Home



TCP/IP Functions (not included in filePro Lite)
handle2 = ACCEPT(handle)
 
Accept a connection on a socket. Returns a positive number  containing the new handle, zero indicating no more sockets are available, or a negative number containing the error number.
 
status = BIND(handle,port [ ,address [ ,family ]] )
 
Binds a name to a socket. Note that the parameters are not identical to the C bind() function, but the port/address/family correspond to the struct sockaddr_in members sin_port, sin_addr, and
sin_family, respectively. Port can be given by a number, or a name defined in /etc/services. Address can be an IP address, or any name known to the DNS server, or null for INADDR_ANY. Family
defaults to AF_INET. Returns zero on success, or a negative number containing the error number.
 
status = CONNECT(handle,port,address [ ,family ] )
 
Initiate a connection on a socket. Note that the parameters are not identical to the C bind() function, but the port/address/family correspond to the struct sockaddr_in members sin_port, sin_addr, and
sin_family, respectively. Port can be given by a number, or a name defined in /etc/services. Address can be an IP address, or any name known to the DNS server, or null for INADDR_ANY. Family
defaults to AF_INET. Returns zero on success, or a negative number containing the error number.
 
name = GETPEERNAME(handle)
Returns the name of the connected peer, or "" on failure.
 
name = GETSOCKNAME(handle)
Returns the name of the socket, or "" on failure.
 
status = LISTEN(handle [ ,backlog ] )
 
Listen for connections on a socket. Backlog defines the maximum length to which the queue of pending connections may grow, and defaults to 1. Returns zero on success, or a negative number
containing the error number.
 
status = RECV(handle,dest [ ,len [ ,flags [ ,noblock ]]] )
status = RECVLINE(handle,dest [ ,len [ ,flags [ ,noblock ]]] )
 
Receive a message from a connected socket. Fills in the field in "dest" with the result. Returns the number of characters received, or a negative number containing the error number. A maximum of
"len" characters will be read. RECVLINE() will read up to len characters, or until a new line character is received. The new line character, if any, will be discarded for RECVLINE(). "Len" defaults to
the length of the destination field. "Flags" defaults to zero and should currently not be given any other value. "Noblock" defaults to zero. It a non-zero value is passed, the function will return
immediately, even if less than "len" bytes are received.
 

status = SELECT( nhandle [ ,read_array [ ,write_array [ ,except_array [ ,timeout ]]]] )

where
nhandle = Maximum number of handles to use from each array.  If the array is shorter than nhandle, then the entire array is used.  Array entries of zero are ignored.
read_array = Name of array holding handles to check for read.
write_array = Name of array holding handles to check for write.
except_array = Name of array holding handles to check for exceptions.
timeout = Timeout, in microseconds.

Notes:  If timeout is not specified, or is zero length, the function will not return until at least one handle meets the specified criteria.  A timeout of zero means it will return immediately,
regardless of the states of the handles.  (This is one of the rare instances in filePro where a null numeric value is not the same as zero.  This is part of the functionality of the select system
call, which is duplicated in filePro's SELECT function.)
Only socket handles can be checked.  While *nix systems allow any file handle to be passed to select(), Windows allows only socket handles.  A future filePro update may allow non-socket
handles to be passed to SELECT().

 
status = @SELECT.READ(handle)
status = @SELECT.WRITE(handle)
status = @SELECT.EXCEPT(handle)

 
After executing a SELECT(), these functions are used to determine if the specified handle satisfied the select criteria.  The return value is either "0" for false, and "1" for true.  For example,
@SELECT.READ(MySocket) will return "1" if MySocket has data ready for reading.  (Assuming, of course, that MySocket was in the read_array passed to the last SELECT function.)

Note that if the last SELECT() call did not get passed the corresponding array, the result of these functions are undefined. For example, a SELECT(nhandle,read_array,,except_array) call followed by
@SELECT.WRITE(x) will be undefined, as no write_array was passed.
 
status = SEND(handle,value [ ,flags ] )
status = SENDLINE(handle,value [ ,flags ] )

 
Send a message to a connected socket. Flags defaults to zero and really shouldn't be used yet. SENDLINE() appends a newline character to the message. Returns the number of characters sent, or
a negative number containing the error number.
 
handle = SOCKET( [ family [ ,type [ ,protocol ]]] )

 
Creates a socket of the specified type. Returns a positive number containing the handle to the socket, zero if there are no more sockets available, or a negative number containing  the error number.
 Note: currently, the parameters are ignored, and the socket is always (AF_INET,SOCK_STREAM,0)
 
status = SOCKETCLOSE(handle)
 
Closes the socket. (Note: even though Unix socket handles and open file handles are interchangable, this is not the case under Windows hence the requirement for a separate close function.)
As of 5.7.02. this command will now release the license used.
 
systemhandle = SOCKETTOSYS(handle)
 
Returns the corresponding system handle number for an open socket, or a negative error number if "handle" isn't a valid filePro socket.
 



errno = SOCKETERROR()
 
 Returns the error code of the last socket-related error. The number is system-dependent.
 
handle = SYSTOSOCKET(systemhandle)
 

Given an operating system handle that corresponds to a socket, this creates a filePro handle to it. (Example: a server daemon has already listen()ed and accept()ed the connection, and
spawned filePro to handle the connection.) Note that there is no check that the handle is really a valid socket. Returns zero if no filePro sockets are available.



SOCKETS Sample Applications (not included in filePro Lite)
Sample SOCKETS applications are included on the installation media.
 
The samples demonstrate use of most of the functions through a simple interactive application.
 
What is provided

 
menus filePro folder ~/filepro/menus tcpip Menu
TCPIP filePro folder ~/filepro/tcpip tcpip sample
TCP/IP filePro folder ~/filepro/tcpiphlp Contains this help.
 

Installing the Samples
Select the appropriate install for your system from the source media.
 
WINDOWS:
Click on Start, Run and d:\setup.exe where d: is your CD drive letter. After setup is complete, copy ~/filepro/menus/tcpip to ~/fp/menus or other 'menus' directory as set by the pfmenu environment
variable.
 

AIX/UNIX/LINUX:
tar xvf fPtcpip

After extracting the files, copy ~/filepro/menus/tcpip to ~/fp/menus or other 'menus' directory as set by the pfmenu environment variable.
Run setperms script establish proper permissions.
Note: You can elect to install the TCPIP Server and Client on different operating systems, on different machines with the same operating system or on a single machine.
 
Run the Menu
 
Run the tcpip menu from the 'Run User Menu' option of the filePro main menu.
 

SOCKETS-Server
 
After completing the installation, you will need to know the IP address of the machine where you intend to run the TCPIP Server.
The sample application should be run initially from the Menu but if you can also run from a prompt. The sample application uses the dclerk, input processing and screen.0
The menu provides options for launching TCP/IP Server, TCP/IP Client and this help. The same filePro file 'tcpip', processing table and screen is used for the Server and Client. The menu simply uses a
menu parameter to control which is launched for each option.
When selecting the TCPIP Server from the menu, you will see a prompt "Enter port number to listen on:". Enter a port number ie. 4300 and then you should see message "Waiting for Connection on port
nnnn ..."
 
Note: For Windows, you can use "localhost" or IP address "127.0.0.1".
 

SOCKETS-Client
 
After the TCPIP server is listening, select the TCPIP client option from the menu on the client machine or launch another session on the localhost machine if you are running in localhost mode. When
prompted enter the Server IP address or localhost (127.0.0.1) if testing in local mode. Enter the port number you specified when launching the TCPIP server.
If all has gone well, you should see the Server and Client connect. Once connected, you can send messages between the Server and Client. Received text is displayed in reverse video mode on both
the Server and Client. You should be able to type anything into the screen on either machine and have it echoed on the other.
Press key [F1] to exit and shutdown the socket connection.
For more detail, look at the "input" processing for file 'tcpip' and refer to function descriptions in the filePro TCPIP help.



Licensing
Note that the "Sockets" functions are separately licensed as an option.
Contact our sales office by e-mail sales@fptech.com or (800) 847-4740 for a price quote on this option.



Spell Check - Memo Fields
 
You can spell check memo fields through the Memo Editor extended functions [F8] [S] "Check Spelling" function of the memo editor. This will spell check the entire memo, and will use the chooser for
any misspellings.
 

 
When the memo field is on the screen, Press [F8] to present the Memo editor Extended functions and then press [S] to check spelling.
 

 
The first misspelled word is presented. Select the correct spelling and press [Return].

 
Each misspelled word will be presented.



 
If the word is not in the dictionary, you can elect to add to your personal dictionary with [F1], Ignore by pressing [F2] or Type In the correct spelling by pressing [F3].
When spell check is complete, a message is presented to indicate this.

 
You can also add a message box or input statement to force spell check of a memo field.

 
Personal dictionaries are maintained in the ~/fp/spell directory by default as /fp/spell/userID.txt where user ID is the *NIX login ID or Windows user name. You can override the default path and filename
with the PFSPELLUSERLIST variable. Make sure that the path exists and that you properly set permissions if you override the default path. You can edit the personal dictionaries with the Spell Editor
program included in the filePro Utilities menu.
Note: The F8 options of the memo editor have been tweaked as well. The "I"/"T" options for "insert time"/"toggle insert" have been swapped. Now, "D" inserts date, "T" inserts time, and "I" toggles
insert mode. You can set PFMEMOEDITOLDKEYS=ON to revert to the old settings.



Spell Check - Using Processing
 
You can use spell checker in processing tables to check the spelling of any field including memo fields.
 

status = SPELLCHECK(field [ , chooser, row, col, height, width ] )
 
The return value is:

1 = good
0 = bad
negative = error

 
Except for "field", all parameters are optional. If "chooser" is non- zero, then misspelled words will cause the chooser to appear, where you can pick the correct spelling.
If "chooser" is zero, or not specified, then the spellcheck() function only checks if the words are spelled correctly or not and does not give you the option of correcting them.
Example

Clarify use of @fd e.g. aa = @fd
SPELLCHECK(aa,"1")

 
Use SPELLCHECK to check the spelling of a memo.
 
The 64-bit versions of filePro now use the industry-standard "hunspell" spell-check library.  As noted by the hunspell website:

"Hunspell is the spell checker of LibreOffice, OpenOffice.org, Mozilla Firefox 3 & Thunderbird, Google Chrome, and it is also used by proprietary software packages, like Mac OS X, InDesign, memoQ,
Opera and SDL Trados."

<http://hunspell.sourceforge.net/>



System Maintained Fields

System maintained fields are a powerful feature of filePro that allow you to easily access information maintained by the O/S (Operating System) such as current date and
time. These fields also include a myriad of filePro functions such as record creation date, date a record was last updated, cursor position on a screen.

Some of the system maintained fields are unique to specific operating systems i.e. "Name of the current user" was not available for Windows but only for UNIX or LINUX
operating systems prior to the 5.0.12 release.

System maintained fields can be used on reports and screens just like real fields and dummy fields. The difference between system maintained fields and others is that they
cannot be directly manipulated but are controlled by the system or filePro functions. Also, some system maintained fields are not available for all types of processing so
check for any usage restrictions in the notes for the system maintained field that you decide to use.



@AF

Associated field instance.



@B4

4-digit year equivalent of @BD or last batch update. (MM/DD/YYYY)

Example:

02/24/2000



@BD

Last batch update. (MM/DD/YY)



@BK

Exit key for browse lookup, msgbox and errorbox.

Browse Lookup - When defining a browse lookup, you can specify the keys that the user can press to exit. The key pressed by the user is captured in the system-maintained field "@BK" and can be
acted upon to control processing. You will want to identify a processing label, when defining the browse lookup, and normally test for both valid and invalid keys pressed by the user.

Example:

You have an invoicing application and need to add new customers, update the customer's address and phone number, or simply view more customer detail than will fit on a browse line.

When defining the browse lookup, specify the valid exit keys "xkeys" to perform each of your desired options. You would probably use "A" to Add a customer, "U" to update, "V" to view. These exit
keys will be shown as "xkey=AUV" when defining the browse.

If the user presses [ A ], when testing the value in @BK on a condition line, you might execute processing to check if a customer record already exists, and if NOT, popup a blank customer data-entry
screen.

If the user presses [ U ], display a screen with limited update capability for changing just the address and phone numbers.

If the user presses [ V ], popup a "View Only" screen in the customer file.

If one of the three valid keys are not pressed, remove the browse and continue.

@BK and special keys such as ESC, Enter, Break - Some special keys can be acted on just as any other key pressed by the user but you must use the key code that applies for the special keys e.g.
[SAVE], [ENTR], [BRKY] and determine the special key pressed by checking the value of @sk. Refer to the Special Key Labels topic in this manual for a complete list of Special Key Labels.

MSGBOX and ERRORBOX - These processing commands let you display a message in a popup window on the screen. It will display a string "message" in a popup window at a designated position
on the screen until the user presses ENTER or a key from a specified keylist. The key pressed by the user is captured in the system-maintained field "@BK" and can acted upon to control processing.



@BR

The currently highlighted browse lookup row.

System maintained fields, @sn, @fd and @br are for use mainly on the INPUT processing tables. However, they are available on output processing tables as well, but they
will always be equal to null on these tables. This may be used to advantage.

Example:

You have an AUTOMATIC table that does things for you during Inquire, Update and Add, but it has no value when running output formats, and shouldn't be used. (Or it
only does things related to INPUT processing and would just be a waste of time to run during an OUTPUT process. You can prevent the AUTOMATIC table from running
during output processing by putting the following code on the first line of the AUTOMATIC table. No code after this line will run during OUTPUT, but there is always a
"screen-name" during INPUT, so the rest of the AUTOMATIC table will run then.

         If: @sn eq ""  'if there is no screen

Then: end        'don't go any further.

       Then: 'other automatic table functions



@BT

The time of a record's last batch update. (HH:MM:SS)

Note: The time is stored in 2 second intervals



@C4

4-digit year equivalent of @CD or date that the current record was created. (MM/DD/YYYY)

Example:

02/24/2000



@CB

The name of the user that first created this record. Unix/Xenix only)



@CD

The date that the current record was created. This field is blank for new records. (MM/DD/YY)



@CO

Returns the column of the first position of the field just entered or left.

Version Ref : 5.0

Note: Only available on INPUT processing tables.



@CP

Provides the position of the cursor in the field you just left

Note: Only available on INPUT processing tables.



@CT

The time that the current record was created. (HH:MM:SS)

Note: The time is stored in 2 second intervals



@DT

The current date, spelled out. (e.g., "Mar 6, 1999")



@FD

Field cursor is in.

Note: Only available on INPUT processing tables.



@FI

Provides the current file name



@FN

The current format name.

Note: Only available on OUTPUT processing tables.



@ID

The name of the current user. (Unix only prior to version 5.0.12)

Note: @ID will only contain the first 8 characters of the username on Windows systems.

See P FIDLEN=nnnn Version reference 5.8.00



@LC

Line count. The number of lines currently printed on this page.

Note : Only available on OUTPUT processing tables.



@LI

Returns the current line number within processing.

Version Ref: 5.0



@OS

The operating system name. @OS values are "DOS", "UNIX", "HP-UX", "AIX", "DGUX" and "LINUX".

Notes: "DOS" is returned as the value for Windows operating systems. .LINUX was added in version 5.0



@PC

Provides Current Printer Comment.



@PD

Provides Current Printer Destination.   This also corresponds to PRINTERCOMMAND

Note: Prior to release 5.0.14 dscreen would resolve @PD to only 20 characters, when it's really 80.



@PM

Parameter passed to processing table with -r flag.

Usage:

/appl/fp/dreport my_file -fp my_output -a -u -r "hello!"

In output processing, @PM now contains "hello!"



@PN

The current page number.

Note: Only available on OUTPUT processing tables.



@PR

Provides Current Printer Name



@PT

Provides Current Printer Type



@PW

Reads the contents of the -rw command line flag. The -rw flag can be used with *clerk and *report.

Usage:

/appl/fp/dreport my_file -fp my_output -a -u -rw "hello!"

In output processing, @PW now contains "hello!"



@PX

Reads the variable contents of the -rx command line flag. The -rx flag can be used with *clerk and *report.

Usage:

/appl/fp/dreport my_file -fp my_output -a -u -rx "hello!"

In output processing, @PX now contains "hello!"



@PY

Reads the variable contents of the -ry command line flag. The -ry flag can be used with *clerk and *report.

Usage:

/appl/fp/dreport my_file -fp my_output -a -u -ry "hello!"

In output processing, @PY now contains "hello!"



@PZ

Reads the variable contents of the -rz command line flag. The -rz flag can be used with *clerk and *report.

Usage:

/appl/fp/dreport my_file -fp my_output -a -u -rz "hello!"

In output processing, @PZ now contains "hello!"



@QU

Provides the current qualifier name



@RN

Provides the current record number



@RP

Provides Number of Records Processed



@RS

The number of records selected so far within this subtotal level.

Note: Only available on OUTPUT processing tables.



@SF

The contents of the subtotal field

Note: Only available on OUTPUT processing tables.



@SH

The name (heading) of the subtotal field.

Note: Only available on OUTPUT processing tables.



@SK

Special key can be used with INKEY, but avoid INKEY, it is CPU intensive, use WAITKEY instead.

"@sk" is used with when-processing. When-processing fills this field with the special key-label of the key last pressed.

Browse lookups will also pass SAVE, BRKY and ENTR to @sk if users press any of these 3 keys while the highlighted bar is visible.



@RO

The row/column of the first position of the field just entered or left.

Version Ref : 5.0

Note: Only available on INPUT processing tables.



@SN

The current screen name.

Note: Only available on INPUT processing tables.



@T4

4-digit year equivalent of @TD or the current date. (MM/DD/YYYY)

Example:

02/24/2000



@TD

The current date. (MM/DD/YY)



@TM

The current time. (HH:MM:SS)



@TN
 The current processing table name.



@TS

The total number of records selected for this report.

Note: Only available on OUTPUT processing tables.



@U4

4-digit year equivalent of @UD or date the current record was last updated.

(MM/DD/YYYY)

Example:

02/24/2000



@UB

The name of the user that last updated this record. (Unix/Xenix only)



@UD

The date the current record was last updated. (MM/DD/YY)



@UT

The time that the current record was last updated. (HH:MM:SS)

Note: The time is stored in 2 second intervals



@VR

Version Ref: 4.8.04 (Run-time)

Version number of *clerk/*report being run. This is the full version number e.g."4.9.01K3DN9" that can be moved into a (4,1) field to get the major version (i.e. "4.9") for
comparisons.

Version Ref: 5.8.03 (Menus)

@VR is now available to use on menus.  By entering in @VR into the version field of a menu, it will display the major version number of the release installed.

NOTE:  For Windows, enter $@VR and for NIX enter %@VR%

 

@VR2 (Menus only)

Version Ref: 5.8.03

Version number of *clerk/*report being run. This is the full version number e.g."4.9.01K3DN9" that can be moved into a (4,1) field to get the major version (i.e. "4.9") for
comparisons.

 

@DV (Menus only)

Version Ref: 5.8.03

Version number of *clerk/*report being run. This is the full version number e.g."4.9.01K3DN9" that can be moved into a (4,1) field to get the major version (i.e. "4.9") for
comparisons.

 



@GUI
x=@GUI.PAUSE()
   Pauses automatic screen updating while in GI/Web.
x=@GUI.RESUME()
   Resumes automatic screen updating while in GI/Web.
These functions are useful for hiding the output of some system commands while running processing. Output can sometimes cause undesired effects on a filePro screen or prevent some commands
from updating the screen correctly. This should correct some text being displayed while outside of filePro's messaging.
Example:
Then: x=@GUI.PAUSE()
Then: SYSTEM command
Then: x=@GUI.RESUME()



@VF
This is the @welf function to trap the Virtual Keys available in fileProWeb
See fileProWeb documentation for more details.
 



@WORDWRAP[]
 

Returns text for the most recent WORDWRAP( ) call.
 
Syntax:
xx = @WORDWRAP[linenum]
 
Returned value:

Text is returned for the specified line in "linenum" and based on the WORDWRAP() option
used.

Example:
then: dim wraptext(999)
then: xx = WORDWRAP(9,"70","1"); c(3,.0)="1"
loop
if: c lt xx
then: wraptext(c) = @WORDWRAP(c); c=c+"1"; goto loop
then: end



SYSINFO Version 5.7.00
 
xx = @SYSINFO.TIME -- Returns information about the current time, in several formats:

    @SYSINFO.TIME.RAW()

        Returns the "raw" time, as the number of seconds since "the epoch",
        which is defined as "1970-01-01 00:00:00 UTC".

    @SYSINFO.TIME.UTC()
    @SYSINFO.TIME.LOCAL()

        Returns the current time, either from UTC, or the local timezone,
        formatted as:

            YYYY:MM:DD:HH:MM:SS:w:yyy:d

        Where:

            YYYY - The year
            MM   - The month, as a number from 01 to 12
            DD   - The day of the month (01-31)
            HH   - The hour of the day (00-23)
            MM   - The minute of the hour (00-59)
            SS   - The second of the minute (00-60)
            w    - The day of the week (1-7)
            yyy  - The day of the year (001-366)
            d    - "1" if daylight savings time is in effect, else "0"

    @SYSINFO.TIME()

        Same as @SYSINFO.TIME.LOCAL()

xx = @SYSINFO.WIDTH

    The width of the filePro "screen".  Currently always "80".

xx = @SYSINFO.HEIGHT

    The height of the filePro "screen".  Currently always "24".

Other system info may be added in future updates.



System Arrays

Version Ref : 5.0

@ALLFILES[]

Contains a list of all files open by filePro, even those closed due to dynamic open/close. Some entries may be blank, representing an unused (i.e. closed) file.

Note: also known as "@OCFILE[]"

@CMDLINE[]

Contains the command line passed to *clerk/*report.

Note: also known as "@ARGV[]"

@DIRLIST[]

Description:

Contains the full directory line as returned by NEXTDIR() including the following:

 
Description Length Starting

Position

Format 32 01

Space 01 33

Extension 10 34

Space 01 44

File Size 14 45

Space 01 59

File Date 10 60

Space 01 70

File Time 8 71

A or P (am/pm) 01 79

Space 01 80

Full Name 32 81

Table 1 - NEXTDIR Line

Example:

dl = @dirlist(n)

where dummy field "dl" is set to the value for @dirlist array subscript number "n".

@CMDLINE[]

Contains the command line passed to *clerk/*report.

(Note: also known as "@ARGV[]")

@DIRLIST_EXT[]

Contains the 10 character extension name (as returned starting in column 34 by NEXTDIR). See table 1.

@DIRLIST_FILENAME[]

Contains the 32 character full name (as returned in the last column by NEXTDIR). See table 1

@DIRLIST_NAME[]

Contains the 32 character format name (as returned in the first column by NEXTDIR). See table 1

@FPFILES[]

Contains a list of all open filePro files. Some entries may be blank, representing an unused (i.e. closed) file.

Note : @FPFILES["1"] is always the main filePro file.

@FSTAT[]

Contains information about the last successful EXISTS()

Function. (See your O/S manual for a description of each entry.) All entries are numeric, except for the date/time entries, which are returned as (10,mdyy/) and (8,TIME)
respectively,

Ø    [0] = length of array (currently always 14)

Ø    [1] = st_dev



Ø    [2] = st_ino

Ø    [3] = st_mode

Ø    [4] = st_nlink

Ø    [5] = st_uid

Ø    [6] = st_gid

Ø    [7] = st_rdev

Ø    [8] = st_size

Ø    [9] = st_atime_date (date portion of st_atime)

Ø    [10] = st_atime_time (time portion of st_atime)

Ø    [11] = st_mtime_date

Ø    [12] = st_mtime_time

Ø    [13] = st_ctime_date

Ø    [14] = st_ctime_time

Notes:

If no call to EXISTS() has been executed, or the last EXISTS() failed, then the contents of @FSTAT[] are undefined.

Array subscript "0" contains the length of the array. Out-of-bound subscript references return null.

System arrays are read-only.

@FUZZY[]

Contains information about the most recent fuzzy browse lookup.

Currently, the only info available is the record number, via @FUZZY.RECNO [subscript]

@LICENSE[]

5.6 Contains license information.

 Subscripts:

[1] = A comma-separated list of licensed features.

[2] = Name

[3] = Serial number

[4] = Platform

[5] = Product name

[6] = Version

[7] = User count

[8] = License start date (YYMD format)

[9] = License end date (YYMD format)

Example

msgbox "Licensed user Name"<@license["2"]

Note: License start date and License End date are null is the license does not specify a start or end date.

@SYSFILES[]

Contains a list of all open files. Some entries may be blank, representing an unused (i.e. closed) file.

@UNAME[]

Returns the system uname() information. The meaning of each entry is system-specific.

[1] = sysname

[2] = nodename

[3] = release

[4] = version

[5] = machine

For Window's systems, the following values are returned.



Sysname: Win9x, WinNT, or Windows (if no specific type).

Nodename: The value from the C programming function "GetComputerName()".

Version: Value of szCSDVersion from the C programming function "GetVersionEX()".  

Machine: blank



Trigger Processing
User definable "trigger" processing can be written to occur when the designated event happens. In filePro, these types of processing are given labels and that is where the processing starts up
when the trigger is pulled. This is called "when processing" and spoken aloud as "when enter selection", "when entering field nnn", "when leaving field nnn", and sometimes "@when leaving field n"
or "@key X", etc. The @ starting all these labels may be considered to mean "at", or "at the moment when this trigger is activated".



Triggers Used Only on Input Processing Tables
@keyX
When user presses key "x" (or "X", case is not significant) while sitting at the "Enter Selection >" prompt.
@key can be used with any plain text character key on the keyboard. Special keys (TAB, ENTER, SAVE, etc.) are not usable with @key.
This processing can be activated by the user while sitting on a record with the cursor at "Enter Selection" prompt (or custom prompt).
Pressing the designated key locks the record (multi-user), runs the AUTOMATIC table first, and then runs the @key processing, starting at its label following the table directions until an END is
encountered. At this point, the AUTOMATIC table is run again and the process is finished.
IMPORTANT: The AUTOMATIC table's first job is to clear all regular dummy variables. If you set a variable inside your @key processing and expect it to retain that value, you must make this variable
"global". The AUTOMATIC table does not clear global variables.
NOTE: Be sure that there is always a "then" line above your @key process which will not allow the INPUT table processing or other @when processing to "fall through" to this @key code. This will,
of course, give you undesirable results. If there is no INPUT processing and you want to build an @key routine, put an END statement on line 1's "then" line, and build the @key starting from line 2. This
way, when the user SAVE's the record, the @key process will not be run as if it were the INPUT table processing.
IMPORTANT: On multi-user and network systems, @key processing "locks" the current record. If other users are running reports or processing that select this record, they will be stopped in their
tracks until the lock is removed. For this reason, you should not put up processing MENU's with @key. Also, be careful not to put up message boxes or the like which require that the user press a key
to bring them down. More likely than not, someone will inadvertently leave such a message on the screen and go to lunch. This hangs everyone else up who needs access to that record. A better
idea would be to use the SLEEP command and display the message for a reasonable amount of time and then bring it down within your own @key code.
Example:
@keyT if:
then: show "@The time is"<@tm ; end
The T is capitalized only for clarity when reading the code. (Processing tables are insensitive to cAsE.)
The above will certainly work, but it forces the user to press ENTER to finish the @key process. Instead, try:
@keyT if: 'on Unix, use sleep "3"
then: show "The time is"<@tm ; sleep "3000" ; end
This will show the time for 3 seconds and then automatically end the processing, leaving nothing up to the user.
Of course, if the @key process is supposed to put the user into UPDATE mode so he can add to or modify the record or perform some other task, this is perfectly acceptable and a great use for
@key processing. You have to assume that the user will finish such a task before leaving for lunch.
@key processing can be tricked into working from other parts of the INPUT processing table. This is done with
PUSHKEY. As in:
if:
then: pushkey "T" ; end
When this code is encountered, filePro waits for control to be returned to the user, and just before it accepts input from the keyboard, it generates the designated key (in this case T). Since the
@keyT is triggered by this event, it happens just as if the user had activated it himself. If there is no @keyT processing on the INPUT table, nothing will happen.
Processing to do after record is displayed, but just before the prompts are displayed and the cursor is placed at the "Enter Selection" prompt.
This processing does NOT lock the current record. This means you can not write to real fields within an @entsel routine.
A common use for @entsel is to combine it with the -d flag of clerk. This flag tells filePro to clear the standard prompts off the bottom of the record screens. This allows you to put up custom prompts
of your own. Using @entsel will put these custom prompts up at the appropriate times.
For example: The following command line and code will display a custom set of prompts. It would be up to you to make sure there are appropriate @keys for each of the displayed prompts. Just
changing the prompts will not stop filePro from intercepting the keys it normally does like (H)ardcopy, (B)rowse, (U)pdate and so forth. They will still be active unless you build @keyH, @keyB @keyU
processing of your own. Any combination of filePro (factory installed @keys) and custom @keys of your own is acceptable, just remember that yours will override the factory supplied @keys.
 rclerk filename -s1 -d
@entsel if:
then: show "\r P \r-Print, \r U \r-Update, \r M \r-Modify, \r X \r-Exit"
if:
then: end
IMPORTANT: Remember that @entsel processing does NOT lock the record on multi-user systems, so you can not make assignments to real fields within the @entsel code. In other words, a real field
can not be the left side of an equals statement.
@menu
Processing done just before the clerk menu appears.
@menu processing can only be used on INPUT tables. It is activated just before the clerk menu appears on the screen and, this is IMPORTANT, it is activated EVERY TIME the clerk menu is just about
to appear on the screen. This can be very confusing at first. More than likely, you will want the @menu code to work just once, the FIRST time the user ENTERS this file. You probably do not want to
run it again when the user is LEAVING the file. This can be accomplished by setting global dummy variables to control the processing.
Let's assume that you want the @menu processing to bring the user to "his" record in a file. You do this by asking for his initials and then moving him directly to that record with "lookup -". This can be
done as follows:
@menu if:
then: input popup in(3,allup) "What are your initials? "
err if: in eq "" 'no answer,
then: errorbox "Sorry, those initials not on file." ; exit
if:
then: lookup - k=in i=A -nx
if: not -
then: in="" ; goto err
This code will allow the user to put in a good set of initials (on file) and take him directly to that record. Blank initials or not on file initials will kick him out of the program. However, there is one glitch.
When the user is done with the task on his record and wants to exit the program, the @menu program keeps asking for his initials, it doesn't know he wants out! Of course, users could press ENTER
and the program would throw them out for blank initials, but there is a better way, and it is the key to making @menu work in most other situations as well. Set a "flag" to tell @menu what to do on the
way in and on the way out. Do this with a global dummy variable. It means adding 2 lines above what is already shown, and something like this should probably be in most @menu routines.
@menu if: f eq "1"
then: exit
if:
then: f(1,,g)="1"
if:
then: input popup in(3,allup) "What are your initials? "
err if: in eq "" 'no answer,
then: errorbox "Sorry, those initials not on file." ; exit



if:
then: lookup - k=in i=A -nx
if: not -
then: in="" ; goto err
 
This flag will be empty the first time into clerk, so the user can get to his record. But, this time when he tries to exit the program, the value of f will be "1" and it will happen.
If you want the user to be able to stay in the program and make use of the clerk menu, this EXIT could be an END statement. This would leave the user at the clerk menu. Remember, @menu
processing executes all the @menu code it encounters and then puts up the clerk menu. If all it encounters is END, it does nothing and puts up the menu.
There are a variety of things you can do with @menu in terms of taking users in and out of files and records. A powerful combination is to use @menu with PUSHKEY. Examine the following:
@menu if: f eq "1"
then: exit if:
then: f(1,,g)="1"
askin if:
then: input popup in(1) "1) Indexes\n2) BALDUE selection set\n====> "
if: @sk eq "BRKY" or @sk eq "ENTR"
then: exit
if: in ne "1" and in ne "2"
then: goto askin
if: in eq "1"
then: pushkey "4" ; end
if: in eq "2"
then: pushkey "22LBALDUE[ENTR][ENTR]" ; end
This asks the user whether he wants to go into the file using indexes, or to go directly to the first record that matches the criteria on the BALDUE selection set. This is NOT very robust or useful code,
but it shows how PUSHKEY and @menu can work together.
NOTE: @menu processing is performed while the user is standing on record 0. There are no real fields available.
@update
Starts input processing before user is put into update mode. This processing allows you to do things AFTER the user has pressed "U" to UPDATE the record (or whatever key is assigned to perform
this function) and BEFORE the cursor hits the first field on the cursor path. (Or before it hits any @wef processing which may be attached to that first field).
@wefNNN When entering field "nnn".
@wlfNNN When leaving field "nnn".
@wblNNN
Responds to browse lookup key (keylabel DMAP) when in field "nnn". If there is an existing browse lookup for this field, it is not performed.
@whpNNN
When the user presses help key (keylabel HELP) when in field "nnn".
@wukNNN
When the user presses any of keylabels (DPRT, GRAF, INSL, DELL) when in field "nnn". Once the user presses one of these user keys, you can use @sk to determine which of the 4 were pressed.
The default user key is DPRT.
@w??*
The '*' character can be used in place of the "nnn" field number in WEF, WLF, WBL, WHP, WUK.



Triggers Used Only on Output Processing Tables
@done
The output processing subroutine labeled by @DONE will be executed when the output processing is done, even if no records are selected. Executes after @WGT label and after all output has been
sent to the printer/spooler.
@wbrkN
When breaking a report for subtotal "n".
@wgt
When breaking a report for a grand total.



@done
 
Description:
The output processing subroutine labeled by @DONE will be executed when the output processing is done, even if no records are selected. Executes after @WGT label and after all output has been
sent to the printer/spooler.



@ONCE
 
Description:
Executed once at the beginning of the output phase in *report, before the first record is processed with output processing. Also, will now execute in *clerk, prior to the first execution of @MENU.
Note: doing a "lookup -" in @ONCE will cause you to jump to that record and skip the normal *clerk menu, just as a "-" lookup -" in @MENU will do.
Version Ref:  5.0
Note: Although @ONCE in *report is documented as being run prior to any output being done, it was run while sitting on the last record read during the sort/select process prior to release 5.0.14.
Some people thought that this meant that it was sitting on a selected record.
@ONCE has now been fixed to be not sitting on any record. However, some people depend on their incorrect interpretation of the old behavior, so setting PFOLDONCE=ON will "revert back" to a
modified version of the old behavior, where it will now be run while sitting on the last record _selected_ during the sort/select process.
 
Version 6.0.00 - @ONCE now works from all processing tables.
 



@entsel
 
Description:
Tells an "Input Processing Table" what to do after record is displayed, but just before the prompts are displayed and the cursor is placed at the "Enter Selection" prompt.
This processing does NOT lock the current record. This means you can not write to real fields within an @entsel routine.
A common use for @entsel is to combine it with the -d flag of clerk. This flag tells filePro to clear the standard prompts off the bottom of the record screens. This allows you to put up custom prompts
of your own. Using @entsel will put these custom prompts up at the appropriate times.
For example: The following command line and code will display a custom set of prompts. It would be up to you to make sure there are appropriate @keys for each of the displayed prompts. Just
changing the prompts will not stop filePro from intercepting the keys it normally does like (H)ardcopy, (B)rowse, (U)pdate and so forth. They will still be active unless you build @keyH, @keyB @keyU
processing of your own. Any combination of filePro (factory installed @keys) and custom @keys of your own is acceptable, just remember that yours will override the factory supplied @keys.
rclerk filename -s1 -d
@entsel If:
      Then: show "\r P \r-Print, \r U \r-Update, \r M \r-Modify, \r X \r-Exit"
      Then: end
IMPORTANT: Remember that @entsel processing does NOT lock the record on multi-user systems, so you can not make assignments to real fields within the @entsel code. In other words, a real field
can not be the left side of an equals statement.
Note : @entsel trigger is used only on INPUT processing table.



@key
 
Description:
When user presses key "x" (or "X", case is not significant) while sitting at the "Enter Selection >" prompt.
@key can be used with any plain text character key on the keyboard. Special keys (TAB, ENTER, SAVE, etc.) are not usable with @key.
This processing can be activated by the user while sitting on a record with the cursor at the "Enter Selection" prompt (or custom prompt).
Pressing the designated key locks the record (multi-user), runs the AUTOMATIC table first, and then runs the @key processing, starting at its label following the table directions until an END is
encountered. At this point, the AUTOMATIC table is run again and the process is finished.
IMPORTANT: The AUTOMATIC table's first job is to clear all regular dummy variables. If you set a variable inside your @key processing and expect it to retain that value, you must make this variable
"global". The AUTOMATIC table does not clear global variables.
NOTE: Be sure that there is always a "then" line above your @key process which will not allow the INPUT table processing or other @when processing to "fall through" to this @key code. This will,
of course, give you undesirable results. If there is no INPUT processing and you want to build an @key routine, put an END statement on line 1's "then" line, and build the @key starting from line 2. This
way, when the user SAVE's the record, the @key process will not be run as if it were the INPUT table processing.
IMPORTANT: On multi-user and network systems, @key processing "locks" the current record. If other users are running reports or processing that select this record, they will be stopped in their
tracks until the lock is removed. For this reason, you should not put up processing MENU's with @key. Also, be careful not to put up message boxes or the like, which require that the user press a
key to bring them down. More likely than not, someone will inadvertently leave such a message on the screen and go to lunch. This hangs everyone else up who needs access to that record. A
better idea would be to use the SLEEP command and display the message for a reasonable amount of time and then bring it down within your own @key code.
 
Example:
@keyT   If:
      Then: show "@The time is"<@tm ; end
 
The T is capitalized only for clarity when reading the code. (Processing tables are insensitive to cAsE.)
The above will certainly work, but it forces the user to press ENTER to finish the @key process. Instead, try:
@keyT   If: 'on Unix, use sleep "3"
      Then: show "The time is"<@tm ; sleep "3000" ; end
This will show the time for 3 seconds and then automatically end the processing, leaving nothing up to the user.
Of course, if the @key process is supposed to put the user into UPDATE mode so he can add to or modify the record or perform some other task, this is perfectly acceptable and a great use for
@key processing. You have to assume that the user will finish such a task before leaving for lunch.
@key processing can be tricked into working from other parts of the INPUT processing table. This is done with PUSHKEY. As in:
      Then: pushkey "T" ; end
When this code is encountered, filePro waits for control to be returned to the user, and just before it accepts input from the keyboard, it generates the designated key (in this case T). Since the
@keyT is triggered by this event, it happens just as if the user had activated it himself. If there is no @keyT processing on the INPUT table, nothing will happen.
Note: @keyX trigger is used only on INPUT processing table.



@menu
 
Description:
Processing done just before the clerk menu appears.
@menu processing can only be used on INPUT tables. It is activated just before the clerk menu appears on the screen and, this is IMPORTANT, it is activated EVERY TIME the clerk menu is just about
to appear on the screen. This can be very confusing at first. More than likely, you will want the @menu code to work just once, the FIRST time the user ENTERS this file. You probably do not want to
run it again when the user is LEAVING the file. This can be accomplished by setting global dummy variables to control the processing.
Let's assume that you want the @menu processing to bring the user to "his" record in a file. You do this by asking for his initials and then moving him directly to that record with "lookup -". This can be
done as follows:
@menu   If:
      Then: input popup in(3,allup) "What are your initials? "
err     If: in eq "" 'no answer,
      Then: errorbox "Sorry, those initials not on file." ; exit
      Then: lookup - k=in i=A - nx
        If: not -
      Then: in="" ; goto err
This code will allow the user to put in a good set of initials (on file) and take him directly to that record. Blank initials or not on file initials will kick him out of the program. However, there is one glitch.
When the user is done with the task on his record and wants to exit the program, the @menu program keeps asking for his initials, it doesn't know he wants out! Of course, users could press ENTER
and the program would throw them out for blank initials, but there is a better way, and it is the key to making @menu work in most other situations as well. Set a "flag" to tell @menu what to do on the
way in and on the way out. Do this with a global dummy variable. It means adding 2 lines above what is already shown, and something like this should probably be in most @menu routines.
@menu   If: f eq "1"
      Then: exit
      Then: f(1,,g)="1"
      Then: input popup in(3,allup) "What are your initials? "
err     If: in eq "" 'no answer,
      Then: errorbox "Sorry, those initials not on file." ; exit
      Then: lookup - k=in i=A - nx
        If: not -
      Then: in="" ; goto err
 
This flag will be empty the first time into clerk, so the user can get to his record. But, this time when he tries to exit the program, the value of f will be "1" and it will happen.
If you want the user to be able to stay in the program and make use of the clerk menu, this EXIT could be an END statement. This would leave the user at the clerk menu. Remember, @menu
processing executes all the @menu code it encounters and then puts up the clerk menu. If all it encounters is END, it does nothing and puts up the menu.
There are a variety of things you can do with @menu in terms of taking users in and out of files and records. A powerful combination is to use @menu with PUSHKEY. Examine the following:
@menu   If: f eq "1"
      Then: exit
      Then: f(1,,g)="1"
askin   If:
      Then: input popup in(1) "1) Indexes\n2) BALDUE selection set\n====> "
        If: @sk eq "BRKY" or @sk eq "ENTR"
      Then: exit
        If: in ne "1" and in ne "2"
      Then: goto askin
        If: in eq "1"
      Then: pushkey "4" ; end
        If: in eq "2"
      Then: pushkey "22LBALDUE[ENTR][ENTR]" ; end
This asks the user whether he wants to go into the file using indexes, or to go directly to the first record that matches the criteria on the BALDUE selection set. This may NOT very robust or useful
code, but it shows how PUSHKEY and @menu can work together.
Notes :

@menu trigger is used only on INPUT processing table.
@menu processing is performed while the user is standing on record 0. There are no real fields available.

 When using a lookup-dash in @MENU routine, it will override -X flags. 



@update
 
Description:
Starts input processing before user is put into update mode. This processing allows you to do things AFTER the user has pressed "U" to UPDATE the record (or whatever key is assigned to perform
this function) and BEFORE the cursor hits the first field on the cursor path. (Or before it hits any @wef processing which may be attached to that first field).
Note : @update trigger is used only on INPUT processing table.



@wbl
 
Description:
Responds to browse lookup key (keylabel DMAP) when in field "nnn". If there is an existing browse lookup for this field, it is not performed.
Notes: The "*" wild card character can be used in place of a particular field number when using @wbl, i.e., @wbl*. @wbl trigger can only be used on the INPUT processing table.
Field-specific events (@wbl5, @wblA, etc.) take precedence over associated field events (@wbla1), @wblb2), etc.), and events including the wild card (@wbl*). filePro will execute the field-
specific event first, then associated field events and finally non-specific " * "   events.



@wbrk
 
Description:
When breaking a report for subtotal "n".
Note : @wbrk trigger can only be used on the OUTPUT processing table.



@wef
 
Description:
 When entering field "nnn".
Note: The "*" wild card character can be used in place of a particular field number when using @wef, i.e., @wef*. @wef trigger can only be used on the INPUT processing table.

Field-specific events (@wef5, @wefA, etc.) take precedence over associated field events (@wefa1), @wefb2), etc.), and events including the wild card (@wef*). filePro will
execute the field-specific event first, then associated field events and finally non-specific "*" events.



@wgt
 
Description:
This trigger occurs when the report process breaks for grand totals. If the environment variable PFWGT0=ON, FilePro will execute the @WGT processing even if no records are selected.
Note : @wgt trigger can only be used on the OUTPUT processing table.
User definable "trigger" processing can be written to occur when the designated event happens. In filePro, these types of processing are given labels and that is where the processing starts up
when the trigger is pulled. This is called "when processing" and said as "when Enter Selection", "when entering field nnn", "when leaving field nnn", and sometimes "@when leaving field n" or "@key
X", etc. The @ starting all these labels may be considered to mean "at", or "at the moment when this trigger is activated".
There are important rules to follow for each of these types of processing.



@whp
 
Description:
When the user presses help key (keylabel HELP) when in field "nnn".
Note: The "*" wild card character can be used in place of a particular field number when using @whp, i.e., @whp*. @whp trigger can only be used on the INPUT processing table.
Field-specific events (@whp5, @whpA, etc.) take precedence over associated field events (@whpa1), @whpb2), etc.), and events including the wild card (@whp*). filePro will execute the field-
specific event first, then associated field events and finally non-specific " * "   events.



@wlf
 
Description:
 When leaving field "nnn".
Note: The "*" wild card character can be used in place of a particular field number when using @wlf, i.e., @wlf*. @wlf trigger can only be used on the INPUT processing table.
Field-specific events (@wlf5, @wlfA, etc.) take precedence over associated field events (@wlfa1), @wlfb2), etc.), and events including the wild card (@wlf*). filePro will execute the field-specific
event first, then associated field events and finally non-specific " * " events.

v6.1 ( USP 6.0.02 )
You can now use: @wlf<letter>* ex. @wlfT* This will apply to any dummy/associated field that begins with 'T' Overrides any other @wlf*



@wuk
 
Description:
When the user presses any of keylabels (DPRT, GRAF, INSL, DELL) when in field "nnn". Once the user presses one of these user keys, you can use @sk to determine which of the 4 were pressed.
The default user key is DPRT.
Note: The "*" wild card character can be used in place of a particular field number when using @wuk, i.e., @wuk*. @wuk trigger can only be used on the INPUT processing table.
Field-specific events (@wuk5, @wukA, etc.) take precedence over associated field events (@wuka1), @wukb2), etc.), and events including the wild card (@wuk*). filePro will execute the field-
specific event first, then associated field events and finally non-specific " * "   events.



@exit (Version 6.0.00.01)
@exit label to *clerk processing.
This is executed whenever a record is exited or broken out of.
Events that trigger this are 'X' while not in update mode, 'BRKY' while not in update mode, and 'exit' in processing. It is the opposite of @entsel, and is the last thing executed when leaving a record.
NOTE: Assignment of real fields is not allowed, this is similar to @once in that the processing that is executed is NOT sitting on a record, but rather record '0'.



Commands
This provides the filePro version number that added or modified the command. If you are using an older version than identified, the command will either not work or may work differently than
advertised. Items with version number 3.x were included in version 3.1 or earlier.  (* designates not included in filePro Lite)

 
Version No. Command Description

4.1 ABS() Returns the absolute value of a number.

5.6 ACCEPT() Accept a connection on a socket.

4.8 ACCESS() Returns file access information.

4.8 ACOS() Returns Arccosine of an angle in radians.

5.0 ACOSH() Hyperbolic cosine value.

4.8 ADDMONTH() Add a specified number of months to a date.

6.0 ARCHIVE Copies a lookup record with all system maintained fields unchanged..

3.x ASC() Convert character to ASCII code.

4.8 ASIN() Returns Arcsine of an angle in radians.

5.0 ASINH() Hyperbolic Arcsine value.

4.8 ATAN() Returns Arctangent of an angle in radians.

5.0 ATANH() Hyperbolic Arctangent value.

3.x AVG() Find averages at subtotal/total levels.

5.0 BACKGROUND Turn ON or OFF the ability to enter background mode with "!G".

4.5 BASE() Converts between different bases.

3.x BEEP Sound the speaker.

5.6 BIND() Binds a name to a socket using IPv4

5.7 BIND2() Binds a name to a socket using IPv6

5.0 BLOB Binary Large Object functions.

4.5 BOM() Beginning of month.

4.5 BOQ() Beginning of quarter.

4.5 BOY() Beginning of year.

3.x BREAK Turns BREAK key on or off.

4.0 CALL name Calls a processing table as subroutine.

4.8 CALL path\name Calls a processing table in another file.

5.0 CALL NOAUTO Ignores dummy fields define in automatic processing.

4.5 CEIL() Performs the ceiling function.

3.x CHAIN name Chain to a processing table.

4.8 CHAIN path\name Chain to a processing table in another

4.5 CHDIR Change the current directory.

3.1 CHR() Convert ASCII code to character.

4.1 CLEAR Sets each element of "array" to blank.
4.1 CLEARB Removes a lookup window from screen.

4.1 CLEARP Removes a popup window from screen.

4.5 CLEARS Clear a SHOW POPUP window.

3.x CLOSE Close all files opened with lookups.

3.x CLOSE file Close indicated lookup file.

3.x CLOSE export Close indicated export.

3.x CLOSE() Close a file

4.8 CLOSEDIR() Close a OPENDIR() system directory for reading.

3.x CLS Clear entire screen.

4.5 COMPARE() Compares two values, with case sensitivity.

5.6 CONNECT() Initiate a connection on a socket using IPv4

5.7 CONNECT2() Initiate a connection on a socket using IPv6

3.x COPY Copy record to lookup file.

3.x COPYIN Copy record from lookup file.

4.8 COPY TO (enhanced) Copy record from one lookup file to another.

4.8 COS() Returns cosine for angle in radians.

5.0 COSH() Hyperbolic cosine.

4.5 CREATE() Create a new file, and open it.

5.8 CRYPTERROR gets error code for ENCRYPT()/DECRYPT() failure



5.0 CURSOR Forces cursor ON, OFF or to default behavior.

5.0.6 CURSOR PATH Allows turning off forced cursor path - fileProGI. Same as MOUSE PATH.

4.8 DACOS() Returns Arccosine of an angle in degrees.

4.8 DASIN() Returns Arcsine of an angle in degrees.

4.8 DATAN() Returns Arctangent of an angle in degrees.

4.8 DCOS() Returns cosine for angle in degrees.

3.x DEBUG Turn debugger on or off.

4.8 DECLARE Global and Local dummy variables long names.

5.7 DECODE() Converts text in a string that was ENCODEd

5.6 DECRYPT() Decrypt ciphered field data created by ENCRYPT().

3.x DELETE Delete record in current file.

3.x DIM() Define an array of "n" fields.

1.x DISPLAY Redisplay current screen (no update).

4.1 DLEN() Returns the display length of a string.

4.5 DOEDIT() Apply an edit to the contents of a field

5.6 DOKEY Execute a keystroke as if the user pressed it

4.5 DOM() Day of month.

4.5 DOQ() Day of quarter.

4.1 DOW() Returns day of week for a date expression.

4.5 DOY() Day of year.

4.1 DROP Drop records from browse lookup

4.5 DROP ALL Drop all remaining records in browse lookup.

4.8 DSIN() Returns sine for angle in degrees.

4.8 DTAN() Returns tangent for angle in degrees.

4.8 DTOR() Converts angle in degrees to radians.

3.x EDIT() Returns the edit-type of a field.

5.7 ENCODE() Converts the contents of a field

5.6 ENCRYPT() Encrypt field data.

5.7 ENCRYPTED() Returns true if a lookup file was ENCRYPTed

3.x END Stop processing.

4.5 EOM() End-of-month.

4.5 EOQ() End-of-quarter.

4.5 EOY() End-of-year.

4.1 ERRORBOX Error box position.

4.5 ERRNAME() Return the name of the specified system error.

3.x ESCAPE Save current screen; use with @wef/@wlf.

4.1 EXISTS() Returns error level for files.

4.5 EXIT Exit filePro, and set the exit value.

4.8 EXP() Anti-log (e^n)for natural log function.

4.8 EXP10() Anti-log (10^n) for common log function.

4.8 EXPORT (Enhanced) Create spin-off files for other programs.

4.5 FIELDEDIT() Return edit name of field.

4.5 FIELDLEN() Return the length of the specified field.

4.5 FIELDNAME() Return the name of the specified field.

5.6 FIELDNUM() Returns the field number of a FIELDNAME in a lookup

4.5 FIELDVAL() Returns the value of a specified field.

5.0 FILENAME() Return the filename of specified handle.

4.5 FILESIZE() Return the number of bytes in a file.

4.5 FLOOR() Performs the floor function.

4.8 FLUSHKEY Clears pending keystrokes.

3.x FORM Print a form. (auto & input proc only)

4.0 FORMM Print a form without closing spooler.

4.1 FRAC() Return the fractional portion of a number.

4.8 FREESPACE() Returns the amount of free disk space if less then 2GB



5.7 FSTAT() Fills @FSTAT[] system array with open file info

5.6 GET16() / GET32() Reads data from the buffer of a binary file

4.5 GETCWD() Return the current directory name.

4.1 GETENV() Return value of environmental variable.

3.x GETNEXT Used with LOOKUP for repetitive lookups.

5.6 GETNONCE() Gets the "nonce" last used with ENCRYPT().

5.6 GETPEERNAME() Returns the name of the connected peer (sockets).

5.6 GETPID() Returns the process ID of the current process.

5.6 GETPPID() Returns the parent process ID of the current process.

3.x GETPREV Used with LOOKUP for repetitive lookups.

5.6 GETSOCKNAME() Returns the name of the socket.

3.x GOSUB Branch to subroutine label; used with RETURN.

4.5 GOSUB OF / GOTO OF Gosub/goto one of a list of labels.

3.x GOTO Branch to element label.

5.0 GUI Test if you are running a fPclient session e.g. fileProGI.

3.x HARDCOPY Print the current screen.

5.7 HASH() Applies the HASH encryption to a field

3.x HELP Display help screen of section "name".

4.8 HTML Create HTML files using filePro HTML functions.

5.0 HTML:xx HTML functions added and enhanced.

4.8 HTMLERRNO() Return error code for the last HTML/JSFILE element.

3.x IMPORT Open a non-filePro file for data importing.

3.x INKEY Get next keystroke, if available.

3.x INPUT Prompt for user input.

4.0 INPUTPW Input password (puts '#' when typing).

4.1 / 5.0 INPUT POPUP Input using a popup window.

4.1 INPUTPW POPUP Input a password in popup window.

4.1 INSTR() In-string search.

4.1 INT() Return the integer portion of a number.

4.5 ISLEAP() Determine if a given year is a leap year.

4.8 IXCOMMENT() Return the comment for the index specified.

4.8 IXSORT() Return sort information for a specified index.

4.8 JSFILE Create sequential ASCII files.

3.x LEN() Find length of field or expression.

4.1 / 5.0 LISTBOX() Display a popup window containing a list.

5.6 LISTEN() Listen for connections on a socket.

4.8 LOCKED() Tests if the lookup failed dur to a locked record.

4.8 LOG() Natural or naperian log function.

4.8 LOG10() Common or base 10 log function.

4.5 LOGTEXT Writes text to a file specified by PFLOGFILE.

3.x LOOKUP Get data from another file.

4.0  Qualifier Enhancement.

4.5  -s switch. Do not display "No Records Exist ..." message

4.0  BRW=lines,row,col size and location of window.

4.0  SHOW=KEEP; Keep window after selecting record.

4.0  SHOW=ONLY; only show the browse lookup.

4.1  SHOW=PKEEP; keep window & highlight bar.

4.0  POP=screen; Popup "screen" when user presses 'V'.

4.0  XKEY=keys; keys which will take browse down.

4.1  FILL=top/bot; Direction to fill browse window.

4.1  PRC=label; prc label to goto at each record.

4.0  number of records for fuzzy search.

4.8  Selection Lookup enhanced to allow use of expressions including the new extended long name
variables.



4.1 MAX() Enhanced to return max value from a list of values.

4.5 MDAY() Returns the number of days in a given month.

5.0 MEMO Memo & plain text BLOB functions.

3.x MENU Create menu in processing.

5.7 MERGEVAL result = MERGEVAL (importname, field number

4.1 MESGBOX Display a popup message box

5.0.6 MESSAGE Refer to fileProGI Developer Toolkit.

3.x / 5.0 MID() Find and copy the middle of a field.

4.1 MIN() Enhanced to find minimum value of field from a list of values.

4.1 MOD() Return the remainder of a expression.

5.0.9 MOUSE PATH Force screen cursor path ON or OFF when using a mouse with fileProGI client. Default is ON. Same
as CURSOR PATH.

4.1 MSGBOX Display a popup message box.

4.8 NEXTDIR() Return system directory information.

4.8 NOT HTML Tests if last HTML/JSFILE element failed.

4.5 NUMFIELD() Return the number of fields in a file.

4.5 NUMRECS() Return the number of records in a file.

4.5 OPEN() Open a file.

4.8 OPENDIR() Return the number of files or list of files

4.0 OUTS Sends data to a serial port.

3.x PAGE Force end of page when printing reports.

4.8 PI() Returns the value of PI or 3.14159265

4.0 POPUP Displays screen of a lookup file.

4.0 POPUP UPDATE Allows update of a screen of a lookup file.

3.x PRINT Print current record.

3.x PRINTER "command" Send output to "command".
(LINUX/UNIX)

3.x PRINTER FILE Send output to file "filename".

5.0 PRINTER FLUSH Flushes all printer buffers

3.x PRINTER LOCAL Send output to terminal printer.

4.0 PRINTER NAME Send output to printer "name".

3.x PRINTER RESET Reset the printer.

4.0 PRINTER TYPE Sets printer type.

4.0 PUSHKEY Places "keystrokes" into the keyboard queue.

5.6 PUT16() / PUT32() Writes binary data to a buffer

4.5 PUTENV Store a value in the environment.

4.1 /  5.0 RAND() Return a pseudo-random number.

4.5 READ() Read from a file.

4.8 READBROWSE() Returns browse format as a data string

4.5 READLINE() Read a line of text from a file.

4.8 / 5.0 READOUTPUT() Reads the text portion of a report.

4.8 / 5.0 READSCREEN() Reads text portion of a screen.

4.8 RECLEN() Record length of the specified file.

5.6 RECV() Receive a message from a connected socket.

5.6 RECVLINE() Receive a message from a connected socket.

4.5 REMOVE() Remove a file from the disk.

4.5 REPEAT() Repeat a string of characters.

3.x RESET Reset selected records @wgt.

5.0 RESET @PN Reset Page Number back to 1

3.x RESTART Restart processing from start of table.

3.x RETURN End subroutine; go to element after GOSUB.

4.8 RTOD() Converts angle in radians to degrees.

5.0 SAVE Set the save option ON or OFF.

4.5 SCREEN (enhanced) Allows a cursor position to be specified.

4.5 SEEK() Set the current location within an opened file.



3.x SELECT Select record.(sort/selection processing)

5.6 SELECT() Select a socket handle.

5.6 SEND() Send a message to a connected socket.

5.6 SENDLINE() Send a message to a connected socket.

4.5 SET Fills an array with a specified value

3.x SHOW Show a message.

4.5 SHOW POPUP Display a message in a popup window.

5.0.6 SHOW RAW Show a message without filePro interpretation.

4.5 SHOWCTR() Center a message on the screen.

4.5 SHOWTOCOL() Specify show ending column for display.

4.5 SIGN() Return the sign of a number.

4.8 SIN() Return sine for angle in radians.

5.0 SINH() Hyperbolic sine value.

3.x SKIP Skip to next field; used with @wef only.

4.5 SLEEP Stop processing for a specified amount of time.

5.6 SOCKET() Creates a socket of the specified type.

5.6 SOCKETCLOSE() Closes the socket.

5.6 SOCKETTOSYS() Returns the corresponding system handle number for an open socket.

5.6 SOCKETERROR() Returns the error code of the last socket-related error.

3.x SORT Control sorting level and method.

4.8 SORTINFO() Sort information for a specified output.

4.1 SOUNDEX() Return the soundex code for the string "exp".

5.6 SPELLCHECK Check spelling of memos and other fields.

4.1 SQRT() Returns the square root of "n".

5.0 STATUS Retrieves the status of a handle

4.8 STRTOK() First occurrence of any string.

4.5 SWITCHTO Switch to a different screen.

4.5 SYNC Flush any disk writes pending on a file.

3.x SYSTEM Execute a OS command from processing.

5.6 SYSTEM() Returns the exit value of command issued.

4.1 SYSTEM NOREDRAW No screen redraw while processing.

5.6 SYSTOSOCKET() Given an operating system handle that corresponds to a socket, this creates a filePro handle to it.

4.8 TAN() Returns tangent for angle in radians.

5.0 TANH() Hyperbolic tangent value.

4.5 TELL() Get the current location in the file.

4.8 TOHTML() Converts filePro HTML characters to HTML equivalents.

3.x TOT() Get a total or subtotal on field.

5.0 TVM_I() Time-Value-Money - Interest.

5.0 TVM_N() Time-Value-Money - Number of periods.

5.0 TVM_PV() Time-Value-Money - Present Value.

5.0 TVM_PMT() Time-Value-Money - Payment.

5.0 TVM_FV() Time-Value-Money - Future Value.

3.x UPDATE Put user in update mode.

3.x USER Send/receive data to/from user program.

4.5 VIDEO Turn video updates on and off.

3.x WAITKEY Wait for next keystroke.(See also INKEY)

4.5 WOM() Week of month.

4.5 WOQ() Week of quarter.

5.6 WORDWRAP() Gets wrap information for memo & non-memo fields,

4.5 WOY() Week of year.

4.5 WRITE Write data to a file.

4.5 WRITE() Write to a seek position in a file.

4.5 WRITELINE() Write a line of text to an external file.

4.5 XLATE() Translate characters.



Environment Variables
This provides the filePro version number that added or modified the environment variable. If you are using an older version than identified, the variable will not work or may work differently than
advertised. Items with version number 3.x were included in version 3.1 or earlier.

 
Version No. Variable Description

1.x ABE=ASCII Save processing tables in ASCII format.

4.8 COMSPEC MS-DOS standard variable for path to COMMAND.COM

4.1 DIALOGINVERSE=0xNN Sets the foreground and background inverse colors of filePro dialog boxes.

4.1 DIALOGNORMAL=0xNN Sets the foreground and background colors of filePro dialog boxes.

3.0 ERRORINVERSE=0xNN Controls colors of error boxes.

3.0 ERRORNORMAL=0xNN Controls colors of error boxes.

3.0 HELPINVERSE=0xNN Sets the foreground and background inverse for help.

3.0 HELPNORMAL=0xNN Sets the foreground and background normal for help.

3.x INSTDRV Part of MDCONFIG. Allows installation from B:

4.5 LOGAPPEND Append LOGFILE instead of overwriting. Also PFLOGAPPEND.

4.5 LOGFILE Sets filename for LOGTEXT command.

3.0 MENUBORDER Sets foreground and background colors of borders.

3.0 MENUINVERSE Sets inverse colors of menus.

3.0 MENUNORMAL Set normal colors of menus.

4.5 PF64K=ON Turns of size warning in cabe.

4.5 PFADDWP Control .wp extension for Import/Export word.

4.8 PFAUTOKSIZE Sets default tok size for auto processing. If not set, default value is "20000" prior to 5.6.0 and
"100000" with 5.6.0 and later.

4.8 PFBACKGROUND Turns off background processing.

4.8 PFBIXBLANK Controls how filePro treats a null lookup key.

4.8 PFBIXBUILD=2 Use 4.1 style sorting for indexes.

4.8 PFBIXNODESIZE Overrides index rebuild nodesize.

4.8.8 PFBLANKOV Causes date math with blank dates to return "/OV".

4.5 PFBLDFREE Freechain build message. Default is OFF.

4.5 PFBREAK=OLD Processing tables continues when break key pressed.

4.5 FBRWM=ON Strip trailing blanks from browse lookup.

4.8 PFBRWSLASH Controls backslash handling for browse lookups.

6.01 PFCATCHSIGPIPE ON changes the way SIGPIPE works with user commands.   Default=OFF

4.5 PFCHECKLOCK Warning if attempt to modify lookup w/o -p flag

5.0 PFCHECKLOCKPOPUP Controls logging of non-protected lookups.

4.5 PFCLKBREAK Return to last function when break key pressed.

4.8 PFCLOCK Enables or disables clock displayed in menus.

5.0.15 PFCLOSEPENDWARNING=OFF Disable the warning if you attempt to close an HTML tag when it was not open.

4.5 PFCMARK Century mark.

4.8 PFCONFIG Overrides default path of /fp/lib/config.

4.8 PFCURSOR Sets the size of the cursor.

1.x PFDATA Drive letter for the "/filePro" directory.

5.0 PFDIALOGPROMPT Controls positioning of system message prompts.

1.x PFDIR Path for the "/filePro" directory.

4.8 PFDIRFILTER Verifies that only /filepo/directories in filename list.

4.1 PFDLDIR Sets path to downloadable printer file.

4.5 PFDLGENTER Enter key acts like a save key.

4.1 PFDROPSHADOW Turns the drop shadow on or off.

3.0 PFDSK Identifies data drives. Overrides PFIGN.

4.8.9 PFEDFAILBOX Causes "edit failed" messages to appear in a popup box, rather than flash at the bottom of the
screen.

5.6.2 PFENTSELDISABLE=list Disables (and remove prompts for) a set of default behavior of *clerk at the "Enter Selection" prompt.

5.0 PFEOF Sets End-of-Field character to use with filePro's internal memo editor.

5.0 PFEOP Sets End-of-Paragraph character to use with filePro's internal memo editor.

5.0.14 PFEXPORTALL=ON Use to " revert back " to old behavior.

4.5 PFERRKEY Key to return from a filePro/system error.



4.8 PFF6PROMPT Controls F6 with @wbl.

4.5 (Obsolete) PFFILES=nn Override default of 20 file handles.

5.0.9 PFFIXEDLISTSIZE=ON
 

Prevents filePro from shrinking selection lists. This allows screen readers for the blind to be
programmed with fixed screen locations for such lists. Default: OFF

5.0.9 PFFIXNOLOCK=OFF
 

Turns off a change in behavior related to how filePro handles posting to a lookup
that does not have a "-p" to lock the record.

5.0.6 PFFORCECURSORPATH Turn OFF forced cursor path for mouse clicks in fileProGI.

4.8 PFFORMTOKSIZE Sets default tok size for "FORM" command. If not set, default value is "20000" prior to 5.6.0 and
"100000" with 5.6.0 and later.

4.1 PFGLOB Override path "/fp/lib/edits"(global edits).

4.1 PFHCFF Page eject after "H" for "hardcopy".

5.0 PFHELPAUTOGOTO Forces F9 index search upon entering help.

5.0.5 PFHELPDIR Sets alternate path to filePro help files.

1.x PFIGN Drives to ignore. (DOS only)

4.1 PFIMPBUF Increase import record length. Default value increased from "1024" to "10000" in 5.6.0

5.0.9 PFINSERTMODE=ON Set insert mode on by default in *cabe/*clerk.

4.8 PFIXGT Allows clerk to do next gt if no exact match.

3.0 PFIXS Turns on or off "Index Scan" feature.

4.8 PFKEEPIXVAL Keep last index used in clerk.

6.0.02 PFKEYLOGGER ON to log all keystrokes

6.0.02 PFKEYLOGGERMB=n Where n is the number of megabytes allowed

4.5 PFKEYTAB Changes filePro key table as specified.

4.5 PFLABEL Allow invalid characters in a prc tables.

4.5 PFLANG Sets the sort collating sequence for different languages.

4.5 PFLBSIZE filePro label table size. PFLBSIZE defaults to 1000, but can be set to any from 100 to 32,767.

5.0.15 PFLICDEBUG=path Set path & filename for creating a license debug file.

ODBC 1.0.01 5.0.15 PFLICFILE Override the default license path. Default path is %pfprog%\fp\lib\licfp.dat

4.8 PFLISTSLASH Controls backslash handling in list boxes.

4.5 PFLKNL Lookup "-nl" finds last match instead of 1st.

4.5 PFLOCKBOX Flashes "record is being updated" message.

5.0.15 PFLMHOST:IP_addr:port Identify where the license manager resides.

5.0.14 PFLOGAPPEND Append LOGFILE instead of overwriting. Use LOGAPPEND prior to version 5.0.14

5.0.14 PFLONGVARDOT=OLD Allow dots in declared variable names.

5.0 PFLOOKUPNOFILE Allows you to check syntax on a prc table without it checking for valid filenames in any lookups.

5.0.6 PFLOOKWIZPROT Change default for lookup wizard's "protect record".

4.8 PFLX Globally disable creation of browse lookup.

4.5 PFMAXALLOC Max # of sort buffers to allocate for indexing.

4.5 PFMAXASIZE Max sort buffer size for indexing.

4.5 PFMAXTEMP Maximum virtual memory size when sorting.

4.5 PFMAXTFIL Maximum virtual memory files used for sorting.

3.x PFMBTO Sets "messagebox" timeout in seconds.

1.x PFME Waits for Return key press for next field.

5.0.10 PFMEMOINSERTMODE=ON Sets default memo editor insert mode to on.

5.0.15 PFMEMOEDITOLDKEYS=ON Revert to old keys T = Toggle Insert and I = Insert Time for the memo editor.

4.5 PFMENBRK=OLD Restores 4.1 behavior for break in a menu.

4.1 PFMENU Overrides default path for user menus.

4.8 PFMISSINGARG=OLD Revert to old method for missing arguments.

4.1 PFMONO Use monochrome screens with a color video card.

5.0.15 PFMSBBLINK=ON Restore the old behavior of MSB meaning "blink".

4.5 PFMU Turns off "protect lookup" in cabe lookup.

1.x PFNAME Same as using Set/Change filename from menu.

3.0 PFNB Turn banner printing off.

3.0 PFNET Use Network calls. (DOS only)

4.8 PFNEWNTCONSOLE Create new console for Java RunMenu.

5.0.6 PFNEWSK Allows new @sk values.



4.1 PFNOBOX Eliminates the boxes around menus, headers etc.

4.5 PFNODF Disables ddefine, dexpand free-diskspace check.

4.1 PFNOHELP Displays "No Help Available" if ON.

5.6.2 PFNODFMSG=OFF Turns off ddefine's "PFNODF=ON" notice. (Default:ON)

5.0 PFNOIXHIDE Disables/enables Index hiding.

5.0 PFNOQUAL Turns off "NONE" from qualifier list.

4.8 PFNOTRAP Controls filePro trapping of SIGBUS and SIGBUSV. (filePro internal debug)

4.8.10 PFNTPRTERR Message box for NT internal errors.

5.0 PFNULLIXSORT Enables index sort without a major key.

4.5 PFNUMIXBUILD Number of index blocks cached.

4.5 PFNUMIXBUF Number of index blocks to buffer.

5.0.14 PFODBCCOMMITTYPE Selects the open-commit-type to use for high-level ODBC e.g. " 0 " , " 1 " , or " 3 " .

4.5 PFOLDIX Builds old style(4.1)indexes.

5.0.14 PFOLDONCE=ON PFOLDONCE=ON will "revert back" to a modified version of the old behavior.

4.5 PFONEHEAD Report prints header lines only once.

4.1 PFOUTS Specifies serial communication parameters.

5.0 PFPERL Provides the path for PERL executable.

4.8 PFPOSTPRINT Executes command line variable when printing to a file.

4.8 PFPRINTER Set the printer type and destination (Enhanced to allow setting to LOCAL and SCREEN)

4.5 PFPRINTERx Set printer characteristics for printer 1-9.

1.x PFPROG Path to the "/fp" directory.

3.0 PFPRT Directs output to a device or filename.

4.1 PFPRTC Set the printer type.

4.0 PFPT Controls local printing (AIX/LINUX/UNIX).

4.0 PFPTO Wait time in sec. for "Printer Ready".

3.0 PFQUAL Qualified data set to use.

5.0 PFQUALMESG Override default qualifier message.

4.8 PFQUIT Disables CTRL \\ for UNIX users.

4.8 PFREADONLY Forces read-only attribute.

5.0.6 PFREFRESHRATE Sets the screen refresh rate during sort/select in dxmaint/*reporty to once every "nnn" seconds.

4.5 PFRETRY Number of retries for locked read.

5.0.12 PFROOTFIX=OFF Turns off fix for UID with root login on *NIX systems if not required.

4.8 PFSCC Enables "!scc" shell-escape within clerk.

6.02 PFDDEFCOLOR PFDDEFCOLOR=ON|OFF (default ON) to force monochrome in ddefine.

4.8.8 PFSERVROOT Implied root for HTML and JSFILE.

3.0 PFSHADOWCOLOR Foreground and background colors for drop shadows.

5.0 PFSHOWF6ARROW Shows a down-arrow as EOF marker for F6 popups.

5.0.9 PFSHOWROWCOL=OFF Turns off the row/column display in programs like dscreen, dmoedef, and *cabe. It can confuse
screen readers for the blind, as the numbers are read every time you press a key.

5.0.6 PFSHOWWINERROR Show specific Windows error codes.

5.0 PFSKHEX Turns on display of HEX value for @SK.

4.8 PFSKIPLOCKED Skip locked records nnn seconds.

4.8 PFSKIPPEDLOG Log records skipped by PFSKIPLOCKED.

4.5 PFSP Overrides the site password stored in fppath.

5.6 PFSPELLPATH=path Path for the spellchecker dictionary.

5.6 PFSPELLUSERLIST=path Override default path for personal dictionaries.

3.0 PFSPOOL Selects spooler/printer attached to spooler.

4.5 PFSYNC Sync after expanding files or writes.

4.8 PFSYSEUID If OFF, then SYSTEM command will be executed without the filePro setuid. Default is ON

4.8 PFSYSYR4 @BD, @CD, @TD, @UD to returns 4 digit years.

4.0 PFTERM Type of terminal being used.

4.0 PFTIMEOUT Same as PFPTO. Default 10 seconds.

1.x PFTMP Identifies where to place temporary files.

4.1 PFTOKSIZE Sets the default token table size. If not set, default value is "20000" prior to 5.6.0 and "100000" with
5.6.0 and later.



1.x PFVER Show individual filePro program version.

4.8 PFWGT0 Totals without selected records.

3.0 POPUPNORMAL Color code for popup windows foreground.

3.0 POPUPINVERSE Color code for popup windows background.

5.0 PFUFLAG=ON Same as -U flag for reports. (jumpstart)

4.8.9 PFUMASK=0nnn Sets Unix "umask" value.

4.5 PFXFERDOS=OLD Use old syntax for "doscp" in SCO Unix.

4.8 PSI Standard Unix variable for the shell command prompt.

1.x TERM Type of terminal being used.

1.x TERMCAP Filename overrides "/etc/termcap" file.

3.0 TEXTINVERSE FG and BG colors of menus, prompts etc.

3.0 TEXTNORMAL FG and BG colors of menus, prompts etc.

6.1 PFERRSUPPRESS PFPWAUDIT Password auditing also requires a ./fp/logs/pwaudit.cfg file. Same structure as servlog.cfg. Any
error that would be sent to mail will still be mailed on unix/linux based systems. Errors reported in the
background will still be suppressed. Including the program name. Invalid password and license
errors will still be reported. Password errors omit the filename. dcabe and rcabe are exempt from the
error suppression.

6.1 PFIGNTMEDS Ignore "Too many edits" error message. Default OFF.

6.2 PFMENUVER=0 This globally changes how filePro menus display their version strings.
0 - Show menu version as-is.
1 - Show filePro version if menu version is blank.
2 - Show menu file name if menu version is blank.
3 - Always show filePro version.
4 - Always show menu file name.

6.2 PFXLASCII=OFF If enabled, any non- printable ASCII characters will be automatically stripped from data when
inserted into an XLSX document.



System Maintained Fields
This provides the filePro version number that added or modified the system maintained field. If you are using an older version than identified, the system maintained field will not work. Items with
version number 3.x were included in version 3.1 or earlier.

 
Version No. Field Description

3.x @AF Associated field instance.

4.8 @B4 4 digit year equivalent of @BD

3.x @BD Last batch update. (MM/DD/YY)

4.0 @BK Exit key for browse lookup.

3.x @BR The currently highlighted

6.1 @BT Last batch update time. (HH:MM:SS)

4.8 @C4 4 digit year equivalent of @CD

3.x @CB The name of the user that first created the record.

3.x @CD The date that the current record was created.

5.0 @CO The column of field left or entered.

4.8 @CP Position of the cursor within the field you just left.

6.1 @CT The time that the current record was created. (HH:MM:SS)

3.x @DT The current date, spelled out.

4.1 @FD Field cursor is in.

4.8 @FI Current file name

3.x @FN The current format name.

3.x @ID The name of the current user.

3.x @LC Line count.

5.0 @LI The current line number within processing.

4.1 @OS The operating system name ("DOS", "UNIX", "LINUX", etc.)

4.8 @PC Current printer comment

4.8 @PD Current printer destination

3.x @PM Parameter passed to ".prc" browse lookup row.

3.x @PN The current page number.

4.8 @PR Current printer name

4.8 @PT Current printer type

4.8 @PW Parameter passed to "prc" with -rw flag.

4.8.5 @PX Parameter passed to "prc" with -rx flag.

4.8.5 @PY Parameter passed to "prc" with -ry flag.

4.8.5 @PZ Parameter passed to "prc" with -rz flag.

4.8 @QU Current qualifier

3.x @RN The current record number.

5.0 @RO Row position of field.

4.8 @RP Number of records processed.

3.x @RS Number of records selected so far.

3.x @SF The contents of the subtotal

3.x @SH The name of the subtotal

4.1 @SK Special key (used with INKEY, when-processing only)

3.x @SN The current screen.

4.8 @T4 4-digit-year equivalent of @TD

3.x @TD The current date. (MM/DD/YY)

3.x @TM The current time. (HH:MM:SS)

3.x @TS The total number of records selected for this report.

3.x @UB The name of the user that last updated this record.

4.8 @U4 4 digit year equivalent of @UD

6.1 @UT The time the current record was last updated. (HH:MM:SS)

3.x @UD The date the current record was last updated. (MM/DD/YY)

4.8.4 @VR Version number of *clerk or *report being run.

5.8.3 @VR2 Version number of *clerk or *report being run for menu use



System Arrays
 

Version No. Array Name Description
5.0 @CMDLINE Command line passed to *clerk or *report.

5.0 @DIRLIST List of filenames returned by NEXTDIR.

5.0 @DIRLIST_EXT Contains the extension as returned by NEXTDIR.

5.0 @DIRLIST_FILENAME Contains the full filename as returned by NEXTDIR.

5.0 @DIRLIST_NAME Contains the format name as returned by NEXTDIR.

5.0 @SYSFILES All system files opened.

5.7 @SYSINFO Returns information about the current time, in several formats

5.0 @ALLFILES All filePro files Open or Closed.

5.0 @FPFILES Open filePro files.

5.0 @FSTAT Information for the last successful EXISTS().

5.6.4 @FUZZY Contains info about the most recent fuzzy browse lookup.

5.0.15 @LICENSE Information related to the filePro license.

5.6 @WORDWRAP[] Returns text for the most recent WRAPINFO call.



Trigger Fields
This provides the filePro version number that added or modified the trigger field. If you are using an older version than identified, the trigger field will either not work, or work differently than advertised
Items with version number 3.x were included in version 3.1 or earlier.
 

Version No. Field Description
4.8 @DONE Executes processing after @WGT.

4.1 @ENTSEL Processing tables to do after record is displayed, but before the prompts are displayed.

3.x @KEYx When user presses key "x".

4.1 @MENU Processing to do before the clerk menu. (Inquire/Update/Add)

5.0 @ONCE Executes once before records processed.

4.1 @UPDATE Starts input prc before user is put into update mode.

3.x @WEFnnn When entering field "nnn". (Inquire, Update, Add)

3.x @WGT When breaking for a grand total. (Request Output)

4.1 @WBLnnn Responds to browse lookup key (\KB) when in field "nnn"; existing browse lookup is not performed.

3.x @WBRKn When breaking for subtotal "n". (Request Output)

4.1 @WHPnnn When user presses help key (\KJ) in field "nnn". (Inquire, Update, Add)

3.x @WLFnnn When leaving field "nnn". (Inquire, Update, Add). See also @WEF.

4.1 @WUKnnn When user key (\KE) is pressed in field "nnn".

4.5 @W??* The '*' character can be used in place of the "nnn" field number in WEF, WLF, WBL, WHP, WUK



Release notes - filePro Plus 6.1 - 03/28/2025
    fP 6.1.XX.08

The filePro Plus software and the documentation provided with it
are protected under United States Copyright Laws and is provided
subject to the terms and conditions of the filePro License Agreement.

PLEASE NOTE the support and fax phone numbers listed in this
readme file. Open new support incidents on our website.

*****************************************************************

WWW        http://www.fptech.com
Support    support@fptech.com
Sales      sales@fptech.com
Management filepro@fptech.com

*******************************

To submit bug reports
--------------------------------
1. Login to your account portal on our website
   http://www.fptech.com/fptech/login.php and then
   go to the Support Incident Menu and submit an
   incident request.
2. EMail them to support@fptech.com including the text
   "Bug Report" with the version # and your filePro
   License # in the subject line
3. FAX them to (813) 354-2722 clearly marking them as bug reports
   and be sure to reference your filPro License #
4. Call the customer support number (800) 847-4740

*******************************

A special thank you to Jim Asman for his contribution
to the functionality of our printer tables.   Jim was
a good friend to filePro and is dearly missed.

*******************************

Contact Information

Surface Mail
    fP Technologies, Inc.
    432 W. Gypsy Lane Road
    Bowling Green, OH 43402

Phones
    Support   (800) 847-4740
    Sales     (800) 847-4740
    Fax       (813) 354-2722

Email
    Support    support@fptech.com
    Sales      sales@fptech.com
    Management filepro@fptech.com

It's important that you clearly describe a suspected bug and
include the filePro version number. If the programmer has trouble 
figuring out what you meant, you might as well not have reported 
the bug. Be very specific. For example, if you are reporting a 
bug concerning a Browse, identify if it is a lookup browse or 
browse created by using the [F6] key. A screen shot is very 
helpful and sometimes better than more than 1000 words.

Describe exactly how to duplicate the bug. Although it's 
sometimes difficult to create a working sample to demonstrate the 
problem, make every effort to trim down your code and provide a 
working sample application with test data. You may even discover 
that what you thought to be a bug is due to a coding error or the 
bug may only occur with lots of data or large processing tables.

Take good notes as to any error messages and under what 
circumstances the error message is presented. It never hurts to 
provide more information rather than not enough. This is 
particularly true when the programmer asks for additional 
information. Rather than responding with a single sentence, be
verbose since this may shed some light on the bug or what you may 
be doing wrong in your code.

Read what you wrote. Closely read your bug report before submitting 
to make sure it's clear and complete. If you have listed steps for 
duplicating the bug in a sample, exercise the sample with the 
listed steps to make sure you haven't missed a step.
    
***************************************
filePro and filePro Plus are registered 
  trademarks of fP Technologies, Inc.
***************************************
===================================
Bug fixes are below the New Items.
===================================
====================================



Version 6.1.02.RR New USP Only Items
====================================

Enhanced find and replace with an optional match whole word function. This makes
    it much easier to find places where variables like "aa" and "zz" are used.
    
    
Added new F8 options to dmakemenu. You can now move, copy, delete, save, and
    load menu items inside of dmakemenu.

Expanded menu version from 8 characters to 16 in dmakemenu and runmenu. Using a
    longer title and running the menu in an older version of filePro will only
    display the first 8 characters.
    
    
Added new environmental variable PFMENUVER=0, Default 0. This globally changes
    how filePro menus display their version strings.
        0 - Show menu version as-is.
        1 - Show filePro version if menu version is blank.
        2 - Show menu file name if menu version is blank.
        3 - Always show filePro version.
        4 - Always show menu file name.

Added pseudo environmental variable @MN that can be used in the version string
    or menu title to show the menu file name in its place. To use, place $@MN in
    the menu title or menu version section when designing a menu.

Added an option "7" to READSCREEN() to get cursor path. Dynamically sized, 
    returns a list of fields separated by colons, e.g. "  1:  2:TAB:aa :".

Added new option to ENCODE() and DECODE(), "URL", to handle URL percent 
    encoding. Failure to decode will return an empty string.
Example:
    then: x=ENCODE("URL","Hello, World!") ' x contains "Hello%2C%20World%21"
    then: x=DECODE("URL","Hello%2C%20World%21") ' x contains "Hello, World!"

Added preliminary support for variable index selection in lookups. You can now
    use an expression to select which index to use for a lookup at runtime.
Example:
    then: declare index(1,*); index="A"
    then: lookup myfile = test k=aa i=(index) -nx

    Note: The lookup wizard has not been updated at this time. Support will be
          added in a future version.

Added READMAP(file) function. Takes the name of a filePro file and returns
    information from the first line of the map file. On error or if the file
    is an invalid filePro file, the function will return blank.

Parameters:
    file: The name of a filePro file.

Example return value:
    Each section is 5 characters long by default.
    "type:kreclen:dreclen:keyflds:"
    Where:
        type is the filePro map type; map, map2, odbc, alien.
        kreclen is the key record length for a record in the file.
        dreclen is the data record length for a record in the file.
        keyflds is the number of key fields for a record in the file.
    e.g. "map  :  100:    0:   10:"

Added a new function x=PRINTCODE(code [,flag]). Returns either the expanded 
    print code for the current printer or its description.
    
Parameters:
    code: The print code number to evaluate.
    flag: 0 - Return the "raw" expanded print code.
          1 - Return the comment for the print code.
    
Examples:
    Given a print code table containing the following entries:
    +- Number -- Sequence ------------ Description --------------------+
    |     1     %2 %3                  Initialize printer              |
    |     2     <page>                 New Page                        |
    |     3     <font name="Courier">  Set Font                        |
    +------------------------------------------------------------------+
      if: ' x will contain '<page> <font name="Courier">'
    then: x = PRINTCODE("1")
      if: ' x will contain '<page> <font name="Courier">'
    then: x = PRINTCODE("1","0")
      if: ' x will contain 'New Page'
    then: x = PRINTCODE("2","1")

 
Added x=GETLOCKS(array,lookup). Returns the number of elements populated in the 



    array. Fills the array with locked record information for a given lookup.
    Use '-' for current file. If passing a multi-dimensional, the array must
    point to the final sub array OR the second to last. This allows us to return
    the PID and Username/UID for the given lock. Returns "0" on Windows.
Restrictions:
    Linux|Unix|FreeBSD Only.
    
Parameters:
    array:  An array to place the locked record information in.
    lookup: The lookup to use to check a filePro file for locked records.

Examples:
    then: ' Fill array with the record number of locked records in the file
    then: dim array(10)(10,.0)
    then:                        ' x will contain the number of locks on the
    then: x = GETLOCKS(array,-)  ' file that will fit into array
    
    then: ' Fill array with locked records including PID and Username/UID
    then: dim array(10,3)
    then:                        ' x will contain the number of locks on the
    then: x = GETLOCKS(array,-)  ' file that will fit into array
    
    In the second example each "row" of the array will contain the locked
    record number, the PID of the locking process, and the user holding the
    lock. e.g.
    then: x = array["1","1"] ' x holds the record number
    then: x = array["1","2"] ' x holds the PID
    then: x = array["1","3"] ' x holds the username OR UID
    
    
Added x = FPSTAT(lookup) function to return map information and basic access 
    attributes for a given filePro lookup.
    
Parameters:
    lookup: A lookup to a filePro file to retrive basic attributes from.
            Can be "-" for the current file.
Returns:
    kfilesize;dfilesize;mdate;mtime;
    Blank on error.
    
Where:
    kfilesize is the total sum of the size of all key segments in bytes.
    dfilesize is the total sum of the size of all data segments in bytes.
    mdate is the last date a key/data file was modified, e.g. 03/24/2025
    mtime is the last time a key/data file was modified, e.g. 02:19:59
    
Note: The returned values are ONLY for the active qualifier on the lookup.

Added n = ISDIR(fname). Test if a given path is a directory. Returns "1" if the
    file exists and is a directory. Returns "0" if it is not. Returns a negated
    system error on failure.

Parameters:
    fname: A path to an on-disk resource.
    
Note: Shares the same @FSTAT array used by EXISTS() in filePro.

Added n = ISFILE(fname). Test if a given path is a file. Returns "1" if the
    file exists and is a file. Returns "0" if it is not. Returns a negated
    system error on failure.
    
Parameters:
    fname: A path to an on-disk resource.
    
Note: Shares the same @FSTAT array used by EXISTS() in filePro.
    
    
Added n = ISLINK(fname). Test if a given path is a link. Returns "1" if the
    file exists and is a link. Returns "0" if it is not. Returns a negated
    system error on failure.

Parameters:
    fname: A path to an on-disk resource.
    
Note: Shares the same @FSTAT array used by EXISTS() in filePro.
      ISLINK() always returns "0" on Windows. 

Added s = GETQUAL(fname) function. GETQUAL() will return a colon delimited list
    of all qualifiers for the file given by "fname"
    
Parameters:
    fname: A filePro file name.
    
Example:
    (File invoices has 3 qualifiers 2022, 2023, and 2024)
    then: s=GETQUAL("invoices") ' s will contain "2022   :2023   :2024   :"

Added n = GETQUAL(array, fname) function. GETQUAL() will return the number of
    qualifiers for the file given by "fname" while filling "array" with the



    list of qualifier names.
    
Parameters:
    array: An array to fill with a list of qualifier names.
    fname: A filePro file name.
    
Example:
    (File invoices has 3 qualifiers 2022, 2023, and 2024)
    then: DIM quals(10)
    then: n = GETQUAL(quals, "invoices")  ' n will contain "3"
    then: q = quals["1"]                  ' q will contain 2022
    then: q = quals["2"]                  ' q will contain 2023
    then: q = quals["3"]                  ' q will contain 2024

Added new XLSX functions: XL_FREEZEPANE, XL_FREEZEPANE2, XL_SPLITPANE
e = XL_FREEZEPANE([row [, col [, sheet]]])
Parameters:
    row:   Row to split the cell (0 indexed)
    col:   Column to split the cell (0 indexed)
    sheet: Handle to sheet to freeze the cell on. Leave blank, "0", or "-1" to
           use the default sheet.

Notes:
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

    The split is specified at the top or left of a cell and uses zero based
    indexing. Therefore to freeze the first row of a worksheet it is necessary
    to specify the split at row 2.

    You can set one of the row and col parameters as zero if you do not want
    either a vertical or horizontal split.

e = XL_FREEZEPANE2([cell [, sheet]])
Parameters:
    cell:  The Excel style cell to freeze the cell. e.g. "A1" "D6" "F6".
    sheet: Handle to sheet to freeze the cell on. Leave blank, "0", or "-1" to
           use the default sheet.

Notes:
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

    Split is specified at the top or left of a cell and uses zero based
    indexing. Therefore to freeze the first row of a worksheet it is necessary
    to specify the split at row 2.

    You can set one of the row and col parameters as zero if you do not want
    either a vertical or horizontal split.

e = XL_SPLITPANE([vertical [, horizontal [, sheet]]])
Parameters:
    vertical:   The position for the vertical split. e.g. "1", "12.5", "15"
    horizontal: The position for the horizontal split. e.g. "1", "12.5", "15"
    sheet:      Handle to sheet to freeze the cell on. Leave blank, "0", or "-1"
                to use the default sheet.

Notes:
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

    This function divides a worksheet into horizontal or vertical regions known
    as panes. This function is different from the XL_FREEZEPANE function in that
    the splits between the panes will be visible to the user and each pane will
    have its own scroll bars.

    The parameters vertical and horizontal are used to specify the vertical and
    horizontal position of the split. The units for vertical and horizontal are
    the same as those used by Excel to specify row height and column width.
    However, the vertical and horizontal units are different from each other.
    Therefore you must specify the vertical and horizontal parameters in terms
    of the row heights and column widths that you have set or the default values
    which are 15 for a row and 8.43 for a column.

Added new environmental variable PFXLASCII, default OFF. If enabled, any non-
    printable ASCII characters will be automatically stripped from data when
    inserted into an XLSX document.

Enhanced DIM to allow IMPORT and EXPORT commands to be mapped to an array.
    Example:
        then: IMPORT WORD ifile=(fname)
        then: DIM data(10):ifile(1)     ' data can now be used in place of ifile
        then: ct(4,.0)="1"
    loop  if: ct le "10"
        then: msgbox data(ct); ct=ct+"1"; goto loop
        then: close ifile



Enhanced COPY, COPY TO, and COPYIN commands to support arrays. Each command
    now allows for any combination of lookups and arrays to copy data, including
    mapped/aliased arrays.
    
Syntax:
    COPY lookup           ' Copy the current record to a lookup file
    COPY array            ' Copy the current record to an array
    COPYIN lookup         ' Copy a lookup file record to the current record
    COPYIN array          ' Copy an array to the current record
    COPY lookup TO lookup ' Copy a lookup record to a lookup record
    COPY array TO lookup  ' Copy an array to a lookup record
    COPY lookup TO array  ' Copy a lookup record to an array
    COPY array TO array   ' Copy an array to an array

Examples:
    (Copy the current record to an array)
    then: DIM array(10)
    then: COPY array
    
    (Copy an IMPORT to the current record)
    then: IMPORT WORD ifile=(fname)
    then: DIM data(10):ifile(1)     ' data can now be used in place of ifile
    then: COPYIN data               ' Copy the import to the current record
    then: close ifile
    
    (Copy a lookup record to an EXPORT)
    then: EXPORT WORD ofile=(fname)
    then: DIM data(10):ofile(1)     ' data can now be used in place of ofile
    then: lookup inv=invoices r=(rec) -nx
    then: COPY inv TO data
    then: close ofile
    then: close inv

Added x = COPY(array1, array2 [,src [,dest [,len]]]) function to copy data
    between arrays. Returns the number of elements copied from array1 to
    array2.
    
Parameters:
    array1:  Array to copy from.
    array2:  Array to copy to.
    src:     The array index to start copying from array1.
    dest:    The array index to start copying to in array2.
    len:     The number of elements to copy from array1 to array2.
    
    If no optional parameters are provided COPY() will copy as many items from
    array1 that will fit into array 2. Parameters src and dest default to the
    first index of each array. Parameter len defaults to the entire array
    length.
    
Example:
    then: DIM fruit(3)
    then: DIM food(3)
    then: fruit["1"]="Apple"; fruit["2"]="Orange"; fruit["3"]="Pear"
    then: x=COPY(fruit,food,"1","1","2")
    (The food array will contain "Apple", "Orange", and "")
    

Added XML import and export code.
    filePro now has the ability to import and export XML files.
    
    Export:
        XML [id] :CR fname        - Creates an XML file. The id is optional and
                                    defaults to "0" if only one file is open at
                                    a time. If two or more are open, the id
                                    must be supplied ("0"-"99")
        XML [id] :CR-|:CL         - Closes an open XML file.
        XML [id] :EL name         - Starts an element in an XML file.
        XML [id] :EL-             - Closes an element.
        XML [id] :AT name value   - Adds an attribute to an XML element.
        XML [id] :TX text         - Adds a text element to an XML document.
        
    Example:
        Then: XML :CR "/tmp/myfile.xml"
        Then: XML :EL "EmployeeData"
        Then: XML :EL "employee"
        Then: XML :AT "id" "21"
        Then: XML :EL "firstName"
        Then: XML :TX "Tom"
        Then: XML :EL-
        Then: XML :EL "lastName"
        Then: XML :TX "Anderson"
        Then: XML :EL-
        Then: XML :EL-
        Then: XML :EL-
        Then: ML :CL
    Output:
        <?xml version="1.0"?>
        <EmployeeData>
          <employee id="21">
            <firstName>Tom</firstName>
            <lastName>Anderson</lastName>
          </employee>



        </EmployeeData>

    Import:
        XML [id] :RO fname          - Opens an XML file for reading. The id is
                                      optional and defaults to "0" if only one
                                      file is open at a time. If two or more are
                                      open, the id must be supplied ("0"-"99")
        v = XML [id] :GV key [attr] - Get a value from an XML file using a path
                                      to a key. An attribute name can optionally
                                      be provided to return an attribute value
                                      rather than the text element value.
                                
    Keys are a way to reference part of an XML document using dot syntax. An
    example of dot syntax would be a key, such as "name.first" or "age".
    There are reserved symbols used in key syntax that can be used to
    retrieve certain values from the XML:

    '#' is used to get the number of child elements inside of an element.
    
    '@' is used to specify a literal, or if at the end of the path, get the
        name of the current object.
        
    Index positions can also be used to reference specific elements by numeric 
    position inside of an XML document. Indexes in Key Syntax start at position
    1.

    x = XML :GV "food.10" will attempt to find the tenth (10) item inside
        a food element.

    x = XML :GV "food.@10" will attempt to find a key named "10" inside a
        food element and return its value.

    x = XML :GV "food.fruit[10]" will attempt to find the tenth (10) fruit
        element inside of the food element and return its value.
        
    x = XML :GV "food.fruit[#]" will return the number of fruit elements inside
        of the food element.
    
    Example:
    Given the following XML, here are example commands and what they return.
        <?xml version="1.0"?>
        <EmployeeData>
          <employee id="21">
            <firstName>Tom</firstName>
            <lastName>Anderson</lastName>
          </employee>
          <employee id="99">
            <firstName>Tiffany</firstName>
            <lastName>Anderson</lastName>
          </employee>
        </EmployeeData>
        
    Then: XML :RO "/tmp/myfile.xml"              ' open the XML file for reading
    Then: x=XML :GV "EmployeeData.employee.firstName"  ' x contains "Tom"
    Then: x=XML :GV "EmployeeData.employee[1]" "id"    ' x contains "21"
    Then: x=XML :GV "EmployeeData.employee.1.@"        ' x contains "firstName"
    Then: x=XML :GV "EmployeeData.#"                   ' x contains "2"
    Then: x=XML :GV "EmployeeData.2.firstName"         ' x contains "Tiffany"
    Then: x=XML :GV "EmployeeData.2" "id"              ' x contains "99"
    Then: XML :CL                                      ' close the XML file
    

Added LOOP commands.
    filePro now has support for basic loops.
    
FOR loop
    A loop that runs from a value to a value. Built in edits are supported.
    If a STEP value is not supplied, filePro will determine a STEP value
    based on the FROM and TO expression values. A FROM value that is less
    than a TO value will result in a positive STEP ("1"). If FROM is greater
    than TO the STEP value will be negative ("-1").
    
    Each iteration of the loop will update the value of "f", incrementing by
    STEP, and goto the label specified by DO.

    Syntax:
        FOR f[(len,edit)] FROM exp TO exp [STEP exp] DO label
        
    Example:
        then: FOR f(10,.0) FROM "1" TO "10" STEP "1" DO lp1; goto en1 
    lp1   if: 
        then: msgbox f    ' print the value of "f" from 1 to 10
        then: end
    en1   if:
        then: FOR d(10,mdyy/) FROM "12/01/2024" TO "12/31/2024" DO lp2; goto en2
    lp2   if:
        then: msgbox d    ' print the value of "d" from 12/01/2024 to 12/31/2024
        then: end
    en2   if:
        then: end
    
    Note: The FROM, TO, and STEP expressions are evaluated once when the 
          loop is first executed. Changing these values once the loop starts



          executing will not change how the loop runs.

WHILE loop
    A loop that runs while the condition is true. Each iteration checks the
    condition (cnd) and while the value is true goes to the label specified by
    DO. A condition can be an IF expression or label.
    
    Syntax:
        WHILE cnd DO label
    
    Example:
        then: declare total(10,.0)
        then: total="0"
        then: lookup inv=invoice r=(rec) -nx
        then: WHILE inv DO lp1; goto en1
    lp1   if: 
        then: total=total+inv(1)
        then: getnext inv
        then: end
    en1   if:
        then: close inv; end
        
        
LOOP ... WHILE|UNTIL
    A loop that runs while the condition is true (WHILE) or until the condition
    is true (UNTIL). Each iteration starts by going to the label specified by
    DO, then the condition is checked and the loop either continues or
    terminates based on the value of the condition. A condition can be an IF 
    expression or label.
    
    Syntax:
        LOOP label WHILE cnd
        LOOP label UNTIL cnd
        
    Example:
        then: i(10,.0)="10"
        then: LOOP lp1 WHILE i gt "0"; goto en1
    lp1   if: 
        then: i=i-"1";
        then: end
    en1   if:
        then: end
        
        
BREAK command
    BREAK can be used inside of a loop to terminate its execution early.
    
    Example:
        then: i(10,.0)="10"
        then: LOOP lp1 WHILE i gt "0"; goto en1
    lp1   if: i eq "5"
        then: BREAK            ' Terminate the loop early when i equals 5
        then: i=i-"1";
        then: end
    en1   if:
        then: end

====================================
Version 6.1.01.RR New USP Only Items
====================================

Added JSON import and export code.
    filePro now has the ability to import and export JSON files.
    
    Export:
        JSON [id] :CR fname        - Creates a JSON file. The id is optional and
                                     defaults to "0" if only one file is open at
                                     a time. If two or more are open, the id 
                                     must be supplied ("0"-"99")
        JSON [id] :CR-|:CL         - Closes an open JSON file.
        JSON [id] :OB [name]       - Starts an object in a JSON file.
        JSON [id] :OB-             - Closes an object.
        JSON [id] :AR [name]       - Starts an array in a JSON file.
        JSON [id] :AR-             - Closes an array in a JSON file.
        JSON [id] :IT name [value] - Adds an item to a JSON file, if a value is
                                     not supplied, the resulting value will be 
                                     null.
        JSON [id] :NO name [value] - Adds a number to a JSON file, if a value is
                                     not supplied, the resulting value will be 
                                     null.
        JSON [id] :BL name [value] - Adds a boolean value to a JSON file, if a
                                     value is not supplied, the resulting value
                                     will be null.
                                     
    Note: Names will be ignored when adding an item, number, or boolean directly
    to an array.    
                
    Example:
        JSON :CR "/tmp/myfile.json"
        JSON :OB
        JSON :OB "name"
        JSON :IT "first" "Tom"



        JSON :IT "last" "Anderson"
        JSON :OB-
        JSON :NO "age" "37"
        JSON :AR "children"
        JSON :IT "" "Sara"
        JSON :IT "" "Alex"
        JSON :IT "" "Jack"
        JSON :AR-
        JSON :IT "fav.movie" "Deer Hunter"
        JSON :OB-
        JSON :CL

    Output:
        {
          "name":    {
            "first": "Tom",
            "last":    "Anderson"
          },
          "age": 37,
          "children": ["Sara", "Alex", "Jack"],
          "fav.movie": "Deer Hunter"
        }

    Import:
        JSON [id] :RO fname        - Opens a JSON file for reading. The id is 
                                     optional and defaults to "0" if only one 
                                     file is open at a time. If two or more are
                                     open, the id must be supplied ("0"-"99")
        value = JSON [id] :GV key  - Get a value from a JSON file using a path
                                     to a key.

        Keys are a way to reference part of a JSON document using dot syntax. An
        example of dot syntax would be a key, such as "name.first" or "age".
        There are reserved symbols used in key syntax that can be used to 
        retrieve certain values from the JSON:

        '#' is used to get the number of elements inside of an object or array.
        '@' is used to specify a literal, or if at the end of the path, get the
            name of the current object.
    
        Index positions can also be used to reference specific elements by 
        numeric position inside of an object or an array. Indexes in Key Syntax
        start at position 1.
    
        x = JSON :GV "fruits.10" will attempt to find the tenth (10) item inside
            a fruits object or array.
    
        x = JSON :GV "fruits.@10" will attempt to find a key named "10" inside a
            fruits object and return its value.

    Example:
        Given the following JSON, here are example commands and what they return.
        {
          "name":    {
            "first": "Tom",
            "last":    "Anderson"
          },
          "age": 37,
          "children": ["Sara", "Alex", "Jack"],
          "fav.movie": "Deer Hunter"
        }

        Then: JSON :RO "/tmp/myfile.json" ' open the JSON file for reading
        Then: x=JSON :GV "name.first"     ' x contains "Tom"
        Then: x=JSON :GV "name.1.@"       ' x contains "first"
        Then: x=JSON :GV "age"            ' x contains "37"
        Then: x=JSON :GV "children.#"     ' x contains "3"
        Then: x=JSON :GV "children.1"     ' x contains "Sara"
        Then: x=JSON :GV "fav\.movie"     ' x contains "Deer Hunter"
        Then: JSON :CL                    ' close the JSON file

filePro now has the ability to place fill-in-the-blank PDF objects on output 
    formats and also retrieve values from PDF documents that have
    fill-in-the-blank fields to be used in Processing.
    
    There are four types of PDF Form Objects that can be used:
        Textbox
        Dropdown
        Checkbox
        Radio
    
    When a PDF output is generated, placed objects will be interactive in any 
    supporting PDF viewer/editor. These PDF files can be saved after filling in
    fields, and processing can be written to retrieve values from these fields.

    NOTE: Using the new generation features in a report can lead to unintended
    results. Fields are shared across records and pages. Updating one field
    updates all matching instances of that field throughout the document. It is
    recommended to use output forms over output report
    
    Please See Fill In PDFs in the manual for more information on document



    creation.
    
    Manual Link
    
    If the PDF was created with filePro, field names will be either the 
    real-field or dummy field used to create the PDF object. 
        e.g. "1", "42", "aa", "ab".

    Use these commands to read filled-in PDF documents:

    handle = PDF_OPEN(pdf_path)
        Returns a handle value (10,.0) that points to a PDF document with 
        pdf_path as the filename. Returns a negative value on error.

    error_value = PDF_CLOSE(handle)
        Frees all values and memory associated with a PDF handle and closes the
        document. Returns a non-zero number on error.

    num_fields = PDF_GETNUMFIELDS(handle)
        Returns the number of fields in the PDF document.

    name = PDF_GETFIELDNAME(handle, index)
        Returns the full name of a field in a PDF document, given its index. The
        index is a number between "1" and the num_fields value returned by 
        PDF_GETNUMFIELDS.

    type = PDF_FIELDTYPE(handle, fieldname)
        Returns the field type name of the specified field fieldname, which is
        one of:
            NONE
            BUTTON
            RADIO
            CHECKBOX
            TEXT
            RICHTEXT
            CHOICE
            UNKNOWN
            
    type = PDF_FIELDTYPE2(handle, index)
        Returns the field type name of the specified field index, which is one 
        of:
            NONE
            BUTTON
            RADIO
            CHECKBOX
            TEXT
            RICHTEXT
            CHOICE
            UNKNOWN
            
        The index is a number between "1" and the num_fields value returned by
        PDF_GETNUMFIELDS.

    value = PDF_GETVALUE(handle, fieldname [, richtext])
        Returns the field value, e.g. the text in the field, checkbox status, 
        combo box index, etc. for the given field name fieldname. Optionally, 
        richtext can be set to "1" to return rich text data if it exists.

    value = PDF_GETVALUE2(handle, index [, richtext])
        Returns the field value, e.g. the text in the field, checkbox status, 
        combo box index, etc. for the given field index index. Optionally, 
        richtext can be set to "1" to return rich text data if it exists. The 
        index is a number between "1" and the num_fields value returned by
        PDF_GETNUMFIELDS.

ret = QRCODE(str, dest [, size [, logo [, fg [, bg]]]])
    Create a QR Code from a text string.
    
    str is the text to store in the QR code.
    
    dest is the full name and path to the QR code to be generated.
    
    size is the size of the QR code to be generated in pixels. Must be large 
        enough to store the full QR code.
        
    logo is an optional logo to place in the center of the QR code.
    
    fg is the foreground color of the QR code in hexadecimal.
    
    bg is the background color of the QR code in hexadecimal.

    Returns the size of the generated QR code, or -1 on error.

    Example:
        Then: ret=QRCODE("fptech.com","/tmp/website.png")

Added QRCODE FPML print code.
    <QRCODE TEXT="qr text" [SIZE="size"] [COLOR="color"] [FILL="bg color"]
        [X="x-pos"] [Y="y-pos"]>
    



    Adds a QR code with the specified text to the PDF document.
    
    All attributes, except for "TEXT", are optional.

    TEXT is the text to add to the QR code when generating the image.

    SIZE is the width and height of the QR code, must be large enough to fit the
        entire generated image.

    COLOR is the foreground color of the QR code (in hexadecimal).

    FILL is the background color of the QR code (in hexadecimal).

    X X position. (Default: current X position.)

    Y Y position. (Default: current Y position.)

FPML print codes can now use field names for any attribute.
    Any attribute inside of an FPML print code can now reference a real field or
    variable inside of processing. Use "@" to reference a field.

    e.g.
    <IMAGE FILE="@1">            ' reference a real field
    <IMAGE FILE="@im">           ' reference a dummy field
    <IMAGE FILE="@image_path">   ' reference a long name variable
  
    Note: Print codes can also be stored in a print code table and do not need 
    to be placed directly on the output to work.

Added a new F5 shortcut in Define Processing for calls. F5 will now open a call
    for editing, or, will prompt you to create the call if it does not exist.

subscript = INDEXOF(array, value)
    Find the subscript of some value in an array.
    
    Example:
        array["1"]="cat"
        array["2"]="dog"
        array["3"]="bird"

        subscript = INDEXOF(array, "dog") ' subscript will contain "2"

Added initial support for multi-dimensional arrays.
    DIM array[n1,n2,...,n8](l,e)
    Multi-Dimensional array of fields with length "l" & edit "e". Array edit is
        optional.

    Example:
        dim array(2,2)
        array["1","1"]="John"
        array["1","2"]="Smith"
        array["2","1"]="Sarah"
        array["2","2"]="Jane"

    Existing array functions can also use multi-dimensional arrays by 
    referencing one of an array's sub arrays.

    Example:
        CLEAR array["1"]

value = A_MAX(array [, array2 [, array3 [, ... [, arrayN]]]])
    Find the maximum value between the passed in arrays.

    Example:
        array1["1"]="5"
        array1["2"]="7"
        array2["1"]="30"
        value = A_MAX(array1, array2) ' value will contain "30"

    Note: This method supports multi-dimensional arrays.
    

value = A_MIN(array [, array2 [, array3 [, ... [, arrayN]]]])
    Find the minimum value between the passed in arrays.

    Example:
        array1["1"]="5"
        array1["2"]="7"
        array2["1"]="30"
        value = A_MIN(array1, array2) ' value will contain "5"

    Note: This method supports multi-dimensional arrays.

value = A_TOT(array [, array2 [, array3 [, ... [, arrayN]]]])
    Total all of the values in the passed in arrays.

    Example:



        array1["1"]="5"
        array1["2"]="7"
        array2["1"]="30"
        value = A_TOT(array1, array2) ' value will contain "42"

    Note: This method supports multi-dimensional arrays.

value = A_AVG(array [, array2 [, array3 [, ... [, arrayN]]]])
    Find the avereage of all of the values in the passed in arrays.

    Example:
        array1["1"]="5"
        array1["2"]="7"
        array2["1"]="30"
        value = A_AVG(array1, array2) ' value will contain "14"

    Note: This method supports multi-dimensional arrays.
===================================
END OF NEW USP ITEMS
===================================
===================================
6.1.XX.08 NEW ITEMS
===================================
Added support for read-only PDF fields when generating a fill-in-the-blank PDF
    document. Each field type now contains an option to flag the field as 
    read-only.

Updated how 'C' continue works in the debugger. The debugger should now
    correctly maintain the "step" mode when switching between processing and
    entering and leaving calls. Previously, using continue while inside a call
    would take you out of single-step mode when returning from said call. Now,
    if you were in single-step mode before a call, continuing inside of the call
    will place you back into single step mode upon returning or entering a new
    processing table.

Enhanced F9 search in dcabe/rcabe to allow for whole word searching by using a
    single quote before the search term, e.g. 'WORD. This makes it much easier
    to find places where variables like "aa" and "zz" are used.

Added -MN command line option to hide [NONE] qualifier from the qualifier list
    in dclerk, rclerk, dreport, rreport, and dxmaint. Same as PFNOQUAL=OFF.

===================================
6.1.XX.07 NEW ITEMS
===================================
Added a F7 last record option to clerk.

Added new system controlled fields for creation time (@CT), update time (@UT), 
    and batch time (@BT) per record. Note: The time is stored in 2 second
    intervals.

===================================
6.1.XX.06 NEW ITEMS
===================================
Added a new option to show a stacktrace on a runtime error if PFERRTRACE is set.
    Default OFF.

Dxmaint will now always show qualifier if PFQUAL is set.

===================================
6.1.XX.04 NEW ITEMS
===================================
Added PFOLDCHAIN to allow CHAIN to return to the top of processing when a record
    is saved and the chain was performed inside of an event.
    
Added basic reconnect functionality into ODBC mirroring upon communications link
    failure.

Updated Fuzzy search screen in clerk to be larger and show correct button
    prompts.
    
n = STACKTRACE(array)
    Fill an array with a processing trace, listing the current and past 
    processing tables and their line numbers to the current line being executed.
    This will show lines "jumped" from gosubs and follow calls and functions.

    Returns the number of elements that could fit into the array.

Added new debugger option "T" to show the current stacktrace while debugging.

===================================
6.1.00.03 NEW ITEMS
===================================
Updated all programs to no longer require unixODBC by default. unixODBC will now
    only be required when an ODBC related function is used. If unixODBC is not 
    found when an ODBC function is required, a filePro error will be returned.

Added the ability to assign directly to a longvar when creating it.
    e.g.
    declare myvariable(32,*)="Hello, World!"

Reworked tokenization engine to no longer require setting PFTOKSIZE or related 



    variables. Variable will now be silently ignored.

Added PFPDFAUTOBREAK=ON (default OFF) to allow PDFs to automatically break pages
    based off of selected paper type.

Added menu letter to menu script editor.

===================================
6.1.00.00 NEW ITEMS
===================================
You can now use: @wlf<letter>*
    ex. @wlfT*
    This will apply to any dummy/associated field that begins with 'T'
    Overrides any other @wlf*

Added logging to ddefine.
    ddefine can now optionally track changes made to filePro file 
    layouts. This includes the name of the file, who changed it, 
    and what fields were changed.  Requires a logging configuration 
    file to be added under the ./fp/logs directory named 'ddefine.cfg'. 
    Format of the config file is the same as the servlog.cfg file that 
    comes shipped with filePro.
    Example ddefine.cfg:
        ROLLING,DEBUG,ddefine.log,60000
    
xx=FORMERROR
    syntax: xx=FORMERROR()
    returns: errno from last FORM or FORMM command.
    e.g. 2=file not found, 13=permission error

Validate menu script before prompting for removal

Added new option 'C' to F8 Extended Functions for dmoedef 
    to show a list of all print codes on an output format. Selecting 
    an item from the list will jump the editor to it.

TRIM command to remove spaces
    aa=ltrim(fld)
        left trim
    aa=rtrim(fld)
        right trim
    aa=trim(fld)
        trim both left and right    

PFIXGT can now be set in dxmaint F8 options.
    This is backwards compatible, so if PFIXGT is still set in config, 
    then it is honored by clerk *if true*. If false, the index header 
    is checked for the flag.

Windows fPTransfer now will accept wildcards.

A compress-filePro file routine                                  
    fppack

    Function:
     Remove deleted records from a filePro file, and then
     (optionally) rebuild all automatic indexes.

     Syntax:
      fppack [ filename | - ] [ -H heading ] [ -E ] [ -R ] [ -X ] [ -EX ] [ -C ]
      [ -M name | -MD | -MQ mesg | -MA ] [ -BG ] [ -BS ]

       -H "heading" custom title to display in box.
       -E           don't actually pack the records, just
                       give statistics.
       -R           rebuild the automatic indexes even if
                       no records were deleted.
       -EX          skip statistics
       -C           skip continue and finished prompts

       -X           skip rebuilding the auto indexes.
       -M name      qualifier file name to use.
       -MD          ask for qualifier with default prompt.
       -MQ "mesg"   ask for qualifier with "mesg" as the prompt.
       -MA          use all qualified files & main file.
      UNIX/XENIX only:
       -BG          work in the background.
       -BS          suppress "completed in background" message.

Added various enhancements to PDF engine.
    See on-line or ~/fp/docs PDF documentation.

Added optional error message suppression and basic password 
    auditing to filePro.

        PFERRSUPPRESS=ON, default OFF
        PFPWAUDIT=ON, default OFF

    Password auditing also requires a ./fp/logs/pwaudit.cfg file. Same 
    structure as servlog.cfg.
    Any error that would be sent to mail will still be mailed on 
    unix/linux based systems.
    Errors reported in the background will still be suppressed. 



    Including the program name.
    Invalid password and license errors will still be reported. Password errors 
    omit the filename.
        dcabe and rcabe are exempt from the error suppression.
    
These functions lock or unlock bytes of the file specified by handle.

    x=lock(handle,how[,nbyte])
        handle - an open handle to a file
        how    - U|0 : unlock bytes
                 L|1 : lock bytes
                 N|2 : lock bytes non-blocking
        nbyte  - How many bytes in the file to lock, if omitted, lock
                 the billionth byte in the file (file does not have to be
                 that large)

    x=unlock(handle[,nbyte])
        handle - an open handle to a file
        nbyte  - How many bytes in the file to unlock, if omitted,
                 unlock the billionth byte in the file (file does not
                 have to be that large)

    (returns "1" on success and returns negated system error on error)  

ddefine will now create new screens the same as dscreen does instead of just 
    mono.
    
NEW command OPENDIR2 to handle long-named files and paths.
    Syntax:
        N = OPENDIR2(mask, path, fmt_sz, ext_sz, nam_sz)
        All arguments are optional.        
            Format Length
            Extension Length
            Fullname Length
    
*cabe lookup wizard will now honor PFQUAL and show qualified indexes
    
Added new FPML commands to control the appearance of underlines. (See PDF Docs)

New RINSTR, and INSTR now allows negative positions for working backwards.
    
New GIadmin that will count GUI (GI or Web) sessions, ease of system
    and user configuration files and additional security.
    
Added PDF syntax as an option for printer maintenance (pmaint): Windows only
    
Lookup Wizard in cabe now allows long vars as key.

Added alias and arrays to F6-D-L display in *cabe.

Updated color with new routines and corrected the shell escape codes.
    
Automated processing table backups.
    CABEBACKUP ON|OFF (on by default)
    CABEBACKUPMINS n (minutes between backups)
    CABEBACKUPCT n (backup files per process)
    
Menu maintenance (makemenu) now asks if you wish to remove
    an unused menu script if the menu item is not used.
    
*report now allows one to use .outs from a pathed directory library

SCREEN command can switch fields in a POPUP UPDATE -, provided no screen name 
    is passed to the SCREEN command.

MEMO EDIT now accept maxsize to limit the number of
    characters that can be intered into a memo field.
    memo NNN edit (row,col,lines,width,startLine,startcol,maxSize)
    (Text mode only)
    
Added option 7 to dxmaint to clear qualifier
    
New -SE *report flag to allow report to edit/save a selection set.
    
Added @EXIT label to *clerk processing. This is executed whenever 
    a record is exited or broken out of. Events that trigger this are 
    'X' while not in update mode, 'BRKY' while not in update mode, and 
    'exit' in processing. It is the opposite of @entsel, and is the last 
    thing executed when leaving a record. Assignment of real fields is 
    not allowed, this is similar to @once in that the processing that is 
    executed is NOT sitting on a record, but rather record '0'.
    
Partial lookup flag added to *cabe lookup wizard.
    -O on an exact lookup now does partial key matching. This kills a 
    lookup once the begining of the key value no longer matches the lookup 
    key value.

BUSYBOX
        BUSYBOX "my message"
        BUSYBOX("10","10")
        BUSYBOX("10","10") "my message"



Added PFPPFULLPATH as an ehancement to PDFPOSTPRINT
    and added an PFNEWPOSTPRINT alias to name to PDFPOSTPRINT
    Added PFPPFULLPATH to augment the filename passed to the post print 
    handler, default ON, this causes the filename passed to the postprint 
    script to contain the full path to the file, not just the file name. 
    Set to OFF to revert to old behaviour.  PFPOSTPRINTnnn will now work 
    with normal file destinations. Same rules as the old global PFPOSTPRINT 
    but also supports PDF files.

Clerk will now allow a full path to a form when using
    the FORM and FORMM command in processing.

User defined functions
    Forward declare functions to be used:
    (function|func) [file.]name([dim|var] var1, [dim|var] var2, ...)

    e.g.
         function fplib.showlock(var pid)
         function fplib.log(file, line, what)
         function somefunc(dim myarray)

    Call a function:
         [x=][file.]name(var1, var2, ...)

    Return a value from a function:
         return(value)

    Can pass fields: real, dummy, longvar
    Can pass arrays: Alias and system arrays are copied to a non-aliased 
    array. Non-aliased arrays are passed by reference.

    Function names must be at least 3 characters in length.
    Functions cannot modify values outside of its scope.
    Functions do not call automatic processing.
    Functions cannot modify real fields.
    Functions cannot be called unless it they are declared.
    Functions can pass values by reference (changes made to the value will 
    carry back out of the function, only to arrays).
    Functions can optionally return a value.

    Parameter names must be at least 3 characters in length.
    Parameters will be passed to the function using the name they were defined 
    with in the declaration statement.

    Environment variables:
        PFFUNCDBG=(ON|OFF), default OFF. 
            If ON the debugger will be allowed to continue into the function 
            call. If OFF the debugger will skip over user defined functions. 
            NOTE: Debug statements inside of functions will still be able to 
            be activated. If debug is set inside of a function, it will 
            continue even after the function is left.
            
    Example:
    Processing table for fibonacci:
        If:                     ' Declare for future use
        Then: function fibonacci(nval)
          If:                     ' Get the parameter
        Then: declare extern nval
          If: nval le "1"         ' Return the result
        Then: return(nval)
          If:                     ' Return the result
        Then: return(fibonacci(nval-"1")+fibonacci(nval-"2"))
    Usage:
        If:                     ' Declare for future use
        Then: function fibonacci(nval)
        If:                     ' Call the function
        Then: n=fibonacci("9")
        If:                     ' Display the result
        Then: msgbox ""{n         ' Prints "34"

EXTERN and GLOBAL arrays
    DIM GLOBAL name(size)
    DIM EXTERN name

    Only non-aliased arrays can be declared GLOBAL/EXTERN.  
    Functions similar to GLOBAL/EXTERN longvars.

New compare condition for Associated Fields
    Added new selection set relational operators:
        AEQ - Associated field, all equal
        ANE - Associated field, all not equal
        ACO - Associated field, all contain
    These require ALL components of an associated field to match the 
    comparison being done, rather than just one of its component fields.
        
New functions for creating XLSX documents from filePro.
e = XL_OPEN(file [, name])
    Start building an XLSX output file.

    Parameters -
        file : Path to the file to create. If no full path is given the
               generated file will be placed in the PFTMP or equivalent
               directory.



        name : The name for the default sheet that will be created. Defaults to
               Sheet1.
        
    If the filename does not end in ".xlsx" it will be added on creation.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: Only one XLSX file can be created at a time.

e = XL_SAVE([password])
    Save the current XLSX file.

    Parameters -
        password : If specified, encrypt the XLSX output file using Agile
                   encryption (AES128).
    
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: Encrypted XLSX files cannot be opened with most third party programs
    such as LibreOffice and OpenOffice. They are fully supported by Excel
    however. The documents are saved in an encrypted CFB file.

handle = XL_ADDSHEET([name])
    Add a new sheet to the XLSX document.

    Parameters -
        name : The name for the sheet to be created. Defaults to auto naming the
               sheet based on the Sheet1, Sheet2, ..., SheetN template.
        
    Returns a handle to a new sheet object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.

e = XL_ADDCELL([data [, style [, sheet [, row [, col]]]]])
    Add a new cell to the XLSX document.

    Parameters -
        data  : Data to be inserted into the document. A cell starting with '='
                will be treated as a formula.
        style : Handle to style to be used for this cell. Use blank to use the
                default style.
        sheet : Handle to sheet to insert the cell on. Use blank, "0", or "-1"
                to use the default sheet.
        row   : Row to place the cell (0 indexed).
        col   : Column to place the cell (0 indexed).
        

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: Using an empty or negative row/column value will cause the cell to be
    added using the auto counter in the sheet, incrementing the column value
    after the cell is added. Specifying a location will reposition the auto
    counter. Formulas can be used as part of the data as well by prefixing the
    string with '='.

e = XL_ADDCELL2([data [, style [, sheet [, cell]]]])
    Add a new cell to the XLSX document.

    Parameters -
        data  : Data to be inserted into the document. A cell starting with '='
                will be treated as a formula.
        style : Handle to style to be used for this cell. Use blank to use the
                default style.
        sheet : Handle to sheet to insert the cell on. Use blank, "0", or "-1"
                to use the default sheet.
        cell  : The Excel style cell to insert the cell. e.g. "A1" "D6" "F6".

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: Using an empty cell number will cause the cell to be added using the
    auto counter in the sheet, incrementing the column value after the cell is
    added. Specifying a location will reposition the auto counter. Formulas can 
    be used as part of the data as well by prefixing the string with '='.

handle = XL_FORMAT(format)
    Create a new format to use with the XLSX document.

    Parameters -
        format : Excel format string to use to format the a style. e.g.
                 "$ #,###,nnn.nn"
                 "% ##n.n"
                 "m/d/yyyy"

    Returns a handle to a new format object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.



e = XL_COLWIDTH(width, firstcol, lastcol [, sheet])
    Change the default column width for a sheet between a range.

    Parameters -
        width    : Width of the column(s). e.g. "24" "12.5", "11"
        firstcol : Zero based column index or column letter to set from.
        lastcol  : Zero based column index or column letter to set to.
        sheet    : Handle to sheet to change the cell widths.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

handle = XL_FONT(font, [size [, attr [, color]]])
    Create a new font to use with the XLSX document.

    Parameters -
        font  : Name of the font to use.
        size  : Point size of the font. e.g. "11" "8.42" "12", default "11.0"
        attr  : List of attributes to apply to this font, separated by commas.
                e.g. "bold,italic"
                Values:
                    "bold"
                    "italic"
                    "underline"
                    "strike"
                    "unlocked"
                    "hidden"
                    "wrap"
                    "shrink"
                    "fill"
                    "left"
                    "center"
                    "right"
                    "justify"
                    "top"
                    "bottom"
                    "vjustify"
                    "vcenter"
        color : The RGB Hex value to set the font color.
                e.g. "000000" "ADD8E6"

    Returns a handle to a new font object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.

handle = XL_BORDER(borderstyle [, color])
    Create a new border to use with the XLSX document.

    Parameters -
        borderstyle : The style to use with this border. Must be one of the
                      following values:
                      "thin"
                      "medium"
                      "dashed"
                      "dotted"
                      "thick"
                      "hair"
                      "medium_dashed"
                      "dash_dot"
                      "medium_dash_dot"
                      "dash_dot_dot"
                      "medium_dash_dot_dot"
                      "slant_dash_dot"
        color       : The RGB Hex value to set the border color.
                      e.g. "000000" "ADD8E6"

    Returns a handle to a new border object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.

handle = XL_FILL(bg [, fg [, fill]])
    Create a new fill to use with the XLSX document.

    Parameters -
        bg   : The RGB Hex value to set the background fill color.
               e.g. "000000" "ADD8E6"
        fg   : The RGB Hex value to set the foreground fill color.
               e.g. "000000" "ADD8E6"
        fill : The fill pattern to use, defaults to "solid" fill. Value must be
               one of the following.
               "solid"
               "medium_gray"
               "dark_gray"
               "light_gray"
               "dark_horizontal"
               "dark_vertical"
               "dark_down"
               "dark_up"
               "dark_grid"
               "dark_trellis"



               "light_horizontal"
               "light_vertical"
               "light_down"
               "light_up"
               "light_grid"
               "light_trellis"
               "gray_125"
               "gray_0625"

    Returns a handle to a new fill object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.

e = XL_ADD_DT(date, time [, style [, sheet [, row [, col]]]])
    Combine two fields into a single spreadsheet datetime field and insert it as
    a new cell in the XLSX document.

    Parameters -
        date  : filePro date field.
        time  : filePro time field.
        style : Handle to style to be used for this cell. Use blank to use the
                default style.
        sheet : Handle to sheet to insert the cell on. Use blank, "0", or "-1"
                to use the default sheet.
        row   : Row to place the cell (0 indexed).
        col   : Column to place the cell (0 indexed).

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_ADD_DT2(date, time [, style [, sheet [, cell]]])
    Combine two fields into a single spreadsheet datetime field and insert it as
    a new cell in the XLSX document.

    Parameters -
        date  : filePro date field.
        time  : filePro time field.
        style : Handle to style to be used for this cell. Use blank to use the
                default style.
        sheet : Handle to sheet to insert the cell on. Use blank, "0", or "-1"
                to use the default sheet.
        cell  : The Excel style cell to insert the cell. e.g. "A1" "D6" "F6".

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

handle = XL_CHART(type [, title [, xname [, yname [, row [, col [, stylenum 
                  [, sheet [, xoff [, yoff [, xscale [, yscale]]]]]]]]]]])
    Add a new chart to the XLSX document.

    Parameters -
        type     : Type of chart to create. Must be one of the following values.
                   "area"
                   "area_stacked"
                   "area_stacked_percent"
                   "bar"
                   "bar_stacked"
                   "bar_stacked_percent"
                   "column"
                   "column_stacked"
                   "column_stacked_percent"
                   "doughnut"
                   "line"
                   "line_stacked"
                   "line_stacked_percent"
                   "pie"
                   "scatter"
                   "scatter_straight"
                   "scatter_stright_markers"
                   "scatter_smooth"
                   "scatter_smooth_markers"
                   "radar"
                   "radar_with_markers"
                   "radar_filled"
        title    : The title for this chart.
        xname    : The title for the x-axis.
        yname    : The title for the y-axis.
        row      : Row to place the cell (0 indexed).
        col      : Column to place the cell (0 indexed).
        stylenum : Number of the built in Excel style to use. Must be between
                   "1" and "48". The default style is 2. The value is one of
                   the 48 built-in styles available on the "Design" tab in
                   Excel 2007.
        sheet    : Handle to sheet to insert the chart on. Use blank, "0", or
                   "-1" to use the default sheet.
        xoff     : X axis offset to place the chart, in pixels.
        yoff     : Y axis offset to place the chart, in pixesl.
        xscale   : Scale the chart along the x axis. e.g. "1", "0.5" "2". Value
                   cannot be negative.
        yscale   : Scale the chart along the x axis. e.g. "1", "0.5" "2". Value
                   cannot be negative.



    Returns a handle to a new chart object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.
    
    Note: The chart functions do not use the auto counter found in the sheets
    and instead will default to "0", "0" or "A1" when used for insertion.

handle = XL_CHART2(type [, title [, xname [, yname [, cell [, stylenum [, sheet 
                   [, xoff [, yoff [, xscale [, yscale]]]]]]]]]])
    Add a new chart to the XLSX document.

    Parameters -
        type     : Type of chart to create. Must be one of the following values.
                   "area"
                   "area_stacked"
                   "area_stacked_percent"
                   "bar"
                   "bar_stacked"
                   "bar_stacked_percent"
                   "column"
                   "column_stacked"
                   "column_stacked_percent"
                   "doughnut"
                   "line"
                   "line_stacked"
                   "line_stacked_percent"
                   "pie"
                   "scatter"
                   "scatter_straight"
                   "scatter_stright_markers"
                   "scatter_smooth"
                   "scatter_smooth_markers"
                   "radar"
                   "radar_with_markers"
                   "radar_filled"
        title    : The title for this chart.
        xname    : The title for the x-axis.
        yname    : The title for the y-axis.
        cell     : The Excel style cell to insert the cell. e.g. "A1" "D6" "F6".
        stylenum : Number of the built in Excel style to use. Must be between
                   "1" and "48". The default style is 2. The value is one of
                   the 48 built-in styles available on the "Design" tab in
                   Excel 2007.
        sheet    : Handle to sheet to insert the chart on. Use blank, "0", or
                   "-1" to use the default sheet.
        xoff     : X axis offset to place the chart, in pixels.
        yoff     : Y axis offset to place the chart, in pixesl.
        xscale   : Scale the chart along the x axis. e.g. "1", "0.5" "2". Value
                   cannot be negative.
        yscale   : Scale the chart along the x axis. e.g. "1", "0.5" "2". Value
                   cannot be negative.

    Returns a handle to a new chart object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.
    
    Note: The chart functions do not use the auto counter found in the sheets
    and instead will default to "0", "0" or "A1" when used for insertion.

handle = XL_CHARTSHEET(type [, title [, xname [, yname [, stylenum]]]])
    Add a new chartsheet to the XLSX document. A chartsheet is a full chart that
    occupies it's own sheet and cannot contain any cells.

    Parameters -
        type     : Type of chart to create. Must be one of the following values.
                   "area"
                   "area_stacked"
                   "area_stacked_percent"
                   "bar"
                   "bar_stacked"
                   "bar_stacked_percent"
                   "column"
                   "column_stacked"
                   "column_stacked_percent"
                   "doughnut"
                   "line"
                   "line_stacked"
                   "line_stacked_percent"
                   "pie"
                   "scatter"
                   "scatter_straight"
                   "scatter_stright_markers"
                   "scatter_smooth"
                   "scatter_smooth_markers"
                   "radar"
                   "radar_with_markers"
                   "radar_filled"
        title    : The title for this chart.
        xname    : The title for the x-axis.
        yname    : The title for the y-axis.
        stylenum : Number of the built in Excel style to use. Must be between
                   "1" and "48". The default style is 2. The value is one of



                   the 48 built-in styles available on the "Design" tab in
                   Excel 2007.

    Returns a handle to a new chartsheet object on successs and "-1" on
    error. XL_ERROR() can be called to return the last error.

e = XL_SERIES(chartnum, sheet, namerow, namecol, cfirstrow, cfirstcol, clastrow,
              clastcol, vfirstrow, vfirstcol, vlastrow, vlastcol)
    Add a series to a chart or chartsheet.

    Parameters -
        chartnum  : Handle to a chart or chartsheet to add series.
        sheet     : Handle to sheet to get values from. Use blank, "0", or "-1"
                    to use the default sheet.
        namerow   : Series name row (0 indexed).
        namecol   : Series name column (0 indexed).
        cfirstrow : Categories first row (0 indexed).
        cfirstcol : Categories first column (0 indexed).
        clastrow  : Categories last row (0 indexed).
        clastcol  : Categories last column (0 indexed).
        vfirstrow : Values first row (0 indexed).
        vfirstcol : Values first column (0 indexed).
        vlastrow  : Values last row (0 indexed).
        vlastcol  : Values last column (0 indexed).

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_SERIES2(chartnum, sheet, namecell, cfirst, clast, vfirst, vlast)
    Add a series to a chart or chartsheet.

    Parameters -
        chartnum : Handle to a chart or chartsheet to add series.
        sheet    : Handle to sheet to get values from. Use blank, "0", or "-1"
                   to use the default sheet.
        namecell : Series name Excel style cell. e.g. "A1" "D6" "F6".
        cfirst   : Categories first Excel style cell. e.g. "A1" "D6" "F6".
        clast    : Categories last Excel style cell. e.g. "A1" "D6" "F6".
        vfirst   : Values first Excel style cell. e.g. "A1" "D6" "F6".
        vlast    : Values last Excel style cell. e.g. "A1" "D6" "F6".

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_PROTECTSHEET(sheet, password)
    Add a password to restrict editing of a sheet.

    Parameters -
        sheet    : Handle to sheet to protect. Use blank, "0", or "-1" to use
                   the default sheet.
        password : Password to use to protect this sheet.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_PROTECTCHARTSHEET(cs, password)
    Add a password to restrict editing of a chartsheet.

    Parameters -
        cs       : Handle to chartsheet protect.
        password : Password to use to protect this sheet.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_ERROR()
    Return the last error generated by the XLSX set of functions.

    Returns the last error string generated by the XLSX engine.

e = XL_SETPOS(row [, col [, sheet]])
    Set the auto counter position for a sheet.

    Parameters -
        row   : Row to move auto counter to (0 indexed).
        col   : Column to move auto counter to (0 indexed).
        sheet : Handle of sheet to set. Use blank, "0", or "-1" to use the
                default sheet.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_SETPOS2(cell [, sheet])
    Set the auto counter position for a sheet.

    Parameters -



        cell  : Excel style cell to set the auto counter to. e.g. "A1" "D6".
        sheet : Handle of sheet to set. Use blank, "0", or "-1" to use the
                default sheet.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_NEXTROW([sheet])
    Move the auto counter down a row for a sheet.

    Parameters -
        sheet : Handle of sheet to set. Use blank, "0", or "-1" to use the
                default sheet.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_NEXTCOL([sheet])
    Move the auto counter one column for a sheet.

    Parameters -
        sheet : Handle of sheet to set. Use blank, "0", or "-1" to use the
                default sheet.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

handle = XL_STYLE([font [, fill [, fmt [, btop [, bbot [, bleft 
                  [, bright]]]]]]])
    Add a new style to the XLSX document.

    Parameters -
        font   : Handle to font object to use.
        fill   : Handle to fill object to use.
        fmt    : Handle to format object to use.
        btop   : Handle to border object to use for top border.
        bbot   : Handle to border object to use for bottom border.
        bleft  : Handle to border object to use for left border.
        bright : Handle to border object to use for right border.

    Returns a handle to a new style object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.

e = XL_IMAGE(img [, row [, col [, sheet [, xoff [, yoff [, scalex [, scaley 
             [, flag]]]]]]]])
    Add a new image to the XLSX document.

    Parameters -
        img    : Path to image file to use.
        row    : Row to insert the image on (0 indexed).
        col    : Column to insert the image on (0 indexed).
        sheet  : Handle of sheet to insert image. Use blank, "0", or "-1" to use
                 the default sheet.
        xoff   : X-axis offset for the image, in pixels.
        yoff   : Y-axis offset for the image, in pixels.
        scalex : Scale the image along the x-axis. e.g. "1", "0.5" "2". Value
                 cannot be negative.
        scaley : Scale the image along the y-axis. e.g. "1", "0.5" "2". Value
                 cannot be negative.
        flag   : Option of how to position image.
                 "0" - Default positioning.
                 "1" - Move and size image with the cells.
                 "2" - Move but don't size image with the cells.
                 "3" - Don't move or size the image with the cells.
                 "4" - Same as "1" but wait to apply hidden cells.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: The image functions only support PNG, JPEG, and BMP files.

e = XL_IMAGE2(img [, cell [, sheet [, xoff [, yoff [, scalex [, scaley 
              [, flag]]]]]]]);
    Add a new image to the XLSX document.

    Parameters -
        img    : Path to image file to use.
        cell   : Excel style cell to insert the image. e.g. "A1" "D6" "F6".
        sheet  : Handle of sheet to insert image. Use blank, "0", or "-1" to use
                 the default sheet.
        xoff   : X-axis offset for the image, in pixels.
        yoff   : Y-axis offset for the image, in pixels.
        scalex : Scale the image along the x-axis. e.g. "1", "0.5" "2". Value
                 cannot be negative.
        scaley : Scale the image along the y-axis. e.g. "1", "0.5" "2". Value
                 cannot be negative.
        flag   : Option of how to position image.
                 "0" - Default positioning.



                 "1" - Move and size image with the cells.
                 "2" - Move but don't size image with the cells.
                 "3" - Don't move or size the image with the cells.
                 "4" - Same as "1" but wait to apply hidden cells.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: The image functions only support PNG, JPEG, and BMP files.
    
e = XL_LASTCMD()
    Get debug information about the last XLSX call.
    
    Returns the last evaluated command parse string.
    
    
e = XL_MARGINS([left, [right, [top, [bottom, [sheet]]]]])
    Set the worksheet print margins.

    Parameters -
        left   : Left margin in inches, e.g. "0.5", "1", "0.75". A blank or 
                 negative value will use the default of "0.7".
        right  : Right margin in inches, e.g. "0.5", "1", "0.75". A blank or 
                 negative value will use the default of "0.7".
        top    : Top margin in inches, e.g. "0.5", "1", "0.75". A blank or 
                 negative value will use the default of "0.75".
        bottom : Bottom margin in inches, e.g. "0.5", "1", "0.75". A blank or 
                 negative value will use the default of "0.75".
        sheet  : Handle of sheet to set the margins. Use blank, "0", or "-1" to 
                 use the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_LANDSCAPE([sheet])
    Set the worksheet to print in landscape mode.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_PORTRAIT([sheet])
    Set the worksheet to print in portrait mode.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_GRIDLINES(option [, sheet])
    Set if the worksheet should display gridlines when printed.

    Parameters -
        option : Which Gridlines to print. Cannot be blank. Must be one of the
                 following values.
                 "hide_all"
                 "show_all"
                 "show_screen"
                 "show_print"
        sheet  : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                 the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_FITPAGES([height, [width, [sheet]]])
    Fit the printed area to a specific number of pages both vertically and 
    horizontally.

    Parameters -
        height : Number of pages vertically. A value of "0" or blank will set 
                 the height as necessary.
        width  : Number of pages horizontally. A value of "0" or blank will set 
                 the height as necessary.
        sheet  : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                 the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_PAPERTYPE(type [, sheet])
    Set the paper format for the printed output of a worksheet.



    Parameters -
        type  : The paper format to use with a printed worksheet. Must be one of
                the following values.
                "default"
                "letter"
                "tabloid"
                "ledger"
                "legal"
                "statement"
                "executive"
                "a3"
                "a4"
                "a5"
                "b4"
                "b5"
                "folio"
                "quarto"
                "10x14"
                "11x17"
                "note"
                "envelope"
                "envelope_9"
                "envelope_10"
                "envelope_11"
                "envelope_12"
                "envelope_14"
                "c"
                "d"
                "e"
                "envelope_dl"
                "envelope_c3"
                "envelope_c4"
                "envelope_c5"
                "envelope_c6"
                "envelope_c65"
                "envelope_b4"
                "envelope_b5"
                "envelope_b6"
                "monarch"
                "fanfold"
                "german_std_fanfold"
                "german_legal_fanfold"
        sheet : Handle of sheet to change type. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_CENTERH([sheet])
    Center the worksheet data horizontally between the margins on the printed
    page.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_CENTERV([sheet])
    Center the worksheet data vertically between the margins on the printed 
    page.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_PRINTACROSS([sheet])
    Change the default print direction to across then down.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_SETHEADER(string [, margin, [limage, [cimage, [rimage, [sheet]]]]])
    Set the printed page header.
    
e = XL_SETFOOTER(string [, margin, [limage, [cimage, [rimage, [sheet]]]]])
    Set the printed page footer.

    Parameters -
        string : The header/footer definition string. See below for format 
                 options. Cannot be blank.



        margin : The margin in inches to use for the header/footer. A blank,
                 "0", or negative value will use the default margin of "0.3".
        limage : Full path to an image to use in place of the left image 
                 placeholder.
        cimage : Full path to an image to use in place of the center image 
                 placeholder.
        rimage : Full path to an image to use in place of the right image 
                 placeholder.
        sheet  : Handle of sheet to set header/footer. Use blank, "0", or "-1"
                 to use the default sheet.
                
    Format Options -
        +-----------------------------------------------------------+
        | Control            Category        Description            |
        +-----------------------------------------------------------+
        | &L                Justification   Left                    |
        | &C                                Center                  |
        | &R                                Right                   |
        +-----------------------------------------------------------+
        | &P                Information     Page number             |
        | &N                                Total number of pages   |
        | &D                                Date                    |
        | &T                                Time                    |
        | &F                                File name               |
        | &A                                Worksheet name          |
        | &Z                                Workbook path           |
        +-----------------------------------------------------------+
        | &fontsize            Font         Font size               |
        | &"font,style"                     Font name and style     |
        | &U                                Single underline        |
        | &E                                Double underline        |
        | &S                                Strikethrough           |
        | &X                                Superscript             |
        | &Y                                Subscript               |
        +-----------------------------------------------------------+
        | &[Picture]        Images          Image placeholder       |
        | &G                                Same as &[Picture]      |
        +-----------------------------------------------------------+
        | &&                Miscellaneous    Literal ampersand &    |
        +-----------------------------------------------------------+
        
    Text in headers and footers can be justified to the left, center and right 
    by prefixing the text with the control characters &L, &C and &R.
    For example, "&LHello, World!", "&CHello, World!", "&RHello, World!"
    
    For simple text, if the justification is not specified the text will be 
    center aligned. However, you must prefix the text with &C if you use any
    other formatting.
    
    You are limited to 3 images in a header/footer.
    
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: The image types supported are PNG, JPEG, and BMP files. There is a
    hard limit of 255 characters in a header/footer string, including control
    characters. Strings longer than this will not be written to the document.

    
e = XL_SETBACKGROUND(image [, sheet])
    Set the background image for a worksheet.

    Parameters -
        image : Full path to an image to use as the sheet background.
        sheet : Handle of sheet to set background image. Use blank, "0", or "-1"
                to use the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: The image types supported are PNG, JPEG, and BMP files.
    
    
e = XL_HIDEZEROS([sheet])
    Hide zero values in worksheet cells.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_SHOWROWCOL([sheet])
    Show row and column headers on the printed page.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.



Rebuild All Indexes on a file.  item '8' on the dialog. Note: this 
    is in the "extended" dialog which shows when a filename is not specified 
    from the command line. Indexes can be selected individually, 
    or all (with F7).     Press SAVE, and rebuild begins

Ability to SPLIT data into array
    Usage:
    sz=SPLIT(array, string, delimiter)
        array is the array that the data will be placed into
        string is the data to split
        delimiter is the sequence of characters to split on

    NOTE: The array being used must have the size defined for its elements and 
    cannot be an alias.

Added the ability to show record locks from *clerk. Can also be 
    used to terminate sessions directly.  New option !L added to *clerk. Using
    !L will activate the new locked records list. Enter on a selected entry 
    will give additional options to the user, including the ability to Kill 
    or Terminate a locked process without having to go to the command line.  
    Note: This option is only available on Unix/Linux/BSD

Added UID mapping to filePro, ddir/dprodir option F5.
    This allows for UIDs (User IDs) to be aliased to specific 
    usernames. In the event that a login account is removed from 
    your system, this can be used to maintain the link between the 
    removed login's UID and those stored in filePro, effectivly 
    allowing system variables such as @CB and @UB to be mainained.

    Windows Only:
        This also has the added benefit of allowing @CB and @UB to 
        function on Windows by linking a "pseudo" UID to a given 
        username. These UIDs are automatically generated but can 
        also be manually added. When a user opens filePro and their
        username does not exist in the UID map file, a UID will 
        be generated for that user. filePro will find the next 
        available UID in the list, starting from 2000, and assign 
        it to that username.

        On all platforms, UIDs stored in this program must be unique 
        and in the range 0-65535. Usernames can be duplicated on Unix 
        and Linux platforms, but must be unique on Windows.

        Usernames are case-sensitive on Unix and Linux platforms and 
        are case-insensitive on Windows platforms.

        Environmental Variables:
        PFUIDMAP = /path
        Alternate filePro UID map file. (Use full path)
            Note: Must be set in the environment.

        PFUSEUIDMAP = ON 
        Allows filePro to do UID mapping. Also expands the maximum 
        username length returned by @CB, @UB, and @ID to 32.
        Default: ON
                    
String Functions
    All "is" functions return "1" for true and "0" for false.

    x=isalpha(fld [, pos])
        Is the character at the position given a letter?

    x=isdigit(fld [, pos])
        Is the character at the position given a number?

    x=isalnum(fld [, pos])
        Is the character at the position given a letter or number?
                 
    x=isspace(fld [, pos])
        Is the character at the position given a whitespace character?
        ' ', '\t', '\n', '\r', '\v', '\f' 

    x=islower(fld [, pos])
        Is the character at the position given lowercase?

    x=isupper(fld [, pos])
        Is the character at the position given uppercase?

    x=isxdigit(fld [, pos])
        Is the character at the position given a hexadecimal character?
        '0'-'9', 'A'-'F'

    x=iscntrl(fld [, pos])
        Is the character at the position given a control character?
        ASCII codes 0x00 (nul) - 0x1f (US), and 0x7f (del)

    x=isprint(fld [, pos])
        Is the character at the position given a printable character?
        ASCII codes greater than 0x1f (US) not including 0x7f (del)

    x=ispunct(fld [, pos])



        Is the character at the position given a punctuation character?

    x=isgraph(fld [, pos])
        Is the character at the position given a character with a 
        graphical representation?  The characters with graphical 
        representation are all those characters than can be printed 
        (as determined by isprint) except for space.

    x=tolower(fld [, pos])
        Return the character at the position given as a lowercase 
        character.

    x=toupper(fld [, pos])
        Return the character at the position given as an uppercase 
        character.

    str=strtolower(fld)
        Return the entire string converted to lowercase.

    str=strtoupper(fld)
        Return the entire string converted to uppercase.

Added new array size function to get the size of an array. Can be 
    used with GLOBAL, EXTERN, LOCAL, and SYSTEM arrays.

x=ARRAYSIZE(array)
    Where array is the name of the array.
    Where x is the returned size of the passed array.

Added new DECLARED function to check if an array or longvar is 
    defined, meaning it is either declared LOCAL or GLOBAL or is declared 
    EXTERN but has a matcing GLOBAL definition.

    x=DECLARED(var)
        Where var is either a longvar or an array.
        Where x is the return value.
    Returns 0 if the variable is not fully defined.
    Returns 1 if the variable is fully defined.

Increased ACTION length in debugger from 60 characters to full 128. 
    Should now be the same as *cabe.
            
Added new flag -DM to [dr]clerk to disable the Index Mode prompt 
    from @ENTSEL.  Only works when not in update mode.
        
Added flag -RH to report to disable the automatic record number 
    reporting in the middle of the screen.  This enables placing text on the 
    center of the screen without it being overwritten when the display updates.

x=@GUI.PAUSE()
    Pauses automatic screen updating while in GI/Web.

x=@GUI.RESUME()
    Resumes automatic screen updating while in GI/Web.
    
REPLACE() enhancement - allow null characters               
    Enhanced REPLACE() to accept null characters
    
FORM WITHPROC                                               
    FORM WITHPROC "formname"
    FORMM WITHPROC "formname"

    Added additional command switch to FORM and FORMM commands to allow
    the associated processing table to run while in input processing.

    Note: You cannot call the WITHPROC variant from within another form
    UNLESS the calling form is a processing only form.
    
Addqual Program                                             
    Addqual allows you to easily add qualifiers to your files either
    interactively or through the command line.

    This runs interactively:
    addqual [filename]

    This runs automatically:
    addqual filename -q <qualname>
    as does this:
    addqual filename -q <qualname> -x <qual-to-copy-from>

    The automatic commands will display graphics on errors. You can keep
    graphics off with "-s" and errors will be printed on the command line
    if they occur.
    example:
    addqual filename -q <qualname> -s

    List of switches:
    -q qualifier to create
    -x qualifier to copy indexes from
    -s silent, no graphics
    -h --help syntax help
    
XFER - encrypted transfers server-peer



CABE F6 list files from F8 L-Load   

===================================
End End End End End End End End End
===================================
  

 



Release notes - filePro Plus 6.1 - 03/28/2025
    fP 6.1.XX.08

The filePro Plus software and the documentation provided with it
are protected under United States Copyright Laws and is provided
subject to the terms and conditions of the filePro License Agreement.

PLEASE NOTE the support and fax phone numbers listed in this
readme file. Open new support incidents on our website.

*****************************************************************

WWW        http://www.fptech.com
Support    support@fptech.com
Sales      sales@fptech.com
Management filepro@fptech.com

*******************************

To submit bug reports
--------------------------------
1. Login to your account portal on our website
   http://www.fptech.com/fptech/login.php and then
   go to the Support Incident Menu and submit an
   incident request.
2. EMail them to support@fptech.com including the text
   "Bug Report" with the version # and your filePro
   License # in the subject line
3. FAX them to (813) 354-2722 clearly marking them as bug reports
   and be sure to reference your filPro License #
4. Call the customer support number (800) 847-4740

*******************************

A special thank you to Jim Asman for his contribution
to the functionality of our printer tables.   Jim was
a good friend to filePro and is dearly missed.

*******************************

Contact Information

Surface Mail
    fP Technologies, Inc.
    432 W. Gypsy Lane Road
    Bowling Green, OH 43402

Phones
    Support   (800) 847-4740
    Sales     (800) 847-4740
    Fax       (813) 354-2722

Email
    Support    support@fptech.com
    Sales      sales@fptech.com
    Management filepro@fptech.com

It's important that you clearly describe a suspected bug and
include the filePro version number. If the programmer has trouble 
figuring out what you meant, you might as well not have reported 
the bug. Be very specific. For example, if you are reporting a 
bug concerning a Browse, identify if it is a lookup browse or 
browse created by using the [F6] key. A screen shot is very 
helpful and sometimes better than more than 1000 words.

Describe exactly how to duplicate the bug. Although it's 
sometimes difficult to create a working sample to demonstrate the 
problem, make every effort to trim down your code and provide a 
working sample application with test data. You may even discover 
that what you thought to be a bug is due to a coding error or the 
bug may only occur with lots of data or large processing tables.

Take good notes as to any error messages and under what 
circumstances the error message is presented. It never hurts to 
provide more information rather than not enough. This is 
particularly true when the programmer asks for additional 
information. Rather than responding with a single sentence, be
verbose since this may shed some light on the bug or what you may 
be doing wrong in your code.

Read what you wrote. Closely read your bug report before submitting 
to make sure it's clear and complete. If you have listed steps for 
duplicating the bug in a sample, exercise the sample with the 
listed steps to make sure you haven't missed a step.
    
***************************************
filePro and filePro Plus are registered 
  trademarks of fP Technologies, Inc.
***************************************
===================================
Bug fixes are below the New Items.
===================================
====================================



Version 6.1.02.RR New USP Only Items
====================================

Enhanced find and replace with an optional match whole word function. This makes
    it much easier to find places where variables like "aa" and "zz" are used.
    
    
Added new F8 options to dmakemenu. You can now move, copy, delete, save, and
    load menu items inside of dmakemenu.

Expanded menu version from 8 characters to 16 in dmakemenu and runmenu. Using a
    longer title and running the menu in an older version of filePro will only
    display the first 8 characters.
    
    
Added new environmental variable PFMENUVER=0, Default 0. This globally changes
    how filePro menus display their version strings.
        0 - Show menu version as-is.
        1 - Show filePro version if menu version is blank.
        2 - Show menu file name if menu version is blank.
        3 - Always show filePro version.
        4 - Always show menu file name.

Added pseudo environmental variable @MN that can be used in the version string
    or menu title to show the menu file name in its place. To use, place $@MN in
    the menu title or menu version section when designing a menu.

Added an option "7" to READSCREEN() to get cursor path. Dynamically sized, 
    returns a list of fields separated by colons, e.g. "  1:  2:TAB:aa :".

Added new option to ENCODE() and DECODE(), "URL", to handle URL percent 
    encoding. Failure to decode will return an empty string.
Example:
    then: x=ENCODE("URL","Hello, World!") ' x contains "Hello%2C%20World%21"
    then: x=DECODE("URL","Hello%2C%20World%21") ' x contains "Hello, World!"

Added preliminary support for variable index selection in lookups. You can now
    use an expression to select which index to use for a lookup at runtime.
Example:
    then: declare index(1,*); index="A"
    then: lookup myfile = test k=aa i=(index) -nx

    Note: The lookup wizard has not been updated at this time. Support will be
          added in a future version.

Added READMAP(file) function. Takes the name of a filePro file and returns
    information from the first line of the map file. On error or if the file
    is an invalid filePro file, the function will return blank.

Parameters:
    file: The name of a filePro file.

Example return value:
    Each section is 5 characters long by default.
    "type:kreclen:dreclen:keyflds:"
    Where:
        type is the filePro map type; map, map2, odbc, alien.
        kreclen is the key record length for a record in the file.
        dreclen is the data record length for a record in the file.
        keyflds is the number of key fields for a record in the file.
    e.g. "map  :  100:    0:   10:"

Added a new function x=PRINTCODE(code [,flag]). Returns either the expanded 
    print code for the current printer or its description.
    
Parameters:
    code: The print code number to evaluate.
    flag: 0 - Return the "raw" expanded print code.
          1 - Return the comment for the print code.
    
Examples:
    Given a print code table containing the following entries:
    +- Number -- Sequence ------------ Description --------------------+
    |     1     %2 %3                  Initialize printer              |
    |     2     <page>                 New Page                        |
    |     3     <font name="Courier">  Set Font                        |
    +------------------------------------------------------------------+
      if: ' x will contain '<page> <font name="Courier">'
    then: x = PRINTCODE("1")
      if: ' x will contain '<page> <font name="Courier">'
    then: x = PRINTCODE("1","0")
      if: ' x will contain 'New Page'
    then: x = PRINTCODE("2","1")

 
Added x=GETLOCKS(array,lookup). Returns the number of elements populated in the 



    array. Fills the array with locked record information for a given lookup.
    Use '-' for current file. If passing a multi-dimensional, the array must
    point to the final sub array OR the second to last. This allows us to return
    the PID and Username/UID for the given lock. Returns "0" on Windows.
Restrictions:
    Linux|Unix|FreeBSD Only.
    
Parameters:
    array:  An array to place the locked record information in.
    lookup: The lookup to use to check a filePro file for locked records.

Examples:
    then: ' Fill array with the record number of locked records in the file
    then: dim array(10)(10,.0)
    then:                        ' x will contain the number of locks on the
    then: x = GETLOCKS(array,-)  ' file that will fit into array
    
    then: ' Fill array with locked records including PID and Username/UID
    then: dim array(10,3)
    then:                        ' x will contain the number of locks on the
    then: x = GETLOCKS(array,-)  ' file that will fit into array
    
    In the second example each "row" of the array will contain the locked
    record number, the PID of the locking process, and the user holding the
    lock. e.g.
    then: x = array["1","1"] ' x holds the record number
    then: x = array["1","2"] ' x holds the PID
    then: x = array["1","3"] ' x holds the username OR UID
    
    
Added x = FPSTAT(lookup) function to return map information and basic access 
    attributes for a given filePro lookup.
    
Parameters:
    lookup: A lookup to a filePro file to retrive basic attributes from.
            Can be "-" for the current file.
Returns:
    kfilesize;dfilesize;mdate;mtime;
    Blank on error.
    
Where:
    kfilesize is the total sum of the size of all key segments in bytes.
    dfilesize is the total sum of the size of all data segments in bytes.
    mdate is the last date a key/data file was modified, e.g. 03/24/2025
    mtime is the last time a key/data file was modified, e.g. 02:19:59
    
Note: The returned values are ONLY for the active qualifier on the lookup.

Added n = ISDIR(fname). Test if a given path is a directory. Returns "1" if the
    file exists and is a directory. Returns "0" if it is not. Returns a negated
    system error on failure.

Parameters:
    fname: A path to an on-disk resource.
    
Note: Shares the same @FSTAT array used by EXISTS() in filePro.

Added n = ISFILE(fname). Test if a given path is a file. Returns "1" if the
    file exists and is a file. Returns "0" if it is not. Returns a negated
    system error on failure.
    
Parameters:
    fname: A path to an on-disk resource.
    
Note: Shares the same @FSTAT array used by EXISTS() in filePro.
    
    
Added n = ISLINK(fname). Test if a given path is a link. Returns "1" if the
    file exists and is a link. Returns "0" if it is not. Returns a negated
    system error on failure.

Parameters:
    fname: A path to an on-disk resource.
    
Note: Shares the same @FSTAT array used by EXISTS() in filePro.
      ISLINK() always returns "0" on Windows. 

Added s = GETQUAL(fname) function. GETQUAL() will return a colon delimited list
    of all qualifiers for the file given by "fname"
    
Parameters:
    fname: A filePro file name.
    
Example:
    (File invoices has 3 qualifiers 2022, 2023, and 2024)
    then: s=GETQUAL("invoices") ' s will contain "2022   :2023   :2024   :"

Added n = GETQUAL(array, fname) function. GETQUAL() will return the number of
    qualifiers for the file given by "fname" while filling "array" with the



    list of qualifier names.
    
Parameters:
    array: An array to fill with a list of qualifier names.
    fname: A filePro file name.
    
Example:
    (File invoices has 3 qualifiers 2022, 2023, and 2024)
    then: DIM quals(10)
    then: n = GETQUAL(quals, "invoices")  ' n will contain "3"
    then: q = quals["1"]                  ' q will contain 2022
    then: q = quals["2"]                  ' q will contain 2023
    then: q = quals["3"]                  ' q will contain 2024

Added new XLSX functions: XL_FREEZEPANE, XL_FREEZEPANE2, XL_SPLITPANE
e = XL_FREEZEPANE([row [, col [, sheet]]])
Parameters:
    row:   Row to split the cell (0 indexed)
    col:   Column to split the cell (0 indexed)
    sheet: Handle to sheet to freeze the cell on. Leave blank, "0", or "-1" to
           use the default sheet.

Notes:
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

    The split is specified at the top or left of a cell and uses zero based
    indexing. Therefore to freeze the first row of a worksheet it is necessary
    to specify the split at row 2.

    You can set one of the row and col parameters as zero if you do not want
    either a vertical or horizontal split.

e = XL_FREEZEPANE2([cell [, sheet]])
Parameters:
    cell:  The Excel style cell to freeze the cell. e.g. "A1" "D6" "F6".
    sheet: Handle to sheet to freeze the cell on. Leave blank, "0", or "-1" to
           use the default sheet.

Notes:
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

    Split is specified at the top or left of a cell and uses zero based
    indexing. Therefore to freeze the first row of a worksheet it is necessary
    to specify the split at row 2.

    You can set one of the row and col parameters as zero if you do not want
    either a vertical or horizontal split.

e = XL_SPLITPANE([vertical [, horizontal [, sheet]]])
Parameters:
    vertical:   The position for the vertical split. e.g. "1", "12.5", "15"
    horizontal: The position for the horizontal split. e.g. "1", "12.5", "15"
    sheet:      Handle to sheet to freeze the cell on. Leave blank, "0", or "-1"
                to use the default sheet.

Notes:
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

    This function divides a worksheet into horizontal or vertical regions known
    as panes. This function is different from the XL_FREEZEPANE function in that
    the splits between the panes will be visible to the user and each pane will
    have its own scroll bars.

    The parameters vertical and horizontal are used to specify the vertical and
    horizontal position of the split. The units for vertical and horizontal are
    the same as those used by Excel to specify row height and column width.
    However, the vertical and horizontal units are different from each other.
    Therefore you must specify the vertical and horizontal parameters in terms
    of the row heights and column widths that you have set or the default values
    which are 15 for a row and 8.43 for a column.

Added new environmental variable PFXLASCII, default OFF. If enabled, any non-
    printable ASCII characters will be automatically stripped from data when
    inserted into an XLSX document.

Enhanced DIM to allow IMPORT and EXPORT commands to be mapped to an array.
    Example:
        then: IMPORT WORD ifile=(fname)
        then: DIM data(10):ifile(1)     ' data can now be used in place of ifile
        then: ct(4,.0)="1"
    loop  if: ct le "10"
        then: msgbox data(ct); ct=ct+"1"; goto loop
        then: close ifile



Enhanced COPY, COPY TO, and COPYIN commands to support arrays. Each command
    now allows for any combination of lookups and arrays to copy data, including
    mapped/aliased arrays.
    
Syntax:
    COPY lookup           ' Copy the current record to a lookup file
    COPY array            ' Copy the current record to an array
    COPYIN lookup         ' Copy a lookup file record to the current record
    COPYIN array          ' Copy an array to the current record
    COPY lookup TO lookup ' Copy a lookup record to a lookup record
    COPY array TO lookup  ' Copy an array to a lookup record
    COPY lookup TO array  ' Copy a lookup record to an array
    COPY array TO array   ' Copy an array to an array

Examples:
    (Copy the current record to an array)
    then: DIM array(10)
    then: COPY array
    
    (Copy an IMPORT to the current record)
    then: IMPORT WORD ifile=(fname)
    then: DIM data(10):ifile(1)     ' data can now be used in place of ifile
    then: COPYIN data               ' Copy the import to the current record
    then: close ifile
    
    (Copy a lookup record to an EXPORT)
    then: EXPORT WORD ofile=(fname)
    then: DIM data(10):ofile(1)     ' data can now be used in place of ofile
    then: lookup inv=invoices r=(rec) -nx
    then: COPY inv TO data
    then: close ofile
    then: close inv

Added x = COPY(array1, array2 [,src [,dest [,len]]]) function to copy data
    between arrays. Returns the number of elements copied from array1 to
    array2.
    
Parameters:
    array1:  Array to copy from.
    array2:  Array to copy to.
    src:     The array index to start copying from array1.
    dest:    The array index to start copying to in array2.
    len:     The number of elements to copy from array1 to array2.
    
    If no optional parameters are provided COPY() will copy as many items from
    array1 that will fit into array 2. Parameters src and dest default to the
    first index of each array. Parameter len defaults to the entire array
    length.
    
Example:
    then: DIM fruit(3)
    then: DIM food(3)
    then: fruit["1"]="Apple"; fruit["2"]="Orange"; fruit["3"]="Pear"
    then: x=COPY(fruit,food,"1","1","2")
    (The food array will contain "Apple", "Orange", and "")
    

Added XML import and export code.
    filePro now has the ability to import and export XML files.
    
    Export:
        XML [id] :CR fname        - Creates an XML file. The id is optional and
                                    defaults to "0" if only one file is open at
                                    a time. If two or more are open, the id
                                    must be supplied ("0"-"99")
        XML [id] :CR-|:CL         - Closes an open XML file.
        XML [id] :EL name         - Starts an element in an XML file.
        XML [id] :EL-             - Closes an element.
        XML [id] :AT name value   - Adds an attribute to an XML element.
        XML [id] :TX text         - Adds a text element to an XML document.
        
    Example:
        Then: XML :CR "/tmp/myfile.xml"
        Then: XML :EL "EmployeeData"
        Then: XML :EL "employee"
        Then: XML :AT "id" "21"
        Then: XML :EL "firstName"
        Then: XML :TX "Tom"
        Then: XML :EL-
        Then: XML :EL "lastName"
        Then: XML :TX "Anderson"
        Then: XML :EL-
        Then: XML :EL-
        Then: XML :EL-
        Then: ML :CL
    Output:
        <?xml version="1.0"?>
        <EmployeeData>
          <employee id="21">
            <firstName>Tom</firstName>
            <lastName>Anderson</lastName>
          </employee>



        </EmployeeData>

    Import:
        XML [id] :RO fname          - Opens an XML file for reading. The id is
                                      optional and defaults to "0" if only one
                                      file is open at a time. If two or more are
                                      open, the id must be supplied ("0"-"99")
        v = XML [id] :GV key [attr] - Get a value from an XML file using a path
                                      to a key. An attribute name can optionally
                                      be provided to return an attribute value
                                      rather than the text element value.
                                
    Keys are a way to reference part of an XML document using dot syntax. An
    example of dot syntax would be a key, such as "name.first" or "age".
    There are reserved symbols used in key syntax that can be used to
    retrieve certain values from the XML:

    '#' is used to get the number of child elements inside of an element.
    
    '@' is used to specify a literal, or if at the end of the path, get the
        name of the current object.
        
    Index positions can also be used to reference specific elements by numeric 
    position inside of an XML document. Indexes in Key Syntax start at position
    1.

    x = XML :GV "food.10" will attempt to find the tenth (10) item inside
        a food element.

    x = XML :GV "food.@10" will attempt to find a key named "10" inside a
        food element and return its value.

    x = XML :GV "food.fruit[10]" will attempt to find the tenth (10) fruit
        element inside of the food element and return its value.
        
    x = XML :GV "food.fruit[#]" will return the number of fruit elements inside
        of the food element.
    
    Example:
    Given the following XML, here are example commands and what they return.
        <?xml version="1.0"?>
        <EmployeeData>
          <employee id="21">
            <firstName>Tom</firstName>
            <lastName>Anderson</lastName>
          </employee>
          <employee id="99">
            <firstName>Tiffany</firstName>
            <lastName>Anderson</lastName>
          </employee>
        </EmployeeData>
        
    Then: XML :RO "/tmp/myfile.xml"              ' open the XML file for reading
    Then: x=XML :GV "EmployeeData.employee.firstName"  ' x contains "Tom"
    Then: x=XML :GV "EmployeeData.employee[1]" "id"    ' x contains "21"
    Then: x=XML :GV "EmployeeData.employee.1.@"        ' x contains "firstName"
    Then: x=XML :GV "EmployeeData.#"                   ' x contains "2"
    Then: x=XML :GV "EmployeeData.2.firstName"         ' x contains "Tiffany"
    Then: x=XML :GV "EmployeeData.2" "id"              ' x contains "99"
    Then: XML :CL                                      ' close the XML file
    

Added LOOP commands.
    filePro now has support for basic loops.
    
FOR loop
    A loop that runs from a value to a value. Built in edits are supported.
    If a STEP value is not supplied, filePro will determine a STEP value
    based on the FROM and TO expression values. A FROM value that is less
    than a TO value will result in a positive STEP ("1"). If FROM is greater
    than TO the STEP value will be negative ("-1").
    
    Each iteration of the loop will update the value of "f", incrementing by
    STEP, and goto the label specified by DO.

    Syntax:
        FOR f[(len,edit)] FROM exp TO exp [STEP exp] DO label
        
    Example:
        then: FOR f(10,.0) FROM "1" TO "10" STEP "1" DO lp1; goto en1 
    lp1   if: 
        then: msgbox f    ' print the value of "f" from 1 to 10
        then: end
    en1   if:
        then: FOR d(10,mdyy/) FROM "12/01/2024" TO "12/31/2024" DO lp2; goto en2
    lp2   if:
        then: msgbox d    ' print the value of "d" from 12/01/2024 to 12/31/2024
        then: end
    en2   if:
        then: end
    
    Note: The FROM, TO, and STEP expressions are evaluated once when the 
          loop is first executed. Changing these values once the loop starts



          executing will not change how the loop runs.

WHILE loop
    A loop that runs while the condition is true. Each iteration checks the
    condition (cnd) and while the value is true goes to the label specified by
    DO. A condition can be an IF expression or label.
    
    Syntax:
        WHILE cnd DO label
    
    Example:
        then: declare total(10,.0)
        then: total="0"
        then: lookup inv=invoice r=(rec) -nx
        then: WHILE inv DO lp1; goto en1
    lp1   if: 
        then: total=total+inv(1)
        then: getnext inv
        then: end
    en1   if:
        then: close inv; end
        
        
LOOP ... WHILE|UNTIL
    A loop that runs while the condition is true (WHILE) or until the condition
    is true (UNTIL). Each iteration starts by going to the label specified by
    DO, then the condition is checked and the loop either continues or
    terminates based on the value of the condition. A condition can be an IF 
    expression or label.
    
    Syntax:
        LOOP label WHILE cnd
        LOOP label UNTIL cnd
        
    Example:
        then: i(10,.0)="10"
        then: LOOP lp1 WHILE i gt "0"; goto en1
    lp1   if: 
        then: i=i-"1";
        then: end
    en1   if:
        then: end
        
        
BREAK command
    BREAK can be used inside of a loop to terminate its execution early.
    
    Example:
        then: i(10,.0)="10"
        then: LOOP lp1 WHILE i gt "0"; goto en1
    lp1   if: i eq "5"
        then: BREAK            ' Terminate the loop early when i equals 5
        then: i=i-"1";
        then: end
    en1   if:
        then: end

====================================
Version 6.1.01.RR New USP Only Items
====================================

Added JSON import and export code.
    filePro now has the ability to import and export JSON files.
    
    Export:
        JSON [id] :CR fname        - Creates a JSON file. The id is optional and
                                     defaults to "0" if only one file is open at
                                     a time. If two or more are open, the id 
                                     must be supplied ("0"-"99")
        JSON [id] :CR-|:CL         - Closes an open JSON file.
        JSON [id] :OB [name]       - Starts an object in a JSON file.
        JSON [id] :OB-             - Closes an object.
        JSON [id] :AR [name]       - Starts an array in a JSON file.
        JSON [id] :AR-             - Closes an array in a JSON file.
        JSON [id] :IT name [value] - Adds an item to a JSON file, if a value is
                                     not supplied, the resulting value will be 
                                     null.
        JSON [id] :NO name [value] - Adds a number to a JSON file, if a value is
                                     not supplied, the resulting value will be 
                                     null.
        JSON [id] :BL name [value] - Adds a boolean value to a JSON file, if a
                                     value is not supplied, the resulting value
                                     will be null.
                                     
    Note: Names will be ignored when adding an item, number, or boolean directly
    to an array.    
                
    Example:
        JSON :CR "/tmp/myfile.json"
        JSON :OB
        JSON :OB "name"
        JSON :IT "first" "Tom"



        JSON :IT "last" "Anderson"
        JSON :OB-
        JSON :NO "age" "37"
        JSON :AR "children"
        JSON :IT "" "Sara"
        JSON :IT "" "Alex"
        JSON :IT "" "Jack"
        JSON :AR-
        JSON :IT "fav.movie" "Deer Hunter"
        JSON :OB-
        JSON :CL

    Output:
        {
          "name":    {
            "first": "Tom",
            "last":    "Anderson"
          },
          "age": 37,
          "children": ["Sara", "Alex", "Jack"],
          "fav.movie": "Deer Hunter"
        }

    Import:
        JSON [id] :RO fname        - Opens a JSON file for reading. The id is 
                                     optional and defaults to "0" if only one 
                                     file is open at a time. If two or more are
                                     open, the id must be supplied ("0"-"99")
        value = JSON [id] :GV key  - Get a value from a JSON file using a path
                                     to a key.

        Keys are a way to reference part of a JSON document using dot syntax. An
        example of dot syntax would be a key, such as "name.first" or "age".
        There are reserved symbols used in key syntax that can be used to 
        retrieve certain values from the JSON:

        '#' is used to get the number of elements inside of an object or array.
        '@' is used to specify a literal, or if at the end of the path, get the
            name of the current object.
    
        Index positions can also be used to reference specific elements by 
        numeric position inside of an object or an array. Indexes in Key Syntax
        start at position 1.
    
        x = JSON :GV "fruits.10" will attempt to find the tenth (10) item inside
            a fruits object or array.
    
        x = JSON :GV "fruits.@10" will attempt to find a key named "10" inside a
            fruits object and return its value.

    Example:
        Given the following JSON, here are example commands and what they return.
        {
          "name":    {
            "first": "Tom",
            "last":    "Anderson"
          },
          "age": 37,
          "children": ["Sara", "Alex", "Jack"],
          "fav.movie": "Deer Hunter"
        }

        Then: JSON :RO "/tmp/myfile.json" ' open the JSON file for reading
        Then: x=JSON :GV "name.first"     ' x contains "Tom"
        Then: x=JSON :GV "name.1.@"       ' x contains "first"
        Then: x=JSON :GV "age"            ' x contains "37"
        Then: x=JSON :GV "children.#"     ' x contains "3"
        Then: x=JSON :GV "children.1"     ' x contains "Sara"
        Then: x=JSON :GV "fav\.movie"     ' x contains "Deer Hunter"
        Then: JSON :CL                    ' close the JSON file

filePro now has the ability to place fill-in-the-blank PDF objects on output 
    formats and also retrieve values from PDF documents that have
    fill-in-the-blank fields to be used in Processing.
    
    There are four types of PDF Form Objects that can be used:
        Textbox
        Dropdown
        Checkbox
        Radio
    
    When a PDF output is generated, placed objects will be interactive in any 
    supporting PDF viewer/editor. These PDF files can be saved after filling in
    fields, and processing can be written to retrieve values from these fields.

    NOTE: Using the new generation features in a report can lead to unintended
    results. Fields are shared across records and pages. Updating one field
    updates all matching instances of that field throughout the document. It is
    recommended to use output forms over output report
    
    Please See Fill In PDFs in the manual for more information on document



    creation.
    
 Manual Link
    
    If the PDF was created with filePro, field names will be either the 
    real-field or dummy field used to create the PDF object. 
        e.g. "1", "42", "aa", "ab".

    Use these commands to read filled-in PDF documents:

    handle = PDF_OPEN(pdf_path)
        Returns a handle value (10,.0) that points to a PDF document with 
        pdf_path as the filename. Returns a negative value on error.

    error_value = PDF_CLOSE(handle)
        Frees all values and memory associated with a PDF handle and closes the
        document. Returns a non-zero number on error.

    num_fields = PDF_GETNUMFIELDS(handle)
        Returns the number of fields in the PDF document.

    name = PDF_GETFIELDNAME(handle, index)
        Returns the full name of a field in a PDF document, given its index. The
        index is a number between "1" and the num_fields value returned by 
        PDF_GETNUMFIELDS.

    type = PDF_FIELDTYPE(handle, fieldname)
        Returns the field type name of the specified field fieldname, which is
        one of:
            NONE
            BUTTON
            RADIO
            CHECKBOX
            TEXT
            RICHTEXT
            CHOICE
            UNKNOWN
            
    name = PDF_FIELDTYPE2(handle, index)
        Returns the field type name of the specified field index, which is one 
        of:
            NONE
            BUTTON
            RADIO
            CHECKBOX
            TEXT
            RICHTEXT
            CHOICE
            UNKNOWN
            
        The index is a number between "1" and the num_fields value returned by
        PDF_GETNUMFIELDS.

    value = PDF_GETVALUE(handle, fieldname [, richtext])
        Returns the field value, e.g. the text in the field, checkbox status, 
        combo box index, etc. for the given field name fieldname. Optionally, 
        richtext can be set to "1" to return rich text data if it exists.

    value = PDF_GETVALUE2(handle, index [, richtext])
        Returns the field value, e.g. the text in the field, checkbox status, 
        combo box index, etc. for the given field index index. Optionally, 
        richtext can be set to "1" to return rich text data if it exists. The 
        index is a number between "1" and the num_fields value returned by
        PDF_GETNUMFIELDS.

ret = QRCODE(str, dest [, size [, logo [, fg [, bg]]]])
    Create a QR Code from a text string.
    
    str is the text to store in the QR code.
    
    dest is the full name and path to the QR code to be generated.
    
    size is the size of the QR code to be generated in pixels. Must be large 
        enough to store the full QR code.
        
    logo is an optional logo to place in the center of the QR code.
    
    fg is the foreground color of the QR code in hexadecimal.
    
    bg is the background color of the QR code in hexadecimal.

    Returns the size of the generated QR code, or -1 on error.

    Example:
        Then: ret=QRCODE("fptech.com","/tmp/website.png")

Added QRCODE FPML print code.
    <QRCODE TEXT="qr text" [SIZE="size"] [COLOR="color"] [FILL="bg color"]
        [X="x-pos"] [Y="y-pos"]>
    



    Adds a QR code with the specified text to the PDF document.
    
    All attributes, except for "TEXT", are optional.

    TEXT is the text to add to the QR code when generating the image.

    SIZE is the width and height of the QR code, must be large enough to fit the
        entire generated image.

    COLOR is the foreground color of the QR code (in hexadecimal).

    FILL is the background color of the QR code (in hexadecimal).

    X X position. (Default: current X position.)

    Y Y position. (Default: current Y position.)

FPML print codes can now use field names for any attribute.
    Any attribute inside of an FPML print code can now reference a real field or
    variable inside of processing. Use "@" to reference a field.

    e.g.
    <IMAGE FILE="@1">            ' reference a real field
    <IMAGE FILE="@im">           ' reference a dummy field
    <IMAGE FILE="@image_path">   ' reference a long name variable
  
    Note: Print codes can also be stored in a print code table and do not need 
    to be placed directly on the output to work.

Added a new F5 shortcut in Define Processing for calls. F5 will now open a call
    for editing, or, will prompt you to create the call if it does not exist.

subscript = INDEXOF(array, value)
    Find the subscript of some value in an array.
    
    Example:
        array["1"]="cat"
        array["2"]="dog"
        array["3"]="bird"

        subscript = INDEXOF(array, "dog") ' subscript will contain "2"

Added initial support for multi-dimensional arrays.
    DIM array[n1,n2,...,n8](l,e)
    Multi-Dimensional array of fields with length "l" & edit "e". Array edit is
        optional.

    Example:
        dim array(2,2)
        array["1","1"]="John"
        array["1","2"]="Smith"
        array["2","1"]="Sarah"
        array["2","2"]="Jane"

    Existing array functions can also use multi-dimensional arrays by 
    referencing one of an array's sub arrays.

    Example:
        CLEAR array["1"]

value = A_MAX(array [, array2 [, array3 [, ... [, arrayN]]]])
    Find the maximum value between the passed in arrays.

    Example:
        array1["1"]="5"
        array1["2"]="7"
        array2["1"]="30"
        value = A_MAX(array1, array2) ' value will contain "30"

    Note: This method supports multi-dimensional arrays.
    

value = A_MIN(array [, array2 [, array3 [, ... [, arrayN]]]])
    Find the minimum value between the passed in arrays.

    Example:
        array1["1"]="5"
        array1["2"]="7"
        array2["1"]="30"
        value = A_MIN(array1, array2) ' value will contain "5"

    Note: This method supports multi-dimensional arrays.

value = A_TOT(array [, array2 [, array3 [, ... [, arrayN]]]])
    Total all of the values in the passed in arrays.

    Example:



        array1["1"]="5"
        array1["2"]="7"
        array2["1"]="30"
        value = A_TOT(array1, array2) ' value will contain "42"

    Note: This method supports multi-dimensional arrays.

value = A_AVG(array [, array2 [, array3 [, ... [, arrayN]]]])
    Find the avereage of all of the values in the passed in arrays.

    Example:
        array1["1"]="5"
        array1["2"]="7"
        array2["1"]="30"
        value = A_AVG(array1, array2) ' value will contain "14"

    Note: This method supports multi-dimensional arrays.
===================================
END OF NEW USP ITEMS
===================================
===================================
6.1.XX.08 NEW ITEMS
===================================
Added support for read-only PDF fields when generating a fill-in-the-blank PDF
    document. Each field type now contains an option to flag the field as 
    read-only.

Updated how 'C' continue works in the debugger. The debugger should now
    correctly maintain the "step" mode when switching between processing and
    entering and leaving calls. Previously, using continue while inside a call
    would take you out of single-step mode when returning from said call. Now,
    if you were in single-step mode before a call, continuing inside of the call
    will place you back into single step mode upon returning or entering a new
    processing table.

Enhanced F9 search in dcabe/rcabe to allow for whole word searching by using a
    single quote before the search term, e.g. 'WORD. This makes it much easier
    to find places where variables like "aa" and "zz" are used.

Added -MN command line option to hide [NONE] qualifier from the qualifier list
    in dclerk, rclerk, dreport, rreport, and dxmaint. Same as PFNOQUAL=OFF.

===================================
6.1.XX.07 NEW ITEMS
===================================
Added a F7 last record option to clerk.

Added new system controlled fields for creation time (@CT), update time (@UT), 
    and batch time (@BT) per record. Note: The time is stored in 2 second
    intervals.

===================================
6.1.XX.06 NEW ITEMS
===================================
Added a new option to show a stacktrace on a runtime error if PFERRTRACE is set.
    Default OFF.

Dxmaint will now always show qualifier if PFQUAL is set.

===================================
6.1.XX.04 NEW ITEMS
===================================
Added PFOLDCHAIN to allow CHAIN to return to the top of processing when a record
    is saved and the chain was performed inside of an event.
    
Added basic reconnect functionality into ODBC mirroring upon communications link
    failure.

Added the ability to directly assign to a longvar when declaring it.
    e.g. 
    declare myvar = "Hello!"

Updated Fuzzy search screen in clerk to be larger and show correct button
    prompts.
    
n = STACKTRACE(array)
    Fill an array with a processing trace, listing the current and past 
    processing tables and their line numbers to the current line being executed.
    This will show lines "jumped" from gosubs and follow calls and functions.

    Returns the number of elements that could fit into the array.

Added new debugger option "T" to show the current stacktrace while debugging.

===================================
6.1.00.03 NEW ITEMS
===================================
Updated all programs to no longer require unixODBC by default. unixODBC will now
    only be required when an ODBC related function is used. If unixODBC is not 
    found when an ODBC function is required, a filePro error will be returned.

Added the ability to assign directly to a longvar when creating it.



    e.g.
    declare myvariable(32,*)="Hello, World!"

Reworked tokenization engine to no longer require setting PFTOKSIZE or related 
    variables. Variable will now be silently ignored.

Added PFPDFAUTOBREAK=ON (default OFF) to allow PDFs to automatically break pages
    based off of selected paper type.

Added menu letter to menu script editor.

===================================
6.1.00.00 NEW ITEMS
===================================
You can now use: @wlf<letter>*
    ex. @wlfT*
    This will apply to any dummy/associated field that begins with 'T'
    Overrides any other @wlf*

Added logging to ddefine.
    ddefine can now optionally track changes made to filePro file 
    layouts. This includes the name of the file, who changed it, 
    and what fields were changed.  Requires a logging configuration 
    file to be added under the ./fp/logs directory named 'ddefine.cfg'. 
    Format of the config file is the same as the servlog.cfg file that 
    comes shipped with filePro.
    Example ddefine.cfg:
        ROLLING,DEBUG,ddefine.log,60000
    
xx=FORMERROR
    syntax: xx=FORMERROR()
    returns: errno from last FORM or FORMM command.
    e.g. 2=file not found, 13=permission error

Validate menu script before prompting for removal

Added new option 'C' to F8 Extended Functions for dmoedef 
    to show a list of all print codes on an output format. Selecting 
    an item from the list will jump the editor to it.

TRIM command to remove spaces
    aa=ltrim(fld)
        left trim
    aa=rtrim(fld)
        right trim
    aa=trim(fld)
        trim both left and right    

PFIXGT can now be set in dxmaint F8 options.
    This is backwards compatible, so if PFIXGT is still set in config, 
    then it is honored by clerk *if true*. If false, the index header 
    is checked for the flag.

Windows fPTransfer now will accept wildcards.

A compress-filePro file routine                                  
    fppack

    Function:
     Remove deleted records from a filePro file, and then
     (optionally) rebuild all automatic indexes.

     Syntax:
      fppack [ filename | - ] [ -H heading ] [ -E ] [ -R ] [ -X ] [ -EX ] [ -C ]
      [ -M name | -MD | -MQ mesg | -MA ] [ -BG ] [ -BS ]

       -H "heading" custom title to display in box.
       -E           don't actually pack the records, just
                       give statistics.
       -R           rebuild the automatic indexes even if
                       no records were deleted.
       -EX          skip statistics
       -C           skip continue and finished prompts

       -X           skip rebuilding the auto indexes.
       -M name      qualifier file name to use.
       -MD          ask for qualifier with default prompt.
       -MQ "mesg"   ask for qualifier with "mesg" as the prompt.
       -MA          use all qualified files & main file.
      UNIX/XENIX only:
       -BG          work in the background.
       -BS          suppress "completed in background" message.

Added various enhancements to PDF engine.
    See on-line or ~/fp/docs PDF documentation.

Added optional error message suppression and basic password 
    auditing to filePro.

        PFERRSUPPRESS=ON, default OFF
        PFPWAUDIT=ON, default OFF

    Password auditing also requires a ./fp/logs/pwaudit.cfg file. Same 



    structure as servlog.cfg.
    Any error that would be sent to mail will still be mailed on 
    unix/linux based systems.
    Errors reported in the background will still be suppressed. 
    Including the program name.
    Invalid password and license errors will still be reported. Password errors 
    omit the filename.
        dcabe and rcabe are exempt from the error suppression.
    
These functions lock or unlock bytes of the file specified by handle.

    x=lock(handle,how[,nbyte])
        handle - an open handle to a file
        how    - U|0 : unlock bytes
                 L|1 : lock bytes
                 N|2 : lock bytes non-blocking
        nbyte  - How many bytes in the file to lock, if omitted, lock
                 the billionth byte in the file (file does not have to be
                 that large)

    x=unlock(handle[,nbyte])
        handle - an open handle to a file
        nbyte  - How many bytes in the file to unlock, if omitted,
                 unlock the billionth byte in the file (file does not
                 have to be that large)

    (returns "1" on success and returns negated system error on error)  

ddefine will now create new screens the same as dscreen does instead of just 
    mono.
    
NEW command OPENDIR2 to handle long-named files and paths.
    Syntax:
        N = OPENDIR2(mask, path, fmt_sz, ext_sz, nam_sz)
        All arguments are optional.        
            Format Length
            Extension Length
            Fullname Length
    
*cabe lookup wizard will now honor PFQUAL and show qualified indexes
    
Added new FPML commands to control the appearance of underlines. (See PDF Docs)

New RINSTR, and INSTR now allows negative positions for working backwards.
    
New GIadmin that will count GUI (GI or Web) sessions, ease of system
    and user configuration files and additional security.
    
Added PDF syntax as an option for printer maintenance (pmaint): Windows only
    
Lookup Wizard in cabe now allows long vars as key.

Added alias and arrays to F6-D-L display in *cabe.

Updated color with new routines and corrected the shell escape codes.
    
Automated processing table backups.
    CABEBACKUP ON|OFF (on by default)
    CABEBACKUPMINS n (minutes between backups)
    CABEBACKUPCT n (backup files per process)
    
Menu maintenance (makemenu) now asks if you wish to remove
    an unused menu script if the menu item is not used.
    
*report now allows one to use .outs from a pathed directory library

SCREEN command can switch fields in a POPUP UPDATE -, provided no screen name 
    is passed to the SCREEN command.

MEMO EDIT now accept maxsize to limit the number of
    characters that can be intered into a memo field.
    memo NNN edit (row,col,lines,width,startLine,startcol,maxSize)
    (Text mode only)
    
Added option 7 to dxmaint to clear qualifier
    
New -SE *report flag to allow report to edit/save a selection set.
    
Added @EXIT label to *clerk processing. This is executed whenever 
    a record is exited or broken out of. Events that trigger this are 
    'X' while not in update mode, 'BRKY' while not in update mode, and 
    'exit' in processing. It is the opposite of @entsel, and is the last 
    thing executed when leaving a record. Assignment of real fields is 
    not allowed, this is similar to @once in that the processing that is 
    executed is NOT sitting on a record, but rather record '0'.
    
Partial lookup flag added to *cabe lookup wizard.
    -O on an exact lookup now does partial key matching. This kills a 
    lookup once the begining of the key value no longer matches the lookup 
    key value.

BUSYBOX



        BUSYBOX "my message"
        BUSYBOX("10","10")
        BUSYBOX("10","10") "my message"

Added PFPPFULLPATH as an ehancement to PDFPOSTPRINT
    and added an PFNEWPOSTPRINT alias to name to PDFPOSTPRINT
    Added PFPPFULLPATH to augment the filename passed to the post print 
    handler, default ON, this causes the filename passed to the postprint 
    script to contain the full path to the file, not just the file name. 
    Set to OFF to revert to old behaviour.  PFPOSTPRINTnnn will now work 
    with normal file destinations. Same rules as the old global PFPOSTPRINT 
    but also supports PDF files.

Clerk will now allow a full path to a form when using
    the FORM and FORMM command in processing.

User defined functions
    Forward declare functions to be used:
    (function|func) [file.]name([dim|var] var1, [dim|var] var2, ...)

    e.g.
         function fplib.showlock(var pid)
         function fplib.log(file, line, what)
         function somefunc(dim myarray)

    Call a function:
         [x=][file.]name(var1, var2, ...)

    Return a value from a function:
         return(value)

    Can pass fields: real, dummy, longvar
    Can pass arrays: Alias and system arrays are copied to a non-aliased 
    array. Non-aliased arrays are passed by reference.

    Function names must be at least 3 characters in length.
    Functions cannot modify values outside of its scope.
    Functions do not call automatic processing.
    Functions cannot modify real fields.
    Functions cannot be called unless it they are declared.
    Functions can pass values by reference (changes made to the value will 
    carry back out of the function, only to arrays).
    Functions can optionally return a value.

    Parameter names must be at least 3 characters in length.
    Parameters will be passed to the function using the name they were defined 
    with in the declaration statement.

    Environment variables:
        PFFUNCDBG=(ON|OFF), default OFF. 
            If ON the debugger will be allowed to continue into the function 
            call. If OFF the debugger will skip over user defined functions. 
            NOTE: Debug statements inside of functions will still be able to 
            be activated. If debug is set inside of a function, it will 
            continue even after the function is left.
            
    Example:
    Processing table for fibonacci:
        If:                     ' Declare for future use
        Then: function fibonacci(nval)
          If:                     ' Get the parameter
        Then: declare extern nval
          If: nval le "1"         ' Return the result
        Then: return(nval)
          If:                     ' Return the result
        Then: return(fibonacci(nval-"1")+fibonacci(nval-"2"))
    Usage:
        If:                     ' Declare for future use
        Then: function fibonacci(nval)
        If:                     ' Call the function
        Then: n=fibonacci("9")
        If:                     ' Display the result
        Then: msgbox ""{n         ' Prints "34"

EXTERN and GLOBAL arrays
    DIM GLOBAL name(size)
    DIM EXTERN name

    Only non-aliased arrays can be declared GLOBAL/EXTERN.  
    Functions similar to GLOBAL/EXTERN longvars.

New compare condition for Associated Fields
    Added new selection set relational operators:
        AEQ - Associated field, all equal
        ANE - Associated field, all not equal
        ACO - Associated field, all contain
    These require ALL components of an associated field to match the 
    comparison being done, rather than just one of its component fields.
        
New functions for creating XLSX documents from filePro.
e = XL_OPEN(file [, name])
    Start building an XLSX output file.



    Parameters -
        file : Path to the file to create. If no full path is given the
               generated file will be placed in the PFTMP or equivalent
               directory.
        name : The name for the default sheet that will be created. Defaults to
               Sheet1.
        
    If the filename does not end in ".xlsx" it will be added on creation.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: Only one XLSX file can be created at a time.

e = XL_SAVE([password])
    Save the current XLSX file.

    Parameters -
        password : If specified, encrypt the XLSX output file using Agile
                   encryption (AES128).
    
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: Encrypted XLSX files cannot be opened with most third party programs
    such as LibreOffice and OpenOffice. They are fully supported by Excel
    however. The documents are saved in an encrypted CFB file.

handle = XL_ADDSHEET([name])
    Add a new sheet to the XLSX document.

    Parameters -
        name : The name for the sheet to be created. Defaults to auto naming the
               sheet based on the Sheet1, Sheet2, ..., SheetN template.
        
    Returns a handle to a new sheet object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.

e = XL_ADDCELL([data [, style [, sheet [, row [, col]]]]])
    Add a new cell to the XLSX document.

    Parameters -
        data  : Data to be inserted into the document. A cell starting with '='
                will be treated as a formula.
        style : Handle to style to be used for this cell. Use blank to use the
                default style.
        sheet : Handle to sheet to insert the cell on. Use blank, "0", or "-1"
                to use the default sheet.
        row   : Row to place the cell (0 indexed).
        col   : Column to place the cell (0 indexed).
        

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: Using an empty or negative row/column value will cause the cell to be
    added using the auto counter in the sheet, incrementing the column value
    after the cell is added. Specifying a location will reposition the auto
    counter. Formulas can be used as part of the data as well by prefixing the
    string with '='.

e = XL_ADDCELL2([data [, style [, sheet [, cell]]]])
    Add a new cell to the XLSX document.

    Parameters -
        data  : Data to be inserted into the document. A cell starting with '='
                will be treated as a formula.
        style : Handle to style to be used for this cell. Use blank to use the
                default style.
        sheet : Handle to sheet to insert the cell on. Use blank, "0", or "-1"
                to use the default sheet.
        cell  : The Excel style cell to insert the cell. e.g. "A1" "D6" "F6".

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: Using an empty cell number will cause the cell to be added using the
    auto counter in the sheet, incrementing the column value after the cell is
    added. Specifying a location will reposition the auto counter. Formulas can 
    be used as part of the data as well by prefixing the string with '='.

handle = XL_FORMAT(format)
    Create a new format to use with the XLSX document.

    Parameters -
        format : Excel format string to use to format the a style. e.g.
                 "$ #,###,nnn.nn"
                 "% ##n.n"



                 "m/d/yyyy"

    Returns a handle to a new format object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.

e = XL_COLWIDTH(width, firstcol, lastcol [, sheet])
    Change the default column width for a sheet between a range.

    Parameters -
        width    : Width of the column(s). e.g. "24" "12.5", "11"
        firstcol : Zero based column index or column letter to set from.
        lastcol  : Zero based column index or column letter to set to.
        sheet    : Handle to sheet to change the cell widths.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

handle = XL_FONT(font, [size [, attr [, color]]])
    Create a new font to use with the XLSX document.

    Parameters -
        font  : Name of the font to use.
        size  : Point size of the font. e.g. "11" "8.42" "12", default "11.0"
        attr  : List of attributes to apply to this font, separated by commas.
                e.g. "bold,italic"
                Values:
                    "bold"
                    "italic"
                    "underline"
                    "strike"
                    "unlocked"
                    "hidden"
                    "wrap"
                    "shrink"
                    "fill"
                    "left"
                    "center"
                    "right"
                    "justify"
                    "top"
                    "bottom"
                    "vjustify"
                    "vcenter"
        color : The RGB Hex value to set the font color.
                e.g. "000000" "ADD8E6"

    Returns a handle to a new font object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.

handle = XL_BORDER(borderstyle [, color])
    Create a new border to use with the XLSX document.

    Parameters -
        borderstyle : The style to use with this border. Must be one of the
                      following values:
                      "thin"
                      "medium"
                      "dashed"
                      "dotted"
                      "thick"
                      "hair"
                      "medium_dashed"
                      "dash_dot"
                      "medium_dash_dot"
                      "dash_dot_dot"
                      "medium_dash_dot_dot"
                      "slant_dash_dot"
        color       : The RGB Hex value to set the border color.
                      e.g. "000000" "ADD8E6"

    Returns a handle to a new border object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.

handle = XL_FILL(bg [, fg [, fill]])
    Create a new fill to use with the XLSX document.

    Parameters -
        bg   : The RGB Hex value to set the background fill color.
               e.g. "000000" "ADD8E6"
        fg   : The RGB Hex value to set the foreground fill color.
               e.g. "000000" "ADD8E6"
        fill : The fill pattern to use, defaults to "solid" fill. Value must be
               one of the following.
               "solid"
               "medium_gray"
               "dark_gray"
               "light_gray"
               "dark_horizontal"
               "dark_vertical"



               "dark_down"
               "dark_up"
               "dark_grid"
               "dark_trellis"
               "light_horizontal"
               "light_vertical"
               "light_down"
               "light_up"
               "light_grid"
               "light_trellis"
               "gray_125"
               "gray_0625"

    Returns a handle to a new fill object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.

e = XL_ADD_DT(date, time [, style [, sheet [, row [, col]]]])
    Combine two fields into a single spreadsheet datetime field and insert it as
    a new cell in the XLSX document.

    Parameters -
        date  : filePro date field.
        time  : filePro time field.
        style : Handle to style to be used for this cell. Use blank to use the
                default style.
        sheet : Handle to sheet to insert the cell on. Use blank, "0", or "-1"
                to use the default sheet.
        row   : Row to place the cell (0 indexed).
        col   : Column to place the cell (0 indexed).

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_ADD_DT2(date, time [, style [, sheet [, cell]]])
    Combine two fields into a single spreadsheet datetime field and insert it as
    a new cell in the XLSX document.

    Parameters -
        date  : filePro date field.
        time  : filePro time field.
        style : Handle to style to be used for this cell. Use blank to use the
                default style.
        sheet : Handle to sheet to insert the cell on. Use blank, "0", or "-1"
                to use the default sheet.
        cell  : The Excel style cell to insert the cell. e.g. "A1" "D6" "F6".

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

handle = XL_CHART(type [, title [, xname [, yname [, row [, col [, stylenum 
                  [, sheet [, xoff [, yoff [, xscale [, yscale]]]]]]]]]]])
    Add a new chart to the XLSX document.

    Parameters -
        type     : Type of chart to create. Must be one of the following values.
                   "area"
                   "area_stacked"
                   "area_stacked_percent"
                   "bar"
                   "bar_stacked"
                   "bar_stacked_percent"
                   "column"
                   "column_stacked"
                   "column_stacked_percent"
                   "doughnut"
                   "line"
                   "line_stacked"
                   "line_stacked_percent"
                   "pie"
                   "scatter"
                   "scatter_straight"
                   "scatter_stright_markers"
                   "scatter_smooth"
                   "scatter_smooth_markers"
                   "radar"
                   "radar_with_markers"
                   "radar_filled"
        title    : The title for this chart.
        xname    : The title for the x-axis.
        yname    : The title for the y-axis.
        row      : Row to place the cell (0 indexed).
        col      : Column to place the cell (0 indexed).
        stylenum : Number of the built in Excel style to use. Must be between
                   "1" and "48". The default style is 2. The value is one of
                   the 48 built-in styles available on the "Design" tab in
                   Excel 2007.
        sheet    : Handle to sheet to insert the chart on. Use blank, "0", or
                   "-1" to use the default sheet.
        xoff     : X axis offset to place the chart, in pixels.
        yoff     : Y axis offset to place the chart, in pixesl.



        xscale   : Scale the chart along the x axis. e.g. "1", "0.5" "2". Value
                   cannot be negative.
        yscale   : Scale the chart along the x axis. e.g. "1", "0.5" "2". Value
                   cannot be negative.

    Returns a handle to a new chart object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.
    
    Note: The chart functions do not use the auto counter found in the sheets
    and instead will default to "0", "0" or "A1" when used for insertion.

handle = XL_CHART2(type [, title [, xname [, yname [, cell [, stylenum [, sheet 
                   [, xoff [, yoff [, xscale [, yscale]]]]]]]]]])
    Add a new chart to the XLSX document.

    Parameters -
        type     : Type of chart to create. Must be one of the following values.
                   "area"
                   "area_stacked"
                   "area_stacked_percent"
                   "bar"
                   "bar_stacked"
                   "bar_stacked_percent"
                   "column"
                   "column_stacked"
                   "column_stacked_percent"
                   "doughnut"
                   "line"
                   "line_stacked"
                   "line_stacked_percent"
                   "pie"
                   "scatter"
                   "scatter_straight"
                   "scatter_stright_markers"
                   "scatter_smooth"
                   "scatter_smooth_markers"
                   "radar"
                   "radar_with_markers"
                   "radar_filled"
        title    : The title for this chart.
        xname    : The title for the x-axis.
        yname    : The title for the y-axis.
        cell     : The Excel style cell to insert the cell. e.g. "A1" "D6" "F6".
        stylenum : Number of the built in Excel style to use. Must be between
                   "1" and "48". The default style is 2. The value is one of
                   the 48 built-in styles available on the "Design" tab in
                   Excel 2007.
        sheet    : Handle to sheet to insert the chart on. Use blank, "0", or
                   "-1" to use the default sheet.
        xoff     : X axis offset to place the chart, in pixels.
        yoff     : Y axis offset to place the chart, in pixesl.
        xscale   : Scale the chart along the x axis. e.g. "1", "0.5" "2". Value
                   cannot be negative.
        yscale   : Scale the chart along the x axis. e.g. "1", "0.5" "2". Value
                   cannot be negative.

    Returns a handle to a new chart object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.
    
    Note: The chart functions do not use the auto counter found in the sheets
    and instead will default to "0", "0" or "A1" when used for insertion.

handle = XL_CHARTSHEET(type [, title [, xname [, yname [, stylenum]]]])
    Add a new chartsheet to the XLSX document. A chartsheet is a full chart that
    occupies it's own sheet and cannot contain any cells.

    Parameters -
        type     : Type of chart to create. Must be one of the following values.
                   "area"
                   "area_stacked"
                   "area_stacked_percent"
                   "bar"
                   "bar_stacked"
                   "bar_stacked_percent"
                   "column"
                   "column_stacked"
                   "column_stacked_percent"
                   "doughnut"
                   "line"
                   "line_stacked"
                   "line_stacked_percent"
                   "pie"
                   "scatter"
                   "scatter_straight"
                   "scatter_stright_markers"
                   "scatter_smooth"
                   "scatter_smooth_markers"
                   "radar"
                   "radar_with_markers"
                   "radar_filled"
        title    : The title for this chart.



        xname    : The title for the x-axis.
        yname    : The title for the y-axis.
        stylenum : Number of the built in Excel style to use. Must be between
                   "1" and "48". The default style is 2. The value is one of
                   the 48 built-in styles available on the "Design" tab in
                   Excel 2007.

    Returns a handle to a new chartsheet object on successs and "-1" on
    error. XL_ERROR() can be called to return the last error.

e = XL_SERIES(chartnum, sheet, namerow, namecol, cfirstrow, cfirstcol, clastrow,
              clastcol, vfirstrow, vfirstcol, vlastrow, vlastcol)
    Add a series to a chart or chartsheet.

    Parameters -
        chartnum  : Handle to a chart or chartsheet to add series.
        sheet     : Handle to sheet to get values from. Use blank, "0", or "-1"
                    to use the default sheet.
        namerow   : Series name row (0 indexed).
        namecol   : Series name column (0 indexed).
        cfirstrow : Categories first row (0 indexed).
        cfirstcol : Categories first column (0 indexed).
        clastrow  : Categories last row (0 indexed).
        clastcol  : Categories last column (0 indexed).
        vfirstrow : Values first row (0 indexed).
        vfirstcol : Values first column (0 indexed).
        vlastrow  : Values last row (0 indexed).
        vlastcol  : Values last column (0 indexed).

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_SERIES2(chartnum, sheet, namecell, cfirst, clast, vfirst, vlast)
    Add a series to a chart or chartsheet.

    Parameters -
        chartnum : Handle to a chart or chartsheet to add series.
        sheet    : Handle to sheet to get values from. Use blank, "0", or "-1"
                   to use the default sheet.
        namecell : Series name Excel style cell. e.g. "A1" "D6" "F6".
        cfirst   : Categories first Excel style cell. e.g. "A1" "D6" "F6".
        clast    : Categories last Excel style cell. e.g. "A1" "D6" "F6".
        vfirst   : Values first Excel style cell. e.g. "A1" "D6" "F6".
        vlast    : Values last Excel style cell. e.g. "A1" "D6" "F6".

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_PROTECTSHEET(sheet, password)
    Add a password to restrict editing of a sheet.

    Parameters -
        sheet    : Handle to sheet to protect. Use blank, "0", or "-1" to use
                   the default sheet.
        password : Password to use to protect this sheet.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_PROTECTCHARTSHEET(cs, password)
    Add a password to restrict editing of a chartsheet.

    Parameters -
        cs       : Handle to chartsheet protect.
        password : Password to use to protect this sheet.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_ERROR()
    Return the last error generated by the XLSX set of functions.

    Returns the last error string generated by the XLSX engine.

e = XL_SETPOS(row [, col [, sheet]])
    Set the auto counter position for a sheet.

    Parameters -
        row   : Row to move auto counter to (0 indexed).
        col   : Column to move auto counter to (0 indexed).
        sheet : Handle of sheet to set. Use blank, "0", or "-1" to use the
                default sheet.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.



e = XL_SETPOS2(cell [, sheet])
    Set the auto counter position for a sheet.

    Parameters -
        cell  : Excel style cell to set the auto counter to. e.g. "A1" "D6".
        sheet : Handle of sheet to set. Use blank, "0", or "-1" to use the
                default sheet.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_NEXTROW([sheet])
    Move the auto counter down a row for a sheet.

    Parameters -
        sheet : Handle of sheet to set. Use blank, "0", or "-1" to use the
                default sheet.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

e = XL_NEXTCOL([sheet])
    Move the auto counter one column for a sheet.

    Parameters -
        sheet : Handle of sheet to set. Use blank, "0", or "-1" to use the
                default sheet.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

handle = XL_STYLE([font [, fill [, fmt [, btop [, bbot [, bleft 
                  [, bright]]]]]]])
    Add a new style to the XLSX document.

    Parameters -
        font   : Handle to font object to use.
        fill   : Handle to fill object to use.
        fmt    : Handle to format object to use.
        btop   : Handle to border object to use for top border.
        bbot   : Handle to border object to use for bottom border.
        bleft  : Handle to border object to use for left border.
        bright : Handle to border object to use for right border.

    Returns a handle to a new style object on successs and "-1" on error.
    XL_ERROR() can be called to return the last error.

e = XL_IMAGE(img [, row [, col [, sheet [, xoff [, yoff [, scalex [, scaley 
             [, flag]]]]]]]])
    Add a new image to the XLSX document.

    Parameters -
        img    : Path to image file to use.
        row    : Row to insert the image on (0 indexed).
        col    : Column to insert the image on (0 indexed).
        sheet  : Handle of sheet to insert image. Use blank, "0", or "-1" to use
                 the default sheet.
        xoff   : X-axis offset for the image, in pixels.
        yoff   : Y-axis offset for the image, in pixels.
        scalex : Scale the image along the x-axis. e.g. "1", "0.5" "2". Value
                 cannot be negative.
        scaley : Scale the image along the y-axis. e.g. "1", "0.5" "2". Value
                 cannot be negative.
        flag   : Option of how to position image.
                 "0" - Default positioning.
                 "1" - Move and size image with the cells.
                 "2" - Move but don't size image with the cells.
                 "3" - Don't move or size the image with the cells.
                 "4" - Same as "1" but wait to apply hidden cells.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: The image functions only support PNG, JPEG, and BMP files.

e = XL_IMAGE2(img [, cell [, sheet [, xoff [, yoff [, scalex [, scaley 
              [, flag]]]]]]]);
    Add a new image to the XLSX document.

    Parameters -
        img    : Path to image file to use.
        cell   : Excel style cell to insert the image. e.g. "A1" "D6" "F6".
        sheet  : Handle of sheet to insert image. Use blank, "0", or "-1" to use
                 the default sheet.
        xoff   : X-axis offset for the image, in pixels.
        yoff   : Y-axis offset for the image, in pixels.
        scalex : Scale the image along the x-axis. e.g. "1", "0.5" "2". Value
                 cannot be negative.



        scaley : Scale the image along the y-axis. e.g. "1", "0.5" "2". Value
                 cannot be negative.
        flag   : Option of how to position image.
                 "0" - Default positioning.
                 "1" - Move and size image with the cells.
                 "2" - Move but don't size image with the cells.
                 "3" - Don't move or size the image with the cells.
                 "4" - Same as "1" but wait to apply hidden cells.

    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: The image functions only support PNG, JPEG, and BMP files.
    
e = XL_LASTCMD()
    Get debug information about the last XLSX call.
    
    Returns the last evaluated command parse string.
    
    
e = XL_MARGINS([left, [right, [top, [bottom, [sheet]]]]])
    Set the worksheet print margins.

    Parameters -
        left   : Left margin in inches, e.g. "0.5", "1", "0.75". A blank or 
                 negative value will use the default of "0.7".
        right  : Right margin in inches, e.g. "0.5", "1", "0.75". A blank or 
                 negative value will use the default of "0.7".
        top    : Top margin in inches, e.g. "0.5", "1", "0.75". A blank or 
                 negative value will use the default of "0.75".
        bottom : Bottom margin in inches, e.g. "0.5", "1", "0.75". A blank or 
                 negative value will use the default of "0.75".
        sheet  : Handle of sheet to set the margins. Use blank, "0", or "-1" to 
                 use the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_LANDSCAPE([sheet])
    Set the worksheet to print in landscape mode.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_PORTRAIT([sheet])
    Set the worksheet to print in portrait mode.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_GRIDLINES(option [, sheet])
    Set if the worksheet should display gridlines when printed.

    Parameters -
        option : Which Gridlines to print. Cannot be blank. Must be one of the
                 following values.
                 "hide_all"
                 "show_all"
                 "show_screen"
                 "show_print"
        sheet  : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                 the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_FITPAGES([height, [width, [sheet]]])
    Fit the printed area to a specific number of pages both vertically and 
    horizontally.

    Parameters -
        height : Number of pages vertically. A value of "0" or blank will set 
                 the height as necessary.
        width  : Number of pages horizontally. A value of "0" or blank will set 
                 the height as necessary.
        sheet  : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                 the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    



    
e = XL_PAPERTYPE(type [, sheet])
    Set the paper format for the printed output of a worksheet.

    Parameters -
        type  : The paper format to use with a printed worksheet. Must be one of
                the following values.
                "default"
                "letter"
                "tabloid"
                "ledger"
                "legal"
                "statement"
                "executive"
                "a3"
                "a4"
                "a5"
                "b4"
                "b5"
                "folio"
                "quarto"
                "10x14"
                "11x17"
                "note"
                "envelope"
                "envelope_9"
                "envelope_10"
                "envelope_11"
                "envelope_12"
                "envelope_14"
                "c"
                "d"
                "e"
                "envelope_dl"
                "envelope_c3"
                "envelope_c4"
                "envelope_c5"
                "envelope_c6"
                "envelope_c65"
                "envelope_b4"
                "envelope_b5"
                "envelope_b6"
                "monarch"
                "fanfold"
                "german_std_fanfold"
                "german_legal_fanfold"
        sheet : Handle of sheet to change type. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_CENTERH([sheet])
    Center the worksheet data horizontally between the margins on the printed
    page.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_CENTERV([sheet])
    Center the worksheet data vertically between the margins on the printed 
    page.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_PRINTACROSS([sheet])
    Change the default print direction to across then down.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_SETHEADER(string [, margin, [limage, [cimage, [rimage, [sheet]]]]])
    Set the printed page header.
    
e = XL_SETFOOTER(string [, margin, [limage, [cimage, [rimage, [sheet]]]]])
    Set the printed page footer.



    Parameters -
        string : The header/footer definition string. See below for format 
                 options. Cannot be blank.
        margin : The margin in inches to use for the header/footer. A blank,
                 "0", or negative value will use the default margin of "0.3".
        limage : Full path to an image to use in place of the left image 
                 placeholder.
        cimage : Full path to an image to use in place of the center image 
                 placeholder.
        rimage : Full path to an image to use in place of the right image 
                 placeholder.
        sheet  : Handle of sheet to set header/footer. Use blank, "0", or "-1"
                 to use the default sheet.
                
    Format Options -
        +-----------------------------------------------------------+
        | Control            Category        Description            |
        +-----------------------------------------------------------+
        | &L                Justification   Left                    |
        | &C                                Center                  |
        | &R                                Right                   |
        +-----------------------------------------------------------+
        | &P                Information     Page number             |
        | &N                                Total number of pages   |
        | &D                                Date                    |
        | &T                                Time                    |
        | &F                                File name               |
        | &A                                Worksheet name          |
        | &Z                                Workbook path           |
        +-----------------------------------------------------------+
        | &fontsize            Font         Font size               |
        | &"font,style"                     Font name and style     |
        | &U                                Single underline        |
        | &E                                Double underline        |
        | &S                                Strikethrough           |
        | &X                                Superscript             |
        | &Y                                Subscript               |
        +-----------------------------------------------------------+
        | &[Picture]        Images          Image placeholder       |
        | &G                                Same as &[Picture]      |
        +-----------------------------------------------------------+
        | &&                Miscellaneous    Literal ampersand &    |
        +-----------------------------------------------------------+
        
    Text in headers and footers can be justified to the left, center and right 
    by prefixing the text with the control characters &L, &C and &R.
    For example, "&LHello, World!", "&CHello, World!", "&RHello, World!"
    
    For simple text, if the justification is not specified the text will be 
    center aligned. However, you must prefix the text with &C if you use any
    other formatting.
    
    You are limited to 3 images in a header/footer.
    
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: The image types supported are PNG, JPEG, and BMP files. There is a
    hard limit of 255 characters in a header/footer string, including control
    characters. Strings longer than this will not be written to the document.

    
e = XL_SETBACKGROUND(image [, sheet])
    Set the background image for a worksheet.

    Parameters -
        image : Full path to an image to use as the sheet background.
        sheet : Handle of sheet to set background image. Use blank, "0", or "-1"
                to use the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    Note: The image types supported are PNG, JPEG, and BMP files.
    
    
e = XL_HIDEZEROS([sheet])
    Hide zero values in worksheet cells.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use
                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.
    
    
e = XL_SHOWROWCOL([sheet])
    Show row and column headers on the printed page.

    Parameters -
        sheet : Handle of sheet to change mode. Use blank, "0", or "-1" to use



                the default sheet.
                
    Returns "1" on success and "-1" on error. XL_ERROR() can be called to return
    the last error.

Rebuild All Indexes on a file.  item '8' on the dialog. Note: this 
    is in the "extended" dialog which shows when a filename is not specified 
    from the command line. Indexes can be selected individually, 
    or all (with F7).     Press SAVE, and rebuild begins

Ability to SPLIT data into array
    Usage:
    sz=SPLIT(array, string, delimiter)
        array is the array that the data will be placed into
        string is the data to split
        delimiter is the sequence of characters to split on

    NOTE: The array being used must have the size defined for its elements and 
    cannot be an alias.

Added the ability to show record locks from *clerk. Can also be 
    used to terminate sessions directly.  New option !L added to *clerk. Using
    !L will activate the new locked records list. Enter on a selected entry 
    will give additional options to the user, including the ability to Kill 
    or Terminate a locked process without having to go to the command line.  
    Note: This option is only available on Unix/Linux/BSD

Added UID mapping to filePro, ddir/dprodir option F5.
    This allows for UIDs (User IDs) to be aliased to specific 
    usernames. In the event that a login account is removed from 
    your system, this can be used to maintain the link between the 
    removed login's UID and those stored in filePro, effectivly 
    allowing system variables such as @CB and @UB to be mainained.

    Windows Only:
        This also has the added benefit of allowing @CB and @UB to 
        function on Windows by linking a "pseudo" UID to a given 
        username. These UIDs are automatically generated but can 
        also be manually added. When a user opens filePro and their
        username does not exist in the UID map file, a UID will 
        be generated for that user. filePro will find the next 
        available UID in the list, starting from 2000, and assign 
        it to that username.

        On all platforms, UIDs stored in this program must be unique 
        and in the range 0-65535. Usernames can be duplicated on Unix 
        and Linux platforms, but must be unique on Windows.

        Usernames are case-sensitive on Unix and Linux platforms and 
        are case-insensitive on Windows platforms.

        Environmental Variables:
        PFUIDMAP = /path
        Alternate filePro UID map file. (Use full path)
            Note: Must be set in the environment.

        PFUSEUIDMAP = ON 
        Allows filePro to do UID mapping. Also expands the maximum 
        username length returned by @CB, @UB, and @ID to 32.
        Default: ON
                    
String Functions
    All "is" functions return "1" for true and "0" for false.

    x=isalpha(fld [, pos])
        Is the character at the position given a letter?

    x=isdigit(fld [, pos])
        Is the character at the position given a number?

    x=isalnum(fld [, pos])
        Is the character at the position given a letter or number?
                 
    x=isspace(fld [, pos])
        Is the character at the position given a whitespace character?
        ' ', '\t', '\n', '\r', '\v', '\f' 

    x=islower(fld [, pos])
        Is the character at the position given lowercase?

    x=isupper(fld [, pos])
        Is the character at the position given uppercase?

    x=isxdigit(fld [, pos])
        Is the character at the position given a hexadecimal character?
        '0'-'9', 'A'-'F'

    x=iscntrl(fld [, pos])
        Is the character at the position given a control character?
        ASCII codes 0x00 (nul) - 0x1f (US), and 0x7f (del)

    x=isprint(fld [, pos])



        Is the character at the position given a printable character?
        ASCII codes greater than 0x1f (US) not including 0x7f (del)

    x=ispunct(fld [, pos])
        Is the character at the position given a punctuation character?

    x=isgraph(fld [, pos])
        Is the character at the position given a character with a 
        graphical representation?  The characters with graphical 
        representation are all those characters than can be printed 
        (as determined by isprint) except for space.

    x=tolower(fld [, pos])
        Return the character at the position given as a lowercase 
        character.

    x=toupper(fld [, pos])
        Return the character at the position given as an uppercase 
        character.

    str=strtolower(fld)
        Return the entire string converted to lowercase.

    str=strtoupper(fld)
        Return the entire string converted to uppercase.

Added new array size function to get the size of an array. Can be 
    used with GLOBAL, EXTERN, LOCAL, and SYSTEM arrays.

x=ARRAYSIZE(array)
    Where array is the name of the array.
    Where x is the returned size of the passed array.

Added new DECLARED function to check if an array or longvar is 
    defined, meaning it is either declared LOCAL or GLOBAL or is declared 
    EXTERN but has a matcing GLOBAL definition.

    x=DECLARED(var)
        Where var is either a longvar or an array.
        Where x is the return value.
    Returns 0 if the variable is not fully defined.
    Returns 1 if the variable is fully defined.

Increased ACTION length in debugger from 60 characters to full 128. 
    Should now be the same as *cabe.
            
Added new flag -DM to [dr]clerk to disable the Index Mode prompt 
    from @ENTSEL.  Only works when not in update mode.
        
Added flag -RH to report to disable the automatic record number 
    reporting in the middle of the screen.  This enables placing text on the 
    center of the screen without it being overwritten when the display updates.

x=@GUI.PAUSE()
    Pauses automatic screen updating while in GI/Web.

x=@GUI.RESUME()
    Resumes automatic screen updating while in GI/Web.
    
REPLACE() enhancement - allow null characters               
    Enhanced REPLACE() to accept null characters
    
FORM WITHPROC                                               
    FORM WITHPROC "formname"
    FORMM WITHPROC "formname"

    Added additional command switch to FORM and FORMM commands to allow
    the associated processing table to run while in input processing.

    Note: You cannot call the WITHPROC variant from within another form
    UNLESS the calling form is a processing only form.
    
Addqual Program                                             
    Addqual allows you to easily add qualifiers to your files either
    interactively or through the command line.

    This runs interactively:
    addqual [filename]

    This runs automatically:
    addqual filename -q <qualname>
    as does this:
    addqual filename -q <qualname> -x <qual-to-copy-from>

    The automatic commands will display graphics on errors. You can keep
    graphics off with "-s" and errors will be printed on the command line
    if they occur.
    example:
    addqual filename -q <qualname> -s

    List of switches:
    -q qualifier to create
    -x qualifier to copy indexes from



    -s silent, no graphics
    -h --help syntax help
    
XFER - encrypted transfers server-peer

CABE F6 list files from F8 L-Load

===================================
6.1.XX.08 Bug Fixes
===================================
Fixed the F7 last record option when selecting a record in dclerk/rclerk while
    running under fileProWeb or filePro GIclient.

Corrected an issue where an ODBC table wouldn't report as existing.

Corrected an issue with Find and Replace in dcabe/rcabe where control codes
    were incorrectly being interpreted as character and color codes.

Corrected an issue in dreport/rreport where exiting with an EXIT action in
    @DONE would not use the supplied exit value if zero records were selected.

Updated F6-D-L listing in dcabe/rcabe to restore typedown behaviour.

Fixed an issue in rcabe, dcabe, and dclerk where a syntax error could cause a
    crash upon saving or continuing.

Fixed a show map (F6 - View Fields) regression in dcabe/rcabe where button 
    labels were missing valid options.

Fixed an issue with the bottom screen display on Windows in dscreen.

Reworked the SPLIT() command to work with all standard array types. 

Fixed SPLIT() return value. There was an issue where the number of elements
    returned could have been more than the returned type allowed.

SPLIT() now clears the array before updating values and will now honor the edit 
    type(s) of the array, rather than always treating the data as a string.
    
Fixed a crash when using READOUTPUT() in processing.

Corrected a memory leak in LISTBOX() and SELECTBOX().

Corrected an issue with the "!L" escape in dclerk/rclerk. Previously, the
    calculation to determine the locked record number was incorrect.

Added an additional check when saving a record in dclerk/rclerk so that a zero
    length must-fill field will be treated as filled.

Corrected an issue with fields resetting when using user defined browses in
    clerk when a screen contains scrolling fields.

===================================
Version 6.1.XX.07 bug fixes
===================================
Fixed UID import feature in ddir where it wasn't finding any files.

User can now save a blank UID map in ddir.

Corrected a lock issue with UID maps.

Added additional error messages when importing files for UID mapping.

Fixed an issue with VARCHAR fields not working when using some ODBC drivers.

Corrected an issue with script cleanup causing a crash in dmakemenu.

Fixed a crash when adding an index to an existing empty file in ddefine.

Fixed a crash in fppack when rebuilding an index containing system controlled
    fields.
 
Corrected an issue in fpsql where viewing a file's layout would not retain the
    previous seleciton.

Fixed an issue in all runtime programs where aliased real fields in an array
    would not explicitly write on end.

Corrected a potential crash when adding a duplicate key to an index.

Fixed a crash caused by inserting a new unique key after a very long chain of
    duplicate keys to an index.

Fixed a break key issue in cabe F6 label lookup in F9 search. filePro was
    requiring twice as many break key presses than was actually required.

Fixed a crash when creating a selection set and pressing F6 while in a
    relationship field.

===================================
Version 6.1.XX.06 bug fixes
===================================
Corrected an issue on Linux/BSD where fuzzy search could cause a crash.



Fixed array handling in user defined functions that could cause a crash.

Fixed associated field comparisons in clerk and report. Was previously only
    comparing the first field in a set.

Corrected some command line arguments being ignored in ddefine, autoshuf, and
    doresync.

Corrected edit types not being tokenized correctly in rcabe.

Added duplicate variable check when saving in ddir/dprodir.

Updated fuzzy search to better handle long fields.

Fix a crash when moving through a line that contains a malformed CALL statement
    in cabe.

Fixed a crash in find and replace in cabe.

Fixed a crash when copying lines that don't exist in the file in cabe.

Corrected various files not being copied correctly in fpcopy.

Fixed indexes on qualified files in fpcopy.

Added sanity check to locked records check in clerk.

SPLIT() - Removed restriction on delimiter size. Size of array elements still 
    need to be defined for destination.

Fixed syntax error line reporting in cabe when jumping to a different place in 
    a prc file. Cabe now shows the line number in the editor correctly.

Corrected an issue loading tokenized global arrays in rclerk and rreport.

===================================
Version 6.1.XX.05 bug fixes
===================================
Corrected an issue when using the Rebuild Indexes option in dxmaint where
    options were not toggling correctly.

Fixed a regression where scrollable fields in a popup weren't displaying 
    correctly.
    
Fixed message boxes to better handle filePro escape codes.

Fixed -pv flag and print to screen to no longer corrupt the output.

Fixed alternate automatic processing loading in cabe, preventing variables from
    resolving correctly during syntax check.

Fixed a too many open files bug in fpcopy when working on a file with many
    qualifiers and indexes.

Corrected fppack to correctly handle encrypted files.

Changed index rebuild message location on the screen to no longer be hidden
    behind the progress updates.

Corrected an issue preventing GI/fileProWeb from loading [dr]report and 
    [dr]clerk on Windows.

Fixed a crash with the PDF import code.

Corrected a crash when opening more than one JSON file at a time.

===================================
Version 6.1.XX.04 bug fixes
===================================
Fixed an issue where libodbc would not correctly be found when initializing
    features that use ODBC.

Corrected an issue with RINSTR() where the starting position wasn't honored
    correctly.
    
Option 'C' to clear selection set in [dr]clerk will no longer cause an infinite
    loop when going back into index selection.

Updated PNG support for PDF outputs. Previously, some PNG files would appear
    corrupted when imported.

Corrected a potential crash when moving/reordering blob fields inside of
    dmoedef.

Added PFOLDCHAIN to allow CHAIN to return to the top of processing when a record
    is saved and the chain was performed inside of an event.

Updated listbox and selectbox code to no longer go outside of screen bounds.

Fixed date handling in XLSX generation when not using the datetime functions.

Fixed an issue where blobs/memos could become corrupted if assigning to the



    field more than once without writing the record.

===================================
Version 6.1.XX.03 bug fixes
===================================
Updated tokenization engine to increase parsing speed.

Corrected Memory fault in FPSQL

Corrected licinfo to read license fallback file.

Corrected memory leaks in [dr]clerk and [dr]report.

Corrected issue where a select or list box would not clear correctly from the 
    screen.

Fixed positioning and moving objects (memo) on a form.

Corrected button text in F6 cabe.

Fixed an early error exit condition in ddir to report an error rather than 
    exiting.

Corrected "stair step" issue in cabe when using the -C flag on Linux/Unix.

Corrected a crash in clerk when using F5 to duplicate fields between records.

Updated F5 duplicate key in clerk to work with scrolling fields.

Added PFREUSEADDR=ON (default ON) to enable a port to be rebound more quickly 
    when using sockets.

Added code to prevent a dummy field from being used as a foreign key when 
    performing a fuzzy search.

Corrected and reverted wildcard behaviour during selection in clerk.

Corrected type checking for associated fields in selection sets.

Added buttons to clerk fuzzy search for scrolling the file map.

Increased the number of fields shown in fuzzy search in clerk.

Fixed some button shifting for F6 key in cabe.

Corrected ALL operator in short selection to properly update the selection popup.

===================================
Version 6.1.XX.02 bug fixes
===================================
Task #1948 Autosave not honoring config flags                                 
    Corrected an issue where Autosave was not correctly reading
    config variables. Addded initial change backup.

Task #1950 Scrolling fields in popups break placement                                
    Corrected an issue when drawing a popup that contains a scrolling field.
    
Task #1951 Enhanced runtime format for WHEN flags                                
    Enhanced runtime format to support extended WHEN flags.

    Added support for @WUKx* @WHPx* and @WBLx*. New WHEN values will be ignored
    in older versions of filePro.
    
===================================
Version 6.1.XX.01 bug fixes
===================================
Task #1945 ALL fields search in selection broken                                   
    Corrected ALL field search code for selections.
    
Task #1947 Short selection prompting twice                                  
    Corrected an issue where short selection was displaying the old selection
    screen.
    
Task #1949 Enable REVERT command                                 
    Correctly enabled the REVERT command for release.
    
===================================
End End End End End End End End End
===================================
  

 



Release notes - filePro Plus 6.0 - 03/28/2025
    fP 6.0.XX.23

The filePro Plus software and the documentation provided with it
are protected under United States Copyright Laws and is provided
subject to the terms and conditions of the filePro License Agreement.

PLEASE NOTE the support and fax phone numbers listed in this
readme file. Open new support incidents on our website.

*****************************************************************

WWW        http://www.fptech.com
Support    support@fptech.com
Sales      sales@fptech.com
Management filepro@fptech.com

*******************************

To submit bug reports
--------------------------------
1. Login to your account portal on our website
   http://www.fptech.com/fptech/login.php and then
   go to the Support Incident Menu and submit an
   incident request.
2. EMail them to support@fptech.com including the text
   "Bug Report" with the version # and your filePro
   License # in the subject line
3. FAX them to (813) 354-2722 clearly marking them as bug reports
   and be sure to reference your filPro License #
4. Call the customer support number (800) 847-4740

*******************************

A special thank you to Jim Asman for his contribution
to the functionality of our printer tables.   Jim was
a good friend to filePro and is dearly missed.

*******************************

Contact Information

Surface Mail
    fP Technologies, Inc.
    432 W. Gypsy Lane Road
    Bowling Green, OH 43402

Phones
    Support   (800) 847-4740
    Sales     (800) 847-4740
    Fax       (813) 354-2722

Email
    Support    support@fptech.com
    Sales      sales@fptech.com
    Management filepro@fptech.com

It's important that you clearly describe a suspected bug and
include the filePro version number. If the programmer has trouble 
figuring out what you meant, you might as well not have reported 
the bug. Be very specific. For example, if you are reporting a 
bug concerning a Browse, identify if it is a lookup browse or 
browse created by using the [F6] key. A screen shot is very 
helpful and sometimes better than more than 1000 words.

Describe exactly how to duplicate the bug. Although it's 
sometimes difficult to create a working sample to demonstrate the 
problem, make every effort to trim down your code and provide a 
working sample application with test data. You may even discover 
that what you thought to be a bug is due to a coding error or the 
bug may only occur with lots of data or large processing tables.

Take good notes as to any error messages and under what 
circumstances the error message is presented. It never hurts to 
provide more information rather than not enough. This is 
particularly true when the programmer asks for additional 
information. Rather than responding with a single sentence, be
verbose since this may shed some light on the bug or what you may 
be doing wrong in your code.

Read what you wrote. Closely read your bug report before submitting 
to make sure it's clear and complete. If you have listed steps for 
duplicating the bug in a sample, exercise the sample with the 
listed steps to make sure you haven't missed a step.
    
***************************************
filePro and filePro Plus are registered 
  trademarks of fP Technologies, Inc.
***************************************
===================================
Bug fixes are below the New Items.
===================================
====================================



Version 6.0.VV.18 New Items
====================================
Updated all programs to no longer require unixODBC by default. unixODBC will now
    only be required when an ODBC related function is used. If unixODBC is not 
    found when an ODBC function is required, a filePro error will be returned.

Added PFPDFAUTOBREAK=ON (default OFF) to allow PDFs to automatically break pages
    based off of selected paper type.

Added menu letter to menu script editor.

====================================
Version 6.0.VV.RR New USP Only Items
====================================
Task #1782    <LINK text="click here" uri="http://fptech.com">
    Optional: underline="off"
    Optional: color="#0000FF"
    There is a problem with the concept of "destination" for in-document 
    links e.g. dest="page4". This would require pre-initializing all 
    required pages before processing the FPML. Therefore that 
    functionality is not included. Only HTTP links are known to work.

Task #1832    You can now use: @wlf<letter>*
    ex. @wlfT*
    This will apply to any dummy/associated field that begins with 'T'
    Overrides any other @wlf*

Task #1833    Added logging to ddefine.
    ddefine can now optionally track changes made to filePro file 
    layouts. This includes the name of the file, who changed it, 
    and what fields were changed.  Requires a logging configuration 
    file to be added under the ./fp/logs directory named 'ddefine.cfg'. 
    Format of the config file is the same as the servlog.cfg file that 
    comes shipped with filePro.
    Example ddefine.cfg:
        ROLLING,DEBUG,ddefine.log,60000
    
Task #1851    xx=FORMERROR
    syntax: xx=FORMERROR()
    returns: errno from last FORM or FORMM command.
    e.g. 2=file not found, 13=permission error

Task #1852    Validate menu script before prompting for removal

Task #1853    CABEBACKUP setting to only save changed PRC

Task #1859    Added new option 'C' to F8 Extended Functions for dmoedef 
    to show a list of all print codes on an output format. Selecting 
    an item from the list will jump the editor to it.

Trim #1875    TRIM command to remove spaces
    aa=ltrim(fld)
        left trim
    aa=rtrim(fld)
        right trim
    aa=trim(fld)
        trim both left and right    

Task #1879    PFIXGT can now be set in dxmaint F8 options.
    This is backwards compatible, so if PFIXGT is still set in config, 
    then it is honored by clerk *if true*. If false, the index header 
    is checked for the flag.

Task #1887    Added additional checks and field verification for ODBC 
    mirroring. This now attempts to handle invalid data in fields.

Task #1888    Added prelim support for MSSQL for ODBC mirroring.
        PFDODBCMSSQL=on (default off).
    Setting the variable to on changes the internal handling of the 
    SQL connection.

Task #1668    Windows fPTransfer now will accept wildcards.

Task #1883 A compress-filePro routine                                  
    FPPACK

    Function:
     Remove deleted records from a filePro file, and then
     (optionally) rebuild all automatic indexes.

     Syntax:
      FPPACK [ filename | - ] [ -H heading ] [ -E ] [ -R ] [ -X ] [ -EX ] [ -C ]
      [ -M name | -MD | -MQ mesg | -MA ] [ -BG ] [ -BS ]

       -H "heading" custom title to display in box.
       -E           don't actually pack the records, just
                       give statistics.
       -R           rebuild the automatic indexes even if
                       no records were deleted.
       -EX          skip statistics
       -C           skip continue and finished prompts

       -X           skip rebuilding the auto indexes.



       -M name      qualifier file name to use.
       -MD          ask for qualifier with default prompt.
       -MQ "mesg"   ask for qualifier with "mesg" as the prompt.
       -MA          use all qualified files & main file.
      UNIX/XENIX only:
       -BG          work in the background.
       -BS          suppress "completed in background" message.

Task #1902    Added various enhancements to PDF engine.
    See on-line or ~/fp/docs PDF documentation.

Task #1906    Added optional error message suppression and basic password 
    auditing to filePro.

        PFERRSUPPRESS=ON, default OFF
        PFPWAUDIT=ON, default OFF

    Password auditing also requires a ./fp/logs/pwaudit.cfg file. Same 
    structure as servlog.cfg.
    Any error that would be sent to mail will still be mailed on 
    unix/linux based systems.
    Errors reported in the background will still be suppressed. 
    Including the program name.
    Invalid password and license errors will still be reported. Password errors omit the filename.
        dcabe and rcabe are exempt from the error suppression.
    
Task #565 READLINE using "-1" for length to force read to EOL

Task #888 show=pkeep retain position if brw format changes
    In a browse lookup with "show=pkeep", the browse was
    enhanced to allow the position to be retained, even if the
    browse format has changed.

Task #1000 -fp *report flag would not report an error if the prc to use 
    did not exist.
    
Task #1227 A new function to lock or unlock nbyte bytes of the file 
    specified by handle.
    
Task #1303 ddefine will now create new screens the same as dscreen does 
    instead of just mono.
    
Task #1306 NEW arguments for OPENDIR
    format length
    extension length
    fullname length
    
Task #1340 *cabe lookup wizard will now honor PFQUAL and show qualified 
    indexes
    
Task #1359 Added new FPML commands to control the appearance of underlines.

Task #1534 new RINSTR, and INSTR now allows negative positions for working 
    backwards.
    
Task #1421 New GIadmin that will count GUI (GI or Web) sessions, ease of system
    and user configuration files and additional security.
    
Task #1504 Added PDF syntax as an option for printer maintenance (pmaint)
    Windows only
    
Task #1564 Remote Licensing for GIserver and fileProWeb. Hardware tie-in no 
    longer required with internet access
    
Task #1574 Lookup Wizard in cabe now allows long vars as key

Task #1583 Added alias and arrays to F6-D-L display in *cabe

Task #1584 Added SHOWPROGRESS

Task #1592 updated color with new routines and corrected the shell escape
    codes.
    
Task #1613 New variables
    CABEBACKUP ON|OFF (on by default)
    CABEBACKUPMINS n (minutes between backups)
    CABEBACKUPCT n (backup files per process)
    
Task #1637 Menu maintenance (makemenu) now asks if you wish to remove
    an unused menu script if the menu item is not used.
    
Task #1676 *report now allows one to use .outs from a pathed directory library

Task #1678 SCREEN command can switch fields in a POPUP UPDATE -, provided no screen name is passed to the SCREEN command.

Task #1447 MEMO EDIT now accept maxsize to limit the number of
    characters that can be intered into a memo field.
    memo NNN edit (row,col,lines,width,startLine,startcol,maxSize)
    (Text mode only)
    
Task #1609 (All)
    Added option 7 to dxmaint to clear qualifier
    



Task #1610 (All)
    New -SE *report flag to allow report to edit/save a selection set.
    
Task #1601 (All)
    Added @EXIT label to *clerk processing. This is executed whenever 
    a record is exited or broken out of. Events that trigger this are 
    'X' while not in update mode, 'BRKY' while not in update mode, and 
    'exit' in processing. It is the opposite of @entsel, and is the last 
    thing executed when leaving a record. Assignment of real fields is 
    not allowed, this is similar to @once in that the processing that is 
    executed is NOT sitting on a record, but rather record '0'.
    
Task #1606 (All)
    Partial lookup flag added to *cabe lookup wizard.
    -O on an exact lookup now does partial key matching. This kills a 
    lookup once the begining of the key value no longer matches the lookup 
    key value.
    
Task #1546 (All)
    BUSYBOX
        BUSYBOX "my message"
        BUSYBOX("10","10")
        BUSYBOX("10","10") "my message"

Task #1723 Added PFPPFULLPATH as an ehancement to PDFPOSTPRINT
    and added an PFNEWPOSTPRINT alias to name to PDFPOSTPRINT
    Added PFPPFULLPATH to augment the filename passed to the post print 
    handler, default ON, this causes the filename passed to the postprint 
    script to contain the full path to the file, not just the file name. 
    Set to OFF to revert to old behaviour.  PFPOSTPRINTnnn will now work 
    with normal file destinations. Same rules as the old global PFPOSTPRINT 
    but also supports PDF files.

Task #1639 Added new conditions for searching used for 
    associated fields only.
    
Task #1662 PDF printing should now honor the page length set in dmoedef

Task #1691 clerk will now allow a full path to a form when using
    the FORM and FORMM command in processing.

Task #1757 User defined functions - Forward declare functions to be used:
    (function|func) [file.]name([dim|var] var1, [dim|var] var2, ...)

    e.g.
         function fplib.showlock(var pid)
         function fplib.log(file, line, what)
         function somefunc(dim myarray)

    Call a function:
         [x=][file.]name(var1, var2, ...)

    Return a value from a function:
         return(value)

    Can pass fields: real, dummy, longvar
    Can pass arrays: Alias and system arrays are copied to a non-aliased 
    array. Non-aliased arrays are passed by reference.

    Function names must be at least 3 characters in length.
    Functions cannot modify values outside of its scope.
    Functions do not call automatic processing.
    Functions cannot modify real fields.
    Functions cannot be called unless it they are declared.
    Functions can pass values by reference (changes made to the value will 
    carry back out of the function, only to arrays).
    Functions can optionally return a value.

    Parameter names must be at least 3 characters in length.
    Parameters will be passed to the function using the name they were defined 
    with in the declaration statement.

    Environment variables:
        PFFUNCDBG=(ON|OFF), default OFF. 
            If ON the debugger will be allowed to continue into the function 
            call. If OFF the debugger will skip over user defined functions. 
            NOTE: Debug statements inside of functions will still be able to 
            be activated. If debug is set inside of a function, it will 
            continue even after the function is left.
            
    Example:
    Processing table for fibonacci:
        If:                     ' Declare for future use
        Then: function fibonacci(nval)
          If:                     ' Get the parameter
        Then: declare extern nval
          If: nval le "1"         ' Return the result
        Then: return(nval)
          If:                     ' Return the result
        Then: return(fibonacci(nval-"1")+fibonacci(nval-"2"))
    Usage:
        If:                     ' Declare for future use
        Then: function fibonacci(nval)



        If:                     ' Call the function
        Then: n=fibonacci("9")
        If:                     ' Display the result
        Then: msgbox ""{n         ' Prints "34"

Task #1756    EXTERN and GLOBAL arrays
    DIM GLOBAL name(size)
    DIM EXTERN name

    Only non-aliased arrays can be declared GLOBAL/EXTERN.  
    Functions similar to GLOBAL/EXTERN longvars.

Task #1639    New compare condition for Associated Fields
    Added new selection set relational operators:
        AEQ - Associated field, all equal
        ANE - Associated field, all not equal
        ACO - Associated field, all contain
    These require ALL components of an associated field to match the 
    comparison being done, rather than just one of its component fields.

Task #1667    Extended and Short selection will now check edits when leaving the 
    field, provided that the relationship code is not CO. If the code is CO, 
    the field will be treated as NOEDIT instead of its defined type.

Task #1721    Print spool initialization move beyond a large chunk of processing 
    which should remedy most if not all problems with the spool timeout.
        
Task #1733 NEW XLSX Mark-up language for creating XLSX files. 
    (see ~\fp\docs\xlsx_docs.pdf or on our website)
     https://www.fptech.com/fptech/pdf/xlsx_doc.pdf

Task #1749    Rebuild All Indexes on a file.  item '8' on the dialog. Note: this 
    is in the "extended" dialog which shows when a filename is not specified 
    from the command line. Indexes can be selected individually, 
    or all (with F7).     Press SAVE, and rebuild begins

Task #1751    Ability to EXPLODE or SPLIT import data
    Usage:
    sz=SPLIT(array, string, delimiter)
        array is the array that the data will be placed into
        string is the data to split
        delimiter is the sequence of characters to split on

    NOTE: The array being used must have the size defined for its elements and 
    cannot be an alias.

        
Task #1754    Added the ability to show record locks from *clerk. Can also be 
    used to terminate sessions directly.  New option !L added to *clerk. Using
    !L will activate the new locked records list. Enter on a selected entry 
    will give additional options to the user, including the ability to Kill 
    or Terminate a locked process without having to go to the command line.  
    Note: This option is only available on Unix/Linux/BSD

Task #1761    Added UID mapping to filePro, ddir/dprodir option F5.
    This allows for UIDs (User IDs) to be aliased to specific 
    usernames. In the event that a login account is removed from 
    your system, this can be used to maintain the link between the 
    removed login's UID and those stored in filePro, effectivly 
    allowing system variables such as @CB and @UB to be mainained.

    Windows Only:
        This also has the added benefit of allowing @CB and @UB to 
        function on Windows by linking a "pseudo" UID to a given 
        username. These UIDs are automatically generated but can 
        also be manually added. When a user opens filePro and their
        username does not exist in the UID map file, a UID will 
        be generated for that user. filePro will find the next 
        available UID in the list, starting from 2000, and assign 
        it to that username.

        On all platforms, UIDs stored in this program must be unique 
        and in the range 0-65535. Usernames can be duplicated on Unix 
        and Linux platforms, but must be unique on Windows.

        Usernames are case-sensitive on Unix and Linux platforms and 
        are case-insensitive on Windows platforms.

        Environmental Variables:
        PFUIDMAP = /path
        Alternate filePro UID map file. (Use full path)
            Note: Must be set in the environment.

        PFUSEUIDMAP = ON 
        Allows filePro to do UID mapping. Also expands the maximum 
        username length returned by @CB, @UB, and @ID to 32.
        Default: ON
                    
Task #1762    All functions that take a position default to the first character 
    in a field if not specified.
            
    All "is" functions return "1" for true and "0" for false.



    x=isalpha(fld [, pos])
        Is the character at the position given a letter?

    x=isdigit(fld [, pos])
        Is the character at the position given a number?

    x=isalnum(fld [, pos])
        Is the character at the position given a letter or number?
                 
    x=isspace(fld [, pos])
        Is the character at the position given a whitespace character?
        ' ', '\t', '\n', '\r', '\v', '\f' 

    x=islower(fld [, pos])
        Is the character at the position given lowercase?

    x=isupper(fld [, pos])
        Is the character at the position given uppercase?

    x=isxdigit(fld [, pos])
        Is the character at the position given a hexadecimal character?
        '0'-'9', 'A'-'F'

    x=iscntrl(fld [, pos])
        Is the character at the position given a control character?
        ASCII codes 0x00 (nul) - 0x1f (US), and 0x7f (del)

    x=isprint(fld [, pos])
        Is the character at the position given a printable character?
        ASCII codes greater than 0x1f (US) not including 0x7f (del)

    x=ispunct(fld [, pos])
        Is the character at the position given a punctuation character?

    x=isgraph(fld [, pos])
        Is the character at the position given a character with a 
        graphical representation?  The characters with graphical 
        representation are all those characters than can be printed 
        (as determined by isprint) except for space.

    x=tolower(fld [, pos])
        Return the character at the position given as a lowercase 
        character.

    x=toupper(fld [, pos])
        Return the character at the position given as an uppercase 
        character.

    str=strtolower(fld)
        Return the entire string converted to lowercase.

    str=strtoupper(fld)
        Return the entire string converted to uppercase.

Task #1767  Corrected a bug caused by #1691. FORM/FORMM should now corectly produce 
    output when not fully pathing to an output format.

Task #1773    Added new array size function to get the size of an array. Can be 
    used with GLOBAL, EXTERN, LOCAL, and SYSTEM arrays.

    x=ARRAYSIZE(array)
    Where array is the name of the array.
    Where x is the returned size of the passed array.

Tsk #1774    Added new DECLARED function to check if an array or longvar is 
    defined, meaning it is either declared LOCAL or GLOBAL or is declared 
    EXTERN but has a matcing GLOBAL definition.

    x=DECLARED(var)
        Where var is either a longvar or an array.
        Where x is the return value.
    Returns 0 if the variable is not fully defined.
    Returns 1 if the variable is fully defined.

Task #1784    Increased ACTION length in debugger from 60 characters to full 128. 
    Should now be the same as *cabe.

Task #1818    Corrected an issue where a duplicate field warning could display 
    while defining a lookup. Warning is now suppressed until saving the 
    processing table.
            
Task #1829    Added new flag -DM to [dr]clerk to disable the Index Mode prompt 
    from @ENTSEL.  Only works when not in update mode.
        
Task #1835 Added flag -RH to report to disable the automatic record number 
    reporting in the middle of the screen.  This enables placing text on the 
    center of the screen without it being overwritten when the display updates.

Task #1836 
    x=@GUI.PAUSE()
    Pauses automatic screen updating while in GI/Web.



    x=@GUI.RESUME()
    Resumes automatic screen updating while in GI/Web.
    
Task #1936 REPLACE() enhancement - allow null characters               
    Enhanced REPLACE() to accept null characters
    
Task #1938 New flags -EX and -C for fppack                             
    New flags -EX and -C for fppack.
    -EX : skip statistics
    -C  : skip continue and finished prompts
    
Task #1880 FORM WITHPROC                                               
    FORM WITHPROC "formname"
    FORMM WITHPROC "formname"

    Added additional command switch to FORM and FORMM commands to allow
    the associated processing table to run while in input processing.

    Note: You cannot call the WITHPROC variant from within another form
    UNLESS the calling form is a processing only form.
    
Task #1882 Addqual Program                                             
    Addqual allows you to easily add qualifiers to your files either
    interactively or through the command line.

    This runs interactively:
    addqual [filename]

    This runs automatically:
    addqual filename -q <qualname>
    as does this:
    addqual filename -q <qualname> -x <qual-to-copy-from>

    The automatic commands will display graphics on errors. You can keep
    graphics off with "-s" and errors will be printed on the command line
    if they occur.
    example:
    addqual filename -q <qualname> -s

    List of switches:
    -q qualifier to create
    -x qualifier to copy indexes from
    -s silent, no graphics
    -h --help syntax help
    
Task #1777 XFER - encrypted transfers server-peer

Task #1732 CABE F6 list files from F8 L-Load   
    
====================================
END OF NEW USP ITEMS
====================================
===================================
6.0.XX.23 Bug Fixes
===================================
Corrected an issue where an ODBC table wouldn't report as existing.

Corrected an issue with Find and Replace in dcabe/rcabe where control codes
    were incorrectly being interpreted as character and color codes.

Corrected an issue in dreport/rreport where exiting with an EXIT action in
    @DONE would not use the supplied exit value if zero records were selected.

Updated F6-D-L listing in dcabe/rcabe to restore typedown behaviour.

Fixed an issue in rcabe, dcabe, and dclerk where a syntax error could cause a
    crash upon saving or continuing.

Fixed a show map (F6 - View Fields) regression in dcabe/rcabe where button 
    labels were missing valid options.

Fixed an issue with the bottom screen display on Windows in dscreen.

Reworked the SPLIT() command to work with all standard array types. 

Fixed SPLIT() return value. There was an issue where the number of elements
    returned could have been more than the returned type allowed.

SPLIT() now clears the array before updating values and will now honor the edit 
    type(s) of the array, rather than always treating the data as a string.
    
Fixed a crash when using READOUTPUT() in processing.

Corrected a memory leak in LISTBOX() and SELECTBOX().

Corrected an issue with the "!L" escape in dclerk/rclerk. Previously, the
    calculation to determine the locked record number was incorrect.

Added an additional check when saving a record in dclerk/rclerk so that a zero
    length must-fill field will be treated as filled.

Corrected an issue with fields resetting when using user defined browses in
    clerk when a screen contains scrolling fields.



===================================
Version 6.0.XX.22 bug fixes
===================================
Fixed UID import feature in ddir where it wasn't finding any files.

User can now save a blank UID map in ddir.

Corrected a lock issue with UID maps.

Added additional error messages when importing files for UID mapping.

Fixed an issue with VARCHAR fields not working when using some ODBC drivers.

Corrected an issue with script cleanup causing a crash in dmakemenu.

Fixed a crash when adding an index to an existing empty file in ddefine.

Fixed a crash in fppack when rebuilding an index containing system controlled
    fields.
 
Corrected an issue in fpsql where viewing a file's layout would not retain the
    previous seleciton.

Fixed an issue in all runtime programs where aliased real fields in an array
    would not explicitly write on end.

Corrected a potential crash when adding a duplicate key to an index.

Fixed a crash caused by inserting a new unique key after a very long chain of
    duplicate keys to an index.

Fixed a break key issue in cabe F6 label lookup in F9 search. filePro was
    requiring twice as many break key presses than was actually required.

===================================
Version 6.0.XX.21 bug fixes
===================================
Corrected an issue on Linux/BSD where fuzzy search could cause a crash.

Fixed array handling in user defined functions that could cause a crash.

Updated fuzzy search to better handle long fields.

Fixed a crash in find and replace in cabe.

Fixed a crash when copying lines that don't exist in the file in cabe.

Corrected various files not being copied correctly in fpcopy.

Fixed indexes on qualified files in fpcopy.

Added sanity check to locked records check in clerk.

SPLIT() - Removed restriction on delimiter size. Size of array elements still 
    need to be defined for destination.

Fixed syntax error line reporting in cabe when jumping to a different place in 
    a prc file. Cabe now shows the line number in the editor correctly.

Corrected an issue loading tokenized global arrays in rclerk and rreport.

===================================
Version 6.0.XX.20 bug fixes
===================================
Corrected an issue when using the Rebuild Indexes option in dxmaint where
    options were not toggling correctly.

Fixed a regression where scrollable fields in a popup weren't displaying 
    correctly.
    
Fixed message boxes to better handle filePro escape codes.

Fixed -pv flag and print to screen to no longer corrupt the output.

Fixed alternate automatic processing loading in cabe, preventing variables from
    resolving correctly during syntax check.

Fixed a too many open files bug in fpcopy when working on a file with many
    qualifiers and indexes.

Corrected fppack to correctly handle encrypted files.

Changed index rebuild message location on the screen to no longer be hidden
    behind the progress updates.

===================================
Version 6.0.XX.19 bug fixes
===================================
Fixed an issue where libodbc would not correctly be found when initializing
    features that use ODBC.

Corrected an issue with RINSTR() where the starting position wasn't honored



    correctly.
    
Option 'C' to clear selection set in [dr]clerk will no longer cause an infinite
    loop when going back into index selection.

Updated PNG support for PDF outputs. Previously, some PNG files would appear
    corrupted when imported.

Corrected a potential crash when moving/reordering blob fields inside of
    dmoedef.

Added PFOLDCHAIN to allow CHAIN to return to the top of processing when a record
    is saved and the chain was performed inside of an event.

Updated listbox and selectbox code to no longer go outside of screen bounds.

Fixed date handling in XLSX generation when not using the datetime functions.

Fixed an issue where blobs/memos could become corrupted if assigning to the
    field more than once without writing the record.
    
===================================
Version 6.0.XX.18 bug fixes
===================================
Corrected Memory fault in FPSQL

Corrected licinfo to read license fallback file.

Corrected memory leaks in [dr]clerk and [dr]report.

Corrected issue where a select or list box would not clear correctly from the 
    screen.

Fixed positioning and moving objects (memo) on a form.

Corrected button text in F6 cabe.

Fixed an early error exit condition in ddir to report an error rather than 
    exiting.

Corrected "stair step" issue in cabe when using the -C flag on Linux/Unix.

Corrected a crash in clerk when using F5 to duplicate fields between records.

Updated F5 duplicate key in clerk to work with scrolling fields.

Added PFREUSEADDR=ON (default ON) to enable a port to be rebound more quickly 
    when using sockets.

Added code to prevent a dummy field from being used as a foreign key when 
    performing a fuzzy search.

Corrected and reverted wildcard behaviour during selection in clerk.

Corrected type checking for associated fields in selection sets.

Added buttons to clerk fuzzy search for scrolling the file map.

Increased the number of fields shown in fuzzy search in clerk.

Fixed some button shifting for F6 key in cabe.

===================================
Version 6.0.XX.17 bug fixes
===================================
Task #1948 Autosave not honoring config flags                                 
    Corrected an issue where Autosave was not correctly reading
    config variables. Addded initial change backup.

Task #1950 Scrolling fields in popups break placement                                
    Corrected an issue when drawing a popup that contains a scrolling field.
    
Task #1951 Enhanced runtime format for WHEN flags                                
    Enhanced runtime format to support extended WHEN flags.

    Added support for @WUKx* @WHPx* and @WBLx*. New WHEN values will be ignored
    in older versions of filePro.
    
===================================
Version 6.0.XX.16 bug fixes
===================================
Task #1928 XFER too many open files                                    
    Corrected prc_backups handling in xfer.
    
Task #1939 fppack BG/BS flag fix                                       
    Corrected the run in background feature for fppack.
    
===================================
Version 6.0.XX.15 bug fixes
===================================
Task #1918    PDF print MAP not working

Task #1916    SCO cabe not loading file List properly



Task #1917    Font Size issue with Windows 11 terminal.

Task #1914    Spellcheck crash when using personal list.

Task #1913    Corrected an issue where merge labels (IMPORT/EXPORT) 
    were not correctly indicating that the merge was closed.

Task #1891    Enhanced [dr]clerk to honor a passed index flag for browse 
    when @ONCE or @MENU is used in processing.
        PFNEWIXS=on (default off)
        
Task #1871 Updated dxmaint to keep the user in the index list when 
    working on automatic indexes, saving the position in the list 
    between operations.
    
Task #1844    Corrected an issue where non-text data could show up 
    as NULL in an ODBC mirror. Requires mirror to be resynchronized 
    to update missing field information.

Task #1845    Corrected an issue in an ODBC mirror where non-concise 
    data types were being used for synchronizing data.  This fix 
    prevents TIME and DATE fields from resolving to the non-concise 
    data type of DATETIME.
    
Task #1849    Checksum error not being reported in outputs

Task #1857    dprodir crashed on non-filePro file when deleting key/data

Task #1865    (rcabe) Corrected an issue where processing tables 
    containing user defined functions would fail to tokenize properly.

Task #1866    Limit outfiles.xml to only hidden outputs

Task #1870    Fixed a potential crash when providing an invalid field 
    number to a lookup expression in the debugger.

Task #1873    SPLIT function not working with leading spaces

Task #1892    Corrected -D flag handling in [dr]clerk to suppress the 
    correct bottom of screen messages.

Task #1901    dmoedef @b4, @c4, @t4, @u4 are now allowed in sort 
    selection.
    
Task #1864    Corrected an issue on Windows where an alternate auto 
    table set in cabe could not start with the word "auto"

Task #1869    Moved the auto cursor path options in dscreen to the 
    normal cursor path screen under a new F8 option.

Task #1893    Corrected an issue with user defined function argument 
    name parsing. Names that begin with the same sequence of 
    characters will now correctly be allowed, i.e. "col" and "color".
    
Task #1908    Corrected an issue where the field position wasn't being 
    kept between the header and data sections when editing browse 
    formats.

Task #1911    Corrected a missing initializer value related to index 
    searching that prevented the index search from being performed.
    
Task #1872 (Linux) Show Locked Records crash                                   
    From IUA prompt !L to show locked records.
    Tested 25 locked records. They were correctly sorted by
    record number. Terminated all records one-by-one without
    incident.
    
===================================
Version 6.0.XX.14 bug fixes
===================================
Task #1839 Was not previously documented for 6.0.XX.13
    Corrected an issue from a previous bugfix to prevent oversized
    scrollable fields from being dropped from the end of the screen
    if the field definition was too long to fit on the screen.
    
Task #1841 
    Fixed a crash in dmakemenu when a menu option name started with
    "BLOB" or "MEMO".
    
Task #1842
    Corrected a bug due to task #1579. Reverted the task to allow
    correct expression parsing in the processing engine. Restores the
    use of cm, cw, cx, cy, and cz in expressions.
    
===================================
Version 6.0.XX.13 bug fixes
===================================
Task #1763
    Fixed an issue where switching between menus in dmakemenu on a bad password 
    could cause a crash.

Task #1764



    Fixed an issue where switching between menus in dmakemenu on a bad password 
    could cause a crash.
    
Task #1765
    Changed [dr]cabe to not exit if an edit used in automatic processing and used in 
    input processing was not found.

Task #1768
        Corrected an issue with the lookup wizard in [dr]cabe when defining a fuzzy lookup. 
        The browse line would not be generated correctly when leaving the wizard.

Task #1769
        Fixed an issue where using '[' instead of '(' in parameter lists could cause an 
        invalid syntax error.
            e.g. x=listbox[array] vs x=listbox(array)

Task #1785
        Increased ACTION length in debugger from 60 characters to full 128. Should now be 
        the same as *cabe.

Task #1786
    Changes caused by a duplicate task #1691 broke the pathed version 
    of the FORM command added by #1722. Reverted changes.

Task #1779
    CLEARB now correctly ignored in drop processing
    
Task #1781
    Fixed an issue with SIGPIPE and user commands. SIGPIPE is now 
    handled like in 5.8 unless PFCATCHSIGPIPE is set to ON in the 
    environment.

Task #1784
    Increased ACTION length in debugger from 60 characters to full 128. Should now be the 
    same as *cabe.

Task #1790
    Corrected an issue where 'killing' a file using dprodir wouldn't remove the diretory 
    and its children on Windows.

Task #1791
    Corrected an issue with fpcopy that would prevent the prc_backups folder from 
    being properly handled.
            
Task #1793
    fpcopy will now correctly handle all extents on a file and will now mirror 
    them correctly.
    
Task #1794
    Fixed an issue where @GUI.xxx commands could run multiple times (once per break level) 
    in reports.
    
Task #1795
    Updated mirroring to correctly handle multiple extents on a file.

Task #1796
    Corrected an issue where upon turning on mirroring for a file and re-executing the 
    dialog option could cause ddefine to crash.
    
Task #1797
    Fixed an issue in GIserver where connecting with an unsupported client (version 
    7.12.1.6 or earlier) could cause the server to deadlock and stop accepting 
    connections (SCO).
    
Task #1798
    Corrected an issue where all files, when first mirrored, would be created as empty 
    blob files (blob binary data and structures in the file). All files are now correctly 
    created of the right type.

Task #1799
    Corrected and issue in ddefine where a broken mirror would not be displayed as such 
    (missing splash screen and 'B' flag in options).

Task #1800
    Fixed an issue where when switching a mirror from a broken state 'B' flag in options 
    in ddefine to a 'Y' would not re-create and update missing files.
    
Task #1801
    Corrected an issue in ddefine when trying to create qualifiers. The list would not 
    display unless also creating an index, it now correctly displays without having 
    other options flagged.

Task #1802
    Fixed a file handle leak in GIserver that could result in a Too Many Open files 
    error, hanging or crashing the server.

Task #1803
    Mirroring disabled warning will now correctly keep its own state between files. 
    Previously, switching between two "broken" mirrors would cause the splash screen 
    to show again.

Task #1804
    Corrected an issue in dprodir where filePro could crash if there were a large number 



    of files in the directory to be deleted.

Task #1805
    Corrected index scanning in *clerk when both a selection set and index are specified 
    on the command line. The scan will now also accept system variables in the selection 
    set, such as @PM, to be used in conjuntion with the index from the command line.

    Note: Using both flags implies PFIXS.

Task #1806
    Fixed an issue in cabe when the screen was redrawn by scrolling the page. If the 
    previoius field allowed for a lookup to be created and the destination field did 
    not, the prompt would still be displayed.
    
Task #1807
    Corrected the "Remove Script" feature when redefining a menu. Previously, if the 
    option had a flag such as '@', it would be included in the path of the file to be 
    removed.
    Note: Raw output is still not displayed.

Task #1808 (Web only)
    Corrected the wait flag on a menu option in web to display a message rather than 
    a blank screen. 

Task #1809
    fpcopy will now copy all files under a filePro file's directory structure.

Task #1816
    Corrected and added a syntax error to commands that parse screen names as literals, 
    i.e. SCREEN, SWITCHTO, etc. The command would not throw an error on screen names 
    over 1 character if it was not quoted and would parse them incorrectly.

Task #1817
    Corrected an issue with field switching in GUI under report. Fields will now 
    correctly switch when clicked on.

Task #1818
    Corrected an issue where a duplicate field warning could display while defining a 
    lookup. Warning is now suppressed until saving the processing table.

Task #1820
    Corrected an issue with ddefine where having PFQUAL set could cause issues if 
    the qualifer does not yet exist in the file while defining indexes.

Task #1824
    Corrected a crash in rclerk when using a POPUP due to a stack underflow. Issue 
    introduced in 6.0.01.06.
        
Task #1828
    Corrected an issue where screens created with ddefine sometimes would have incorrect 
    colors added to the bottom of the screen.

    Also updated the screens generated by ddefine from 3.0 to 4.0+.

    Added environmental variable:
        PFDDEFCOLOR=ON|OFF (default ON)

    When on, ddefine will create color screens, when off, monochrome.

Task #1830
    Corrected the free space checks on all operating systems for ddefine and dexpand. 
    Drive free space is now correctly accounted for. Some space is still reserved in 
    the check for the operating system.
    
Task #1831
    Corrected an issue where drives set in PFDSK in the format of PFDSK=C;D;E;F on 
    Windows would not correctly be parsed, leading to some programs failing to find 
    other drives.

Task #1835 Added flag -RH to report to disable the automatic record number 
    reporting in the middle of the screen.  This enables placing text on the 
    center of the screen without it being overwritten when the display updates.

Task #1836 
    x=@GUI.PAUSE()
   Pauses automatic screen updating while in GI/Web.

    x=@GUI.RESUME()
   Resumes automatic screen updating while in GI/Web.

Task #1838
    Corrected an issue when entering an invalid printer type in pmaint. Break key 
    will now correctly be honored when answering 'N' or breaking out of the question 
    asking if you want to pick a valid print code table from a list.

Task #1838
    Corrected an issue when entering an invalid printer type in pmaint. Break key 
    will now correctly be honored when answering 'N' or breaking out of the question 
    asking if you want to pick a valid print code table from a list.
    
Task #1840
    Corrected an issue where reports and forms generated in [dr]report were 
    initialized twice, causing two init print codes to be inserted into the output.



    
===================================
Version 6.0.XX.12 bug fixes
===================================

Task #1008 (All) **NEW**
    New xcabe program to allow Run-time quick start compiles.  There is
    no user interface except to press ENTER if an error is encountered.
    
Task # 1699 (All)
    Fixed MEMO text to ignore spaces after an ENTER
    
Task #1712 (Nix)
    Updated "finish" script to honor PFLICFILE.
    
Task #1723 (All)
    Added an alias to PDFPOSTPRINT (PFNEWPOSTPRINT), default OFF. Added 
    PFPPFULLPATH to augment the filename passed to the post print handler, 
    default ON, this causes the filename passed to the postprint script to 
    contain the full path to the file, not just the file name. Set to OFF 
    to revert to old behaviour.  PFPOSTPRINTnnn will now work with normal 
    file destinations. Same rules as the old global PFPOSTPRINT but also 
    supports PDF files. 
    
Task #1728 (GI)
    Reworded "Server Serial Number" prompt when adding a new server entry 
    to GIadmin to "filePro Serial Number" to avoid confusion.
    
Task #1750 (All)
    XFER was not properly copying 'backup' prc files.
    
Task #1758 (All)
    NEW command OPENDIR2 to handle long-named files and paths.
    e.x.
        N = OPENDIR2(mask, path, fmt_sz, ext_sz, nam_sz)
    All arguments are optional.

Task #1776 (All)
    If you had an environment or config variable named XXSOMEVAR 
    it would still qualify as PFSOMEVAR.

Task #1764
    Fixed an issue where CO in a selection set would not properly check if the value 
    was contained in a field.    
    
Task #1766 (Windows) XFER: sending files on Windows is very slow                 
    Speed improvements for XFER on Windows

Task #1770 Readline EOL not removing CR   

===================================
Version 6.0.XX.11 bug fixes
===================================

Task #1738 (All)
    Reversed task 1737 and added new @DV for the distribution release
    number.
    
Task #1740 (All)
    PFCHECKLOCK was causing an improper error on read-only MEMO Show

Task #1741 (All)
    MEMO CLEAR was not working with a lookup memo when reference by the 
    lookup handle

Task #1742 (All)
    MEMO functions were causing sporadic memory leaks.
    
Task #1743 (All)
    Modifying a lookup that has an Auto-Index selection set would cause
    a DKNF error in certain cases.

Task #1748 (Windows)
    Uppercase FP in menu command causes comspec error

Task #1611 (All)
    Change in behavior for COntains in Long and Short Selection.
    Any COntains no longer worries about length or edit in its search.
    IMPORTANT:  Any indexes previous built with selection criteria in
    prior version MUST BE REBUILT!!!
    
Task #1647 (All)
    *clerk index selection was missing the correct record in some
    cases when the index had a selection set.
    
Task #1739 (Windows)
    GIadmin shortcut was not always created during install.

Task #1752 (All)
    Fixed a bug in ODBC Mirroring.

Task #1753 (All)
    Added PFCALLDBG, default ON, that can be used to have the debugger 



    ignore calls when turned OFF.
    Note: DEBUG ON will still enable the debugger in a call.
    
Task #1744 Cabe autosave not checking if prc_backups is a directory.   
    Fixed an issue where cabe wouldn't check to make sure that
    prc_backups was a directory. It now correctly checks and removes the
    file if it's invalid.

Task #1747 (Windows) pmaint crashes on F6 in printer selection list on Windows.  
    Corrected a bug where pressing F6 twice in pmaint to select a printer
    would cause a crash.

===================================
Version 6.0.XX.10 bug fixes
===================================

Task #1721 (All)
    Improved Spooler timiout handling in order to avoid 
    spooler shutdown during large printing operations.

Task #1722 (All)
    Fixed the ability to use path and filename on FORM
    
Task #1729 (Web)
    Fixed the sequence in which @VR was being cleared.
    
Task #1730 (All)
    Fixed a bug in pkeep by reverting Task #888 which will
    be readdressed in a future update
    
Task #1731 (All)
    Enhanced transfer speed of fPTransfer
    
Task #1734 (All)
    Fixed a bug where assigning to a real field from a mid statement
    could blank the field if the field passed to mid was the same.
    
Task #1735 (All)
    A truncated field on a screen was not allowed in cursor pathing
    in some situations.

Task #1736 (All)
    Fixed and enhanced the @VR system variable

Task #1737 (All)
    Added PFZEROLENWARN=OFF (default ON) to disable cannot assign to
        zero length field message when saving a processing table.

Task #1778 (All)
    ddefine was not creating qualified indexes
    
===================================
Version 6.0.XX.09 bug fixes
===================================

Task #1706 (All) 
    Setting PFQUAL in *cabe broke the lookup wizard
    
Task #1710 (All)
    runmenu could crash loading some older menus
    
Task #1711 (NIX)
    Some OS errors were bypassing the signal hander
    
Task #1713 (All)
    *cabe was ignoring the new -Cxx flags
    
Task #1715 (SCO)
    'BREAK' in dscreen was crashing
    
Task #1718 (All)
    POPUP was not display the full screen
    
Task #1719 (All)
    POPUP UPDATE was crashing when r,c was used
    
Task #1720 (All)
    Added Error Message if browse lookup closed in
    DROP processing
    
Task #1726 (All)
    Some commands were seGving on long or invalid
    filenames
    
Task #1727 (NIX)
    Removed the need for libfpodbc.so by statically
    linking it the executables.

Task #1727 (NIX) Remove libfpodbc.so requirement                             
    Removed the need for libfpodbc.so on all *nix platforms.
    
===================================
Version 6.0.XX.08 bug fixes



===================================

Task #908 (All)
    A repeat fix of a previous bug in prc=
    checking of a browse lookup
    
Task #1058 (Nix)
    Adjusted finish script for a bug in handling
    PFLICFILE value
    
Task #1693 (All)
    String parsing on chmod, mkdir, etc. caused syntax
    errors/warnings. This was caused do a preprocessor running the
    same syntax routines as the actual syntax checker/tokenizer.

Task #1694 (All)
    Corrected a case where some bitwise operators (~^ ~| ~& ~> ~<)
    would cause a buffer overrun or return a signed value incorrectly.
    
Task #1695 (All)
    PUSHKEY is now correctly ignored when running processing in
    debugging mode.

Task #1696 (All)
    FLUSHKEY does not clear keystrokes added by PUSHKEY.

Task #1375 (All)
    Updated errmsg file with latest error codes

Task #1675 (All)
    F5 would not properly fill a truncated field
    
Task #1705 (All)
    WORDWRAP broke when correcting another MEMO issue.  It
    now properly breaks.

Task #1704 (All)
    Cursor path editing would not properly ignore protected fields.
    
===================================
Version 6.0.XX.06 bug fixes
===================================

Task #1673 (OpenSuSE)
    GIserver install was failing to create service

Task #1674 (All)
    Added AUTO to clarify description in dmoedef
    
Task #1681 (All)
    Syntax check pointed to wrong line on a 
    duplicate long variable declarartion
    
Task #1682 (All)
    ftp message show/hide flags were reversed
    
Task #1667 (All)
    Modified Extended Selection so that edit does not allows
    apply.  i.e.   Using COtains for a part of a phone number.
    
Task #1679 (All)
    Modified record selection to accept only numbers.
    Allowing other input selected incorrect records.
    
Task #1672 (All)
    The changes were to IXSEL (new optional 3rd parameter) 
    and IXSORT (new optional 4th parameter). The parameter must be 
    a path representing an alternate PFDIR to use temporarily for 
    the function.
    IXSORT and IXSEL were failing on qualified indexes
    
Task #1117 (All)
    Improved license related shared memory error reporting.
    
Task #1687 (All)
    Fixed a bug where having a field defined at the end of a row
    would not resolve properly if the following line started with
    text instead of a space.

Task #1631 (All)
    Memo text edit window was not scrolling in certain circumstances

===================================
Version 6.0.00.05 bug fixes
===================================

Task #1624 (Windows)
    Added Desktop Shortcut for GIadmin 6.0
    
Task #1656 (All)
    Archive did not handle lookup to lookup
    
Task #1657 (All)



    Creating a new scree required two Saves to
    save and exit
    
Task #1658 (All)
    Cursor positionin was wrong after using
    search in the config editor
    
Task #1659 (All)
    Search & Replace in cabe caused a line
    truncation when answering NOT

Task #1661 (All)
    Index in *clerk is going to the incorrect record
    when built off of multiple fields. Related to a 
    bad fix from #1503
    
Task #1663 (All)
    Improper key buffer management when using
    certain combinations of PUSHKY
    
Task #1664 (All)
    Memo memory fault when using certain sequences
    of Page Up and Page Down in memo editor

===================================
Version 6.0.00.04 bug fixes
===================================

Task #1652 (All)
    When editing a defined lookup in processing, the highlight
    was on the wrong index.

Task #1653 (All)
    Define processing was not reporting a correct line number
    on a syntax error.
    
Task #1654 (All)
    Define processing was crashing on Search & Replace on a new
    table that had not yet been saved.

Task #1655 (All)
    JSFILE was passing syntax when a function had not been
    sepcified

Task #1656 (All)
    Enhanced ARCHIVE command to work with 2 lookups
        ARCHIVE lu1 TO lu2

===================================
Version 6.0.00.03 bug fixes
===================================

Task #1651 (All)
    Corrected a change introduced into ddefine that caused the map
    file to be truncated on the last section of the header. This
    caused ddefine and other developer programs to treat the file as
    if it had a creation password.
    
===================================
Version 6.0.00.02 bug fixes
===================================

Task #1626 (All)
    Using a merge field from import fails on condition line would fail.

Task #1628 (All)
    Bug occurred in an index when a record was added or deleted from an
    automatic index using a selection set through a lookup.

Task #1629 (All)
    In certain situations the screen text would scroll a screens
    content and message to wrap in F6 Browse function.
    
Task #1633 (All)
    Added an error message to cabe if code assigns a value to an invalid field.
    
Task #1636 (GI)
    A previous fix for CRON functions broke MSGBOX in GI.

Task #1625 (All)
    SORTARRAY now puts any blank fields at the end of the sort.

Task #1634 (All)
    Corrected text on setting selection set passwords

Task #1635 (SCO)
    Help display was improperly wrapping.
    
Task #1638 (All)
    Field length for description was extended from 80 to 255

Task #1640 (All)
    Under certain conditions clearing the BUSYBOX display



    would not properly redisplay the screen contents.
    
Task #1641 (All)
    Enhanced fPTransfer to properly xfer the auto index
    selection criteria

Task #1642 (All)
    ddefine create screen 0 caused a *clerk invalid screen
    error
    
Task #1643 (All)
    Removed debug display of field numbers from IUA index
    selection
    
Task #1644 (All)
    dmoedef was not displaying all print codes
    
Task #1632 (All)
    32bit Installs had the wrong 'rename' program.
    
Task #1645 (All)
    fPCopy was not properly copying the Auto Index Selection Sets
    
Task #1646 (Linux)
    Certain colors and highlights were not being shown properly.
    
Task #1648 (Linux)
    Under some situations a *clerk screen would shift improperly
    
Task #1649 (All)
    ddefine did not properly make an index with a selecton set
    
Task #1650 (All)
    fPCopy would crash or give an error message when copying a
    mirrored file.

===================================
Version 6.0.00.01 bug fixes
===================================

Task #1607 (All)
    Removed double F7 label
    
Task #1608 (All)
    dosetforms - replace toggle with select all / select none

Task #1386 (All)
    Display when index is built on selection set.
    
Task #1619 (All)
    Fixed changing Broken mirror status to Yes mirrored status
    in define files.
    
Task #1620 (NIX)
    Correct error to redirected stdin
    
===================================
Version 6.0.00.00 bug fixes
===================================

Task #1128 (GI)
    F6 was not working from pmaint to select Windows printers.
    
Task #1165 (All)
    Better error handling when indexes are in a known need to 
    rebuild state.

Task #1239 (All)
    MySQL/ODBC was returning a -1 error on longblobs.  The problem was caused 
    by the precision being reported as -1.
    
Task #1255 (GI)
    GI now traps no password in user.cfg file
    
Task #1310 (GI)
    GIserver now handles HD Serial Number with or without dashes
    
Task #1407 (All)
    xx = @odbcexception.clear crashes filePro
    
Task #1571 (GI)
    Occasional broken lines were drawn

Task #1569 (GI)
    GIserver was missing some shutdown messages    

===================================
End End End End End End End End End
===================================

 



Release notes - filePro Plus 5.8 - 01/25/2023
 fP 5.8.XX.36

The filePro Plus software and the documentation provided with it
are protected under United States Copyright Laws and is provided
subject to the terms and conditions of the filePro License Agreement.

PLEASE NOTE the support and fax phone numbers listed in this
readme file. Open new support incidents on our website.

*****************************************************************

WWW        http://www.fptech.com
Support    support@fptech.com
Sales      sales@fptech.com
Management filepro@fptech.com

*******************************

To submit bug reports
--------------------------------
1. Login to your account portal on our website
   http://www.fptech.com/fptech/login.php and then
   go to the Support Incident Menu and submit an
   incident request.
2. EMail them to support@fptech.com including the text
   "Bug Report" with the version # and your filePro
   License # in the subject line
3. FAX them to (813) 354-2722 clearly marking them as bug reports
   and be sure to reference your filPro License #
4. Call the customer support number (800) 847-4740

*******************************

A special thank you to Jim Asman for his contribution
to the functionality of our printer tables.   Jim was
a good friend to filePro and is dearly missed.

*******************************

Contact Information

Surface Mail
    fP Technologies, Inc.
    432 W. Gypsy Lane Road
    Bowling Green, OH 43402

Phones
    Support   (800) 847-4740
    Sales     (800) 847-4740
    Fax       (813) 354-2722

Email
    Support    support@fptech.com
    Sales      sales@fptech.com
    Management filepro@fptech.com

It's important that you clearly describe a suspected bug and
include the filePro version number. If the programmer has trouble 
figuring out what you meant, you might as well not have reported 
the bug. Be very specific. For example, if you are reporting a 
bug concerning a Browse, identify if it is a lookup browse or 
browse created by using the [F6] key. A screen shot is very 
helpful and sometimes better than more than 1000 words.

Describe exactly how to duplicate the bug. Although it's 
sometimes difficult to create a working sample to demonstrate the 
problem, make every effort to trim down your code and provide a 
working sample application with test data. You may even discover 
that what you thought to be a bug is due to a coding error or the 
bug may only occur with lots of data or large processing tables.

Take good notes as to any error messages and under what 
circumstances the error message is presented. It never hurts to 
provide more information rather than not enough. This is 
particularly true when the programmer asks for additional 
information. Rather than responding with a single sentence, be
verbose since this may shed some light on the bug or what you may 
be doing wrong in your code.

Read what you wrote. Closely read your bug report before submitting 
to make sure it's clear and complete. If you have listed steps for 
duplicating the bug in a sample, exercise the sample with the 
listed steps to make sure you haven't missed a step.
    
***************************************
filePro and filePro Plus are registered 
  trademarks of fP Technologies, Inc.
***************************************
===================================
Bug fixes are below the New Items.
===================================
=================================================



New in 5.8.03.XX Update Subscription Program only
=================================================

New #50 (All)
       Printers can be flagged to eliminate them from the -PQ
       selection listing. See PFPQEXCLUDE

Two new commands in *cabe processing, mode(path) and group(path).
       Mode() will return the octal permission mask on a file.
       Group() returns a string containing "owner:group" on the file

debug now will accept long variables as break points.

New interface that now allows managing up to 99 printers.

New for Define processing:
       Search and Replace
       Show all @labels
       Go to @labels
              
ddefine will now use the version 4.5+ dxmaint interface when making
indexes for new files

Password protection of .sel and .brw formats

C – Change cusor path you can now press F5 to view the screen in
define screens

Line & Box drawing in PDF

replace() command will return a search and replace string of data from either a
       field or variable

Browsing printers in Options for output formats, filePro now shows only valid
printers

New Env Setting PFSEMTIMEOUT. Watchdog code added to the session
       count code in filePro to prevent semaphore lockups. The value defaults to 3
       seconds before it will unlock a broken semaphore. A value of 0 disables the
       new timeout.
       
=================================================
New in 5.8.02.XX Update Subscription Program only
=================================================

New SELECTBOX() function.

New Form Filtering for IUA(clerk) Form command.

Ability to define screens for *clerk with "truncated/scrolling" fields.

Added timeout option to user, and related TIMEOUT() test.

PDF Enhancement to  for MARGINT|MARGINB|MARGINL|MARGINR=”margin”

=================================================
New in 5.8.01.XX Update Subscription Program only
=================================================
New #1312
       Automatic indexes can now be built using a selection set. As
       records are created or modified, they will be placed in the
       index only if they pass the selection criteria.
              
New
       Dual Write or Mirroring. Extended options in define files (ddefine)
       now has an option to mirror a file. Use of PFDIR2 and PFDATA2 settings
       determine the path of the mirror directory.
              
New #1324
       PFPQ=ON Acts as if the "-PQ" flag was passed to *clerk/*report.
              
====================================
END OF NEW USP ITEMS
====================================
===================================
Version 5.8.XX.36 bug fixes
===================================

Task #1922 Add option to ignore too many edits error                   
       Added new variable to ignore "Too many edits" error message.

       PFIGNTMEDS, default OFF

Task #1926 fpcopy -RP flag not working                                 
       Corrected an issue where -RP (1|2|3) on a fpcopy command was ignored.

Task #1927 Longvar with no type/size crash in rclerk                   
       Corrected an issue where an untyped local long named variable could
       cause a crash when inside of a tok file called multiple subsequent
       times.

Task #1929 PDF incorrectly adding header to grand total page           
       PDF printing will no longer incorrectly add a header to a grand total



       page.

Task #1930 Updated license file format                                 
       Corrected some security issues with licensing.

       Requires a new download of a license file starting with version 5.8.03.36

       Make sure to download a new license file when upgrading.

       Updated fplmserver and fplmservice will still authenticate previous
       versions of filePro. New versions can no longer use the old
       fplmserver/fplmservice.

Task #1931 Demand/4.1 Auto Index name truncation fix                   
       Corrected a buffer overflow on demand/4.1 auto indexes on large file
       names.

Task #1932 Prevent crash when using a lookup that hasn't been opened   
       Added changes to prevent a crash when attempting to write to a lookup
       that hasn't been opened yet.

Task #1933 MULTI export corrupted                                      
       export MULTI will no longer produce an incorrect export file when
       fields are used in order.

Task #1934 Deleted key not found fix in report                         
       Updated filePro to prevent writing to record 0. This should resolve
       most DKNF issues.

Task #1935 pmaint insert mode not working                              
       Corrected support in pmaint to allow for the use of insert mode.

Task #1937 File name not showing in ddefine                            
       Corrected display issue in ddefine that prevented the current file
       name from being displayed.

Task #1940 Correct SCREEN command when using a single character screen 
       Corrected a change that broke the handling of single character screen
       names.

Task #1941 FPSQL string handling/overlap issues                        
       Corrected a memory bug in FPSQL that prevented queries from being
       processed correctly.

===================================
Version 5.8.XX.35 bug fixes
===================================

Task #1915 [dr]clerk -xi and -xs can cause a crash when used together  
       Corrected an issue preventing a selection set and an index from being
       set on [dr]clerk at the same time.

Task #1918 PDF print MAP not working

Task #1917 Font Size issue with Windows 11 terminal.

Task #1914 Spellcheck crash when using personal list.

Task #1913 Corrected an issue where merge labels (IMPORT/EXPORT)
       were not correctly indicating that the merge was closed.

Task #1891 Enhanced [dr]clerk to honor a passed index flag for browse
       when @ONCE or @MENU is used in processing.
              PFNEWIXS=on (default off)

Enhanced [dr]clerk to honor a passed index flag for browse when @ONCE
       or @MENU is used in processing.
              PFNEWIXS=on (default off)

Task #1907
       New PRC inherits previous tables password

Task #1904
       EOF marker bit not displaying correctly on Windows

Task #1860
       PFAUTOGOTOWARN not honored during runtime

Task #1863
       fPCopy failed on copy of files with certain permissions

Task #1903
       Corrected an issue where fields would only show as one
       character in *clerk. Issue only with non-USP licenses in 5.8.

Task #1886
       Reverted and updated SCREEN command syntax checking to allow
       code using undocumented syntax to still function.

Task #1889
       Corrected an off by one error in the SELECTBOX position
       handling.



Task #1890
       Corrected runmenu to correctly display the menu item
       description color.

Task #1894
       Corrected a crash when using an expression as a browse
       lookup key field and breaking out.

Task #1895
       Removed leftover debug code for GI button handling.

Task #1898
       Corrected an issue where the map file could be parsed
       incorrectly or cause a crash in ddefine if it ended in
       an additional blank line.
       
===================================
Version 5.8.XX.34 bug fixes
===================================

Task #1764
       Fixed an issue where CO in a selection set would not properly check if the
       value was contained in a field.

Task #1765
       Changed [dr]cabe to not exit if an edit used in automatic processing and 
       used in input processing was not found.

Task #1779
       CLEARB now correctly ignored in drop processing

Task #1793
       fpcopy will now correctly handle all extents on a file and will now mirror
       them correctly.

Task #1788
       Corrected an issue where a null entry in the outfiles.xml file could prevent
       access to a filePro file or cause a crash.

Task #1795
       Updated mirroring to correctly handle multiple extents on a file.

Task #1796
       Corrected an issue where upon turning on mirroring for a file and reexecuting the
       dialog option could cause ddefine to crash.

Task #1798
       Corrected an issue where all files, when first mirrored, would be created as
       empty blob files (blob binary data and structures in the file). All files are now
       correctly created of the right type.

Task #1799
       Corrected and issue in ddefine where a broken mirror would not be displayed
       as such (missing splash screen and 'B' flag in options).

Task #1800
       Fixed an issue where when switching a mirror from a broken state 'B' flag in
       options in ddefine to a 'Y' would not re-create and update missing files. 

Task #1801
       Corrected an issue in ddefine when trying to create qualifiers. The list
       would not display unless also creating an index, it now correctly displays without
       having other options flagged.

Task #1803
       Mirroring disabled warning will now correctly keep its own state between
       files. Previously, switching between two "broken" mirrors would cause the splash
       screen to show again.

Task #1804
       Corrected an issue in dprodir where filePro could crash if there were a large
       number of files in the directory to be deleted.

Task #1805
       Corrected index scanning in *clerk when both a selection set and index are
       specified on the command line. The scan will now also accept system variables in the
       selection set, such as @PM, to be used in conjuntion with the index from the command
       line. Note: Using both flags implies PFIXS.

Task #1806
       Fixed an issue in cabe when the screen was redrawn by scrolling the page. If
       the previoius field allowed for a lookup to be created and the destination field
       did not, the prompt would still be displayed.

Task #1809
       fpcopy will now copy all files under a filePro file's directory structure.

Task #1813
       Fixed an issue where loading a call in dclerk could cause an invalid syntax
       error to be thrown. This was caused by leftover binary data when switching
       contexts.



Task #1814
       Fixed a crash in dmoedef when editing multiple reports in a row. The issue
       could be triggered by changing the printer associated with a report under F8-O for
       options and was caused by mishandling of the break key stack.

Task #1816
       Corrected and added a syntax error to commands that parse screen names as
       literals, i.e. SCREEN, SWITCHTO, etc. The command would not throw an error on screen
       names over 1 character if it was not quoted and would parse them incorrectly.

Task #1817
       Corrected an issue with field switching in GUI under report. Fields will now
       correctly switch when clicked on.

Task #1820
       Corrected an issue with ddefine where having PFQUAL set could cause issues if
       the qualifer does not yet exist in the file while defining indexes.

Task #1830
       Corrected the free space checks on all operating systems for ddefine and
       dexpand. Drive free space is now correctly accounted for. Some space is still reserved
       in the check for the operating system.

Task #1831
       Corrected an issue where drives set in PFDSK in the format of PFDSK=C;D;E;F
       on Windows would not correctly be parsed, leading to some programs failing to
       find other drives.

Task #1838
       Corrected an issue when entering an invalid printer type in pmaint. Break key
       will now correctly be honored when answering 'N' or breaking out of the
       question
       asking if you want to pick a valid print code table from a list.

Task #1839
       Corrected an issue from a previous bugfix to prevent oversized
       scrollable fields from being dropped from the end of the screen
       if the field definition was too long to fit on the screen.

===================================
Version 5.8.XX.33 bug fixes
===================================

Task #1699 (All)
       Fixed MEMO text to ignore spaces after an ENTER

Task #1776 (All)
       If you had an environment or config variable named XXSOMEVAR
       it would still qualify as PFSOMEVAR.

Task #1778 (All)
       ddefine was not creating qualified indexes

===================================
Version 5.8.XX.32 bug fixes
===================================

Task #1738 (All)
       Reversed task 1737 and added new @DV for the distribution release
       number.

Task #1740 (All)
       PFCHECKLOCK was causing an improper error on read-only MEMO Show

Task #1741 (All)
       MEMO CLEAR was not working with a lookup memo when reference by the
       lookup handle

Task #1742 (All)
       MEMO functions were causing sporadic memory leaks.

Task #1743 (All)
       Modifying a lookup that has an Auto-Index selection set would cause
       a DKNF error in certain cases.

Task #1748 (Windows)
       Uppercase FP in menu command causes comspec error

===================================
Version 5.8.XX.31 bug fixes
===================================

Task #1721 (All)
       Improved Spooler timiout handling in order to avoid
       spooler shutdown during large printing operations.

Task #1734 (All)
       Fixed a bug where assigning to a real field from a mid statement
       could blank the field if the field passed to mid was the same.

Task #1735 (All)
       A truncated field on a screen was not allowed in cursor pathing
       in some situations.



Task #1736 (All)
       Fixed and enhanced the @VR system variable

Task #1737 (All)
       Added PFZEROLENWARN=OFF (default ON) to disable cannot assign to
       zero length field message when saving a processing table.

===================================
Version 5.8.XX.30 bug fixes
===================================

Task #1718 (All)
       POPUP was not display the full screen

Task #1720 (All)
       Added Error Message if browse lookup closed in
       DROP processing

===================================
Version 5.8.XX.30 bug fixes
===================================

Task #1696 (All)
       FLUSHKEY does not clear keystrokes added by PUSHKEY.

Task #1375 (All)
       Updated errmsg file with latest error codes

Task #1675 (All)
       F5 would not properly fill a truncated field

===================================
Version 5.8.XX.29 bug fixes
===================================

Task #1672 (All)
       The changes were to IXSEL (new optional 3rd parameter)
       and IXSORT (new optional 4th parameter). The parameter must be
       a path representing an alternate PFDIR to use temporarily for
       the function.
       IXSORT and IXSEL were failing on qualified indexes

Task #1117 (All)
       Improved license related shared memory error reporting.

Task #1687 (All)
       Fixed a bug where having a field defined at the end of a row
       would not resolve properly if the following line started with
       text instead of a space.

Task #1631 (All)
       Memo text edit window was not scrolling in certain circumstances

===================================
Version 5.8.XX.28 bug fixes
===================================

Task #1663 (All)
       Improper key buffer management when using
       certain combinations of PUSHKY

Task #1664 (All)
       Memo memory fault when using certain sequences
       of Page Up and Page Down in memo editor

===================================
Version 5.8.XX.27 bug fixes
===================================

Task #1652 (All)
       When editing a defined lookup in processing, the highlight
       was on the wrong index.

Task #1653 (All)
       Define processing was not reporting a correct line number
       on a syntax error.

Task #1654 (All)
       Define processing was crashing on Search & Replace on a new
       table that had not yet been saved.

Task #1655 (All)
       JSFILE was passing syntax when a function had not been
       sepcified

===================================
Version 5.8.XX.26 bug fixes
===================================

Task #1651 (All)
       Corrected a change introduced into ddefine that caused the map
       file to be truncated on the last section of the header. This



       caused ddefine and other developer programs to treat the file as
       if it had a creation password.    
    
================================
5.8.XX.25 Bug Fixes
================================

Task #1626 (All)
       Using a merge field from import fails on condition line would fail.

Task #1628 (All)
       Bug occurred in an index when a record was added or deleted from an
       automatic index using a selection set through a lookup.
       IMPORTANT: Any indexes previous built with selection criteria in
       prior version MUST BE REBUILT!!!

Task #1633 (All)
       Added an error message to cabe if code assigns a value to an invalid field.

Task #1636 (GI)
       A previous fix for CRON functions broke MSGBOX in GI.

Task #1634 (All)
       Corrected text on setting selection set passwords

Task #1638 (All)
       Field length for description was extended from 80 to 255

Task #1641 (All)
       Enhanced fPTransfer to properly xfer the auto index
       selection criteria

Task #1643 (All)
       Removed debug display of field numbers from IUA index
       selection

Task #1632 (All)
       32bit Installs had the wrong 'rename' program.

Task #1645 (All)
       fPCopy was not properly copying the Auto Index Selection Sets

Task #1650 (All)
       fPCopy would crash or give an error message when copying a
       mirrored file.

================================
5.8.XX.24 Bug Fixes
================================

Task #1580 (GI)
       DEV programs will not run under GI/WEB clients

Task #1581 (All)
       Fixed configuration loading to support old ownership values.

Task #1614 (All)
       Invalid field assignment error pointed to the wrong prc.

Task #1615 (All)
       Removed Natural Order option and bug on adding TAB's

Task #1617 (Linux)
       dossetforms was causing a SegV on certain files

Task #1618 (All)
       Increased the maximum number of open files to 512

================================
5.8.XX.23 Bug Fixes
================================

Task # 82 (All)
       Locking a prc table for editing was not properly working
       and releasing when encountered.

Task # 1163 (All)
       In some instances a variable was not properly setting
       when importing in to a memo field.

Task # 1313 (All)
       A new system variable, @VR, was implemented to holding
       the major version of the full version of filePro.
       Tasl # 1604 (All)
       Under some conditions, a file table was filling up due
       to a mirrored file not being closed properly.

================================
5.8.XX.22 Bug Fixes
================================

Task # 1597 (All)
       Demand index may have displayed strange behavior because



       of an improper 64 bit flag.

Task # 1598 (All)
       BLOB import was not working in some cases.

Task # 1599 (GI)
       Occasional bleed through on certain help file
       displays.
       
================================
5.8.XX.21 Bug Fixes
================================

Task # 1586 (All)
       Fixed syntax error for PRINTER NAME (exp) command when (exp) was
       invalid, it now correctly sets to default printer (on prompt) on
       invalid printer.

Task # 1442 (Windows)
       Rewrote the pipe routine and put some windows specific code
       inside of a new library.

Task # 1582 (All)
       Adjusted F5 Lookup Wizard so that browse windows and show windows
       were the same size.

Task # 1588 (All)
       Fixed display on Index Selection on multiple field indexes.

Task # 1590 (All)
       Fixed an error on re-browse if selected record is deleted.

================================
5.8.XX.20 Bug Fixes
================================

Task #1556 (All)
       cabe when called from dmeodef was not properly exiting
       if the process was locked by another session.

Task #1575 (All)
       MEMO editor would allow a blank line unless INSERT was ON

Task #1576 (All)
       Dmoedef was not properly allowing and saving the positioning
       coordinates and on occassion could corrupt the .out header

Task #1577 (All)
       dscreen was not properly toggling F9 Graphics mode

Task #1578 (All)
       cabe would lock up on multiple pages of dummy variables

================================
5.8.XX.19 Bug Fixes
================================

Task #526 (GI)
       Strip \r from menu title feed to GI

Task #1128 (GI)
       F6 in pmaint destination field on Windows was not working

Task #1163 (All)
       Executing a import memo to a variable was inadvertently
       storing the memo in the blob file without any record pointer

Task #1552 (Windows)
       Customer reported that PDF was not properly printing lines on
       a form and it was determined that PFPDFFONTSIZE and PFFONT_COURIER
       was not set properly

Task #1548 (SCO)
       Premissions on a system call to run MUTT was not properly set

Task #1549 (All)
       dxmaint was honoring PFMBTO on an index delete confirming prompt

Task #1550 (All)
       spelledit would crash on list selection listing

Task #1551 (All)
       Fixed a bug in spelledit.exe that happened when there were no
       user spelling dictionary files
       Tasl #1553 (All)
       PFMBTO was not being ignored by the MEMO editor F8 dialog
       box

Task #1554 (All)
       WRITE handle in processing was inadvertently writing the
       main record to disk

Task #1556 (All)



       Process lock warning in cabe would only allow you to press
       Y to continue

Task #1558 (All)
       LOOKUP WIZARD in cabe would crash on a mirrored file if the
       mirror path was invalid

Task #1560 (All)
       Incomplete blank printers were being saved in pmaint

Task #1561 (All)
       Removing a blank printer in pmaint would prompt for a
       confirmation

Task #1562 (All)
       F3 and F4 keys were not working in all field columns

Task #1563 (All)
       Sometimes pmaint would improperly sort printer in the config
       file causing clerk and report not to find out of order printers

Task #1570 (GI)
       Yes or No prompts below printer #20 were not working
       properly in GI

================================
5.8.XX.18 Bug Fixes
================================

Task #1543 (All)
       Adding a comment to an 4.1 style index was not properly saving
       a comment and sort criteria or switching the style to 4.5

Task #1542 (All)
       Editing the config file could cause clerk or report to not
       properly read the contents on startup.

Task #1544 (All)
       F8 Options to save but not rebuild was causing an issue with
       old style 4.1 indexes

Task #1547 (All)
       Printer maintenance could go out of sync with Insert if more than
       one page of printers.

================================
5.8.XX.17 Bug Fixes
================================

Task #691 (All)
       fileProODBC bug - dprodir fails with fileProODBC

Task #1525 (All)
       PFMBTO was being ignored

Task #1349 (Linux)
       lockinfo Linux displays effective UID - needs real UID
       Two fixes: you must have the latest 5.8.03.17 and the latest
       lock.info. You must have PFROOTFIX set.

Task #1531 (All)
       X-Exit not displaying if Index X is hidden

Task #1404 (All)
       Using declared variable will not allow call function

Task #1416 (All)
       Under some circumstances a Free record lookup would
       crashes

Task #1417 (All)
       Under some circumstances a report run in GI would hang

Task #1423 (All)
       Previous bug fix was not done in rclerk. Now fixed.

Task #1530 (NIX)
       Added a new variable PFSECUREDEBUG to disable !b in dclerk.
       Default is OFF, setting it to ON will prevent the escape from
       working, similar to PFSCC. Prevents root shell access.

Task #1517 (All)
       Alignment check question disable for PDF files.

Task #1526 (All)
       Problem caused by a fix last March. Work-around was to use
       PFOLDWRITE=ON, but that caused a conflict:
       dreport eee -f export_csv -a -ro
       Now, PFOLDWRITE is not necessary since pfcb will not be marked
       dirty IF offending code is reached from *report and -ro is used.

Task #1532 (All)
       Arrows would glitch when moving left to right in some



       selection windows

Task #1528 (All)
       dmoedef would not properly overwrite existing print codes
       when copied and pasted.

Task #1533 (All)
       Configuration editor was not working properly after a
       record lock error message.

Task #1538 (All)
       Configuration editor was not properly locking records.

Task #1540 (All)
       Added PFINDEXX variable to allow non-default display of
       X-Exit in Index Selection

Task #1541 (All)
       FORMM was not leaving the pipe open for more data when
       output was to a PDF
       
================================
5.8.XX.16 Bug Fixes
================================

Task #1522 (All)
       freechain seqmentation fault in some instances

Task #1501 (NIX)
       PFUMASK was not honored by PDF files

================================
5.8.XX.15 Bug Fixes
================================

Task #1519 (All)
       Long fields that wrap or are scrolled would cover other fields
       in the array for cursor path verification

Task #1511 refix (All)
       This previous fix broke variables from holding certain values in
       reports

Task #1349 (Linux)
       lock.info now shows the real UID instead of the effective UID

Task #1513 (All)
       Close fails on a dash lookup and crashes in Windows

Task #1518 (Linux)
       fpconfig was improperly drawing the active box around the
       selection

================================
5.8.XX.14 Bug Fixes
================================

Task #1503
       F7 was not properly going to the last record in the index in clerk.

Task #1505
       Fixed a record deletion bug in *clerk (Windows only) where a WRITE
       would be reverted/deleted on BRKY.

Task #1507
       Fixed a bug with dmoedef, a null character made its way into the shortened
       printer list, appended to each name, it caused a strange graphical glitch
       that
       made it almost useless.

Task #1508
       Changed selectbox to be "1" based instead of "0" on screen positioning.
       Added PFOLDSELECTBOX to enable "0" based positioning, default OFF.

Task #1509
       Fixed dummy fields disappearing off of the screen after a WRITE and END
       combo if a record has not been changed. Added PFOLDWRITE to revert to
       old method in case of issues, default OFF.

Task #1511
       Overflow/segfault in reports, was caused by a scoping issue between
       global and local longvar fields.

Task #1512
       Enabled spaces in selectbox. Added PFSELBOXSPACE to disable s
       paces in selectbox(), default ON.

================================
5.8.XX.13 Bug Fixes
================================

Task #1475 (All)
       dscreen locked message was not properly displayed



Task #705 (All)
       Using -XI and -XS was never intended or coded. As a result the
       requested index was ignored in favor of the best fit according
       to the selection set. Now, if both -XI and -XS are specified the
       selection scan will use the requested index.

Task #1483 (All)
       PDF now honors width and height in  tag

Task #1253 (All)
       configuration editor now allows selection of config files other
       then the one currently in use by the one named in PFCONFIG

Task #1399 (All)
       In dscreen, F5 resolve fields did not properly show the
       truncated length of the truncated fields.

Task #1487 (All)
       In pmaint there were some issues with Paging and also setting a
       printer on pages greater than page one improperly removed the
       printer NAME & TYPE information.

Task #1489 (All)
       pmaint will now allow you to enter an invalid printer type after
       prompting to make sure that is what you want to do.

Task #1490 (All)
       Cursor pathing information was not printing and a dscreen
       hardcopy

Task #1491 (Linux)
       Free Space was not properly stated on 64 bit systems

Task #1492 (All)
       Added the ability to use flags from the command line when using FPCOPY

Task #1493 (All)
       Mirrored index were adding freen chain data to the end of the index.
       This does not invalidate the index but destorted the file size.

Task # 1497 (All)
       Could not remove dummy from cursor path if it did not exist on
       the screen, also could not arrow/move past it. F4 now removes the
       field and blanks properly

Task #1498 (All)
       LOGTEXT is now limited only by disk space up to 2,147,483,647
       bytes.
       
================================
5.8.XX.12 Bug Fixes
================================

Task #82 (All)
       rcabe now properly locks a prc when in edit mode

Task #1477 (All)
       A dubious printer name in processing would cause a segV

Task #1476 (All)
       dcabe was failing on a CLOSE or WRITE command in processing

Task #1478 (All)
       dreport could result in a zero length PDF file

Task #1358 (All)
       Run-time programs should now give a message when the limits
       of 205 combined EDITS is reached instead of aborting

Task #1427 (All)
       dscreen and ddefine should now format properly when the default
       printer is PDF

Task #1482 (NIX)
       Minor display modifications to dscreen for when used on old Wyse 60
       terminals

Task #1485 (All)
       BLOB/MEMO fields were crashing when used with tok processing that
       had not been recompiled.
       
================================
5.8.XX.11
================================

Task #1472 (All)
       Define Output - F6 for Printers was offset one line.

Task #1473 (NIX)
       pmaint screen did not work properly with wy60 emulation

Task #1474 (All)



       pmaint F9 (go to line #) only had 2 characters

================================
5.8.XX.10
================================

Task #1469 (All)
       CREATE / WRITELINE was failing or throwing garbage to the screen

Task #1470 (All)
       SHOW POPUP not working

Task #1471 (All)
       Encryption Error (Encrypted file / Grace Period Mismatch) when trying to
       access an encrypted file.

================================
5.8.XX.09
================================

Task #1308 (All)
       Some Development programs were responding to PFMBTO

Task #1334 (All)
       Invalid lookups to a mirrored file would give an
       incorrect 'not licensed' error

Task #1363 (NIX)
       The new fpconfig utility program was not included in
       the NIX compiles

Task #1431 (Windows)
       dclerk debug F9 Search for \{ displays graphics
       instead or previous search criteria

Task #1439 (All)
       Development programs were not working properly when
       PDF was the default printer

Task #1442 (Windows 64 bit)
       USER command was not executing correctly on 64 WIN

Task #1449 (All)
       ddefine - when changing 16,memo to 100,allup in map of
       mirrored file filePro would crash

Task #1450 (All)
       cabe - was missing the O - Options to the F8 options

Task #1451 (Windows 64 bit)
       fpdaemon_win.exe on 64 bit never displayed a fileProGI
       menu

Task #1454 (All)
       clerk - FORM in 5.8.02.08K3 crashed in clerk on
       repeated executions

Task #1461 (All)
       clerk/report - PDF with overlay was not working
       properly

Task #1460 (All)
       clerk - Selectbox was not respecting width and height
       parameters

Task #1464 (All)
       clerk/report - EXPORT WORD -A was not appending to an
       existing file

Task #1043 (All)
       When a BLOB field was removed in ddefine, the blob
       file was not properly removed.

Task #1356 (All)
       debug now will accept long variables as break points.
       The scope of a longvar is different from a normal
       dummy field. Technically, longvar is not at a true
       global scope, and isn't available in the automatic
       processing table. Declaring it 'g' only will work
       across records, but not tables, declaring it GLOBAL
       will fix that, but it has to be matched with an EXTERN
       in the other prc table.

Task #1409 (All)
       The index license ownership display has been
       reformated so it does run into the version display.

Task #1423 (All)
       popup("7","-1") was not centering properly

Task #1425 (All)
       In certain case, there was a stray character at the
       end of @ID when running under fileProGI



Task #1441 (All)
       The ability to cancel when adding a new screen did not
       work.

Task #1444 (All)
       The check free diskspace routine was updated to handle
       hard drives over the old 32 bit limits.

Task #1118 (All)
       Page Up and Page Down was not working in memo edit windows.

Task #1468 (All)
       xfer was causing errors in restoring key files.

================================
5.8.XX.08
================================

(All) #1269
       fPCopy was not properly handling encrypted files.
  
(All) #1308
       F8 - Options in dmodef and dscreen were honoring PFMBTO
       and now ignore it
  
(All) #1331
       ddefine could crash on save of missing a blob file when
       turning on mirroring.
  
(NIX) #1363
       utility fpconfig was not compiled in some previous
       releases for NIX platforms.
  
(All) #1370
       Added the prc table name to error messages in most places
       to help with filepro error indentification
  
(All) #1403 & 1418
       F9 was not allowing a search of a prc table in *rcabe and
       configuration editor
  
(All) #1411
       cosmetic adjustments to the F8 Options screens and popups
       in dmoedef
  
(All) #1412
       Under certain circumstances the cursor would move outside
       of the memo edit area
  
================================
5.8.XX.07
================================

(All) #1174
       After saving a screen in Define Screens, it was possible for a
       session to update the same screen at the same time.
  
(All) #1377
       If you execute a lookup-dash to an existing record in automatic
       processing while in add records mode, and then cancel out of
       update, the record would be deleted.
  
(All) #1384
       INPUTPW did not respect the edit type of the input field, and
       treated everything as "*".
  
(All) #1385
       If you have an automatic index with a selection set, and
       update the record such that the true/false value of that
       selection set changes, but none of the key fields for that
       index change, the index was not updated.
  
(All) #1388
       Pressing F5 (create script file) in Define Menus when there was
       no menu item keystroke defined yet would create a script named
       "menuname-.X". Now, you cannot create a script until the
       keystroke is defined.
  
(5.8.02 and later) #1392
       If the "filecount" value in a file's "outfiles.xml" file was
       higher than the actual number of files listed, Define Output
       would crash upon selecting that file name.
  
(5.8.02 and later) #1393
       fpcopy did not copy the "outputfiles.xml" file if it exists.
  
(Windows only) #1394
       If an error occurred in xfer while receiving a file, the error
       display might show a black area of text, rather than the file
       name.
  
(All) #1395



       When transferring a filePro file with a "map.new" file that does
       not match the "map", it was possible for xfer to not properly
       receive the filePro file.
  
================================
5.8.XX.06
================================

(All) #1061
       If you have two lookups to a file with different aliases, with
       the second lookup being a browse lookup, if that browse lookup
       has processing, and within that processing you refer to a field
       in the first lookup alias, non-",g" dummy fields are cleared.
  
(All) #1262
       If you have a protected lookup to the main file in a CALLed
       procesing table, and CLOSE that lookup, without having ever
       modified the record, or using WRITE, the looked-up record will
       remain locked. (If you use GETNEXT/GETPREV on that lookup, then
       it would be the last record read by the lookup which remains
       locked.)
  
(All) #1319
       If you are running filePro with standard input either redirected
       (such as from a file, or via a pipe), or with no standard input
       at all (such as from cron), and filePro needs input from the user
       (such as asking for a filename, due to a typo on the command
       line), filePro would wait in an infinite loop, using 100% of
       available CPU. filePro will now give a fatal error, and exit.
  
(All) #1355
       If you have an IMPORT/EXPORT statement with the alias "alias",
       and somewhere in processing you had a reference to "alias()" in a
       comment, you could get a syntax error on that comment.
  
(All) #1377
       If you execute a lookup-dash to an existing record in automatic
       processing while in add records mode, and then cancel out of
       update mode, the record would be deleted.
  
(5.8.01 &.02) #1385
       If you have an automatic index with a selection set, and update
       the record such that the true/false value of that selection set
       changes, but none of the key fields for that index change, the
       index was not updated.
  
================================
5.8.XX.05
================================

(5.8.XX.04) #1374
       Non-Lite versions of filePro failed to allow qualifiers in ddefine
  
(All) #1373
       Non-Lite versions of filePro failed with "syntax error" on
       ENCRYPT() and DECRYPT().
  
================================
5.8.XX.04
================================

(All) #1054
       Erroneous "feature not licensed" errors correct.
  
(All) #1313
       filePro user menus can now use a pseudo-environment variable
       "@VR" to place the filePro version on the screen. You can use
       either Windows ("%@VR%") or Unix/Linux ("$@VR") syntax.
  
(fileProGI) #1317
       filePro GI client displayed "garbage" for the "Enter" prompt.
  
(All) #1344
       A spurious "requested feature not licensed" message would
       sometimes be included in filePro error messages.
  
(Quikstart) #1345
       If you have a "locked(-)" test without a lookup-dash, rcabe
       did not give a syntax error.
  
(Windows 64-bit) #1347
       Pressing F8/Options in printer maintenance would cash the
       64-bit Windows version of filePro.
  
(All) #1350
       dxmaint -m "" would not override a PFQUAL setting.
  
(Linux) #1352
       filePro now turs off stty "iexten" mode on systems which
       support it.
  
(All) #1353
       FPML now supports user-defined margins to the  tag.



  
(All) #1357
       New PFPDFCOMPRESSMODE config variable to control PDF compression.
  
(Windows) #1360
       The Windows version of dexpand didn't properly handle key files
       larger than 4G in size.
  
(Windows 64-bit) #1361
       When concatenating a string with a memo field from a lookup
       file, 64-bit Windows filePro could crash.
  
================================
5.8.XX.03
================================

(All) #402
       If you select a record via *clerk's "6 - fuzzy search" menu
       choice, and then press Break/Del/Ctrl-C, *clerk exits, rather
       than returning to the menu.
  
(fPSQL) #1053
       fPSQL did not properly display user edits in the F5 field list.
  
(fileProGI) #1336
       When running filePro on a Windows server, the "Enter" prompt
       displayed "garbage" characters.
  
(5.8.01.01 only) #1337
       It was possible that the first lookup to a file would corrupt
       indexes built on field you modified.
  
(All) #1338
       The CREATE() function did not respect the umask, always using a
       umask of 0177 instead. Now it will respect PFUMASK if set.
  
================================
5.8.XX.02
================================

(All) #402
       If you select a record via *clerk's "6 - fuzzy search" menu
       choice, an then press Break/Del/Ctrl-C, *clerk exits, rather
       than returning to the *clerk menu.
  
(64-bit only) #1332
       Spellcheck didn't work properly on 64-bit implementations.
  
(GIclient only) #1336
       When running fileProGI against a Windows version of filePro,
       then "Enter" prompt displayed as garbage.
  
(5.8.01.01 only) #1337
       It was possible that the first lookup to a file could
       corrupt indexes built on field you modified.
  
================================
5.8.XX.01
================================

(All) # 1332
       Aspell ws replaced with hunspell for the 64 bit version of
       filePro
  
(Linux) #1330
       The 64-bit Linux version of xfer didn't copy screens correctly.
  
(Linux) #1327
       On 64-bit Linux. closing a lookup file could crash with a corrupt heap.
       ("*** glibc detected ***" error message.)
  
(Linux) #1316
       Fuzzy browse lookups could crash on 64 bit Linux
  
(All) #1286
       Setting PFIDLEN=32 will cause @ID, @CB, and @UB to have a length of
       32 rather than 8. (The only legal values are currently "8" and "32".
       Any other value is undefined.)
  
(All) #1295
       Alien and ODBC files can't be encrypted by filePro. ddefine will
       now prevent you from marking such files as encrypted.
  
(All) #1302
       filePro now defaults to PFMAXALLOC=128 and PFMAXASIZE=128000, for
       up to 16MB of RAM for sorting.
  
(All) #1304
       If you have a fatal error (such as "file not found" on import) in
       a CALLed table, filePro might crash upon exit.
  
(All) #1305
       If you print a form from *clerk via "F"orn (not from FORM within



       processing), and that form's output processing does a lookup to
       the same file as an open lookup in input/auto processing, and
       then CLOSEs that lookup, filePro can crash if the input/auto
       processing re-executes that lookup.
  
(All) #1314
       The FPML documentation was incorrect. The "" tag is
       documented as taking an "ORIENTATION" attribute, but it should
       have said "ORIENT". filePro will now allow either spelling.
  
(Windows 10) #1318
       On Windows 10, if you set filePro's TextNormal attribute to a
       value from 0x80-0xff, there could be "ghost" characters left
       on the screen.
  
(Windows, 64-bit) #1321
       The 64-bit Windows version of rclerk/rreport could crash when
       using OPENDIR().
  
(All) #1322
       If you have a very long filename that "looks like" a qualified
       filename (such as "key [conflict at 2014-12-09_23-28-27]"),
       filePro could crash.
  
================================
5.8.00.00
================================

(Linux) #1292
       On some Linux systems, filePro would see a different MAC
       address than reported by "ifconfig" or "ip addr".
  
(All) #1294
       If you edit a prc file outside of filePro, and there is
       no newline character at the end of the last line, filePro
       may crash on exit or "switch files" in *clerk.
  
(All) #1295
       Alien files can't be encrypted. Ddefine now prevents you
       from marking such files as encrypted.
  
(OSR5) #1297
       On SCO OSR5, if you have a fuzzy browse lookup, and pass
       it a zero-length key, filePro can crash.
  
(OSR5) #1299
       Fuzzy search on SCO OSR5 returned incorrect results.
  
(Windows) #1301
       When using PFIXS=ON or the "-jy" flag, it was possible
       for Windows to throw an "uninitialized variable" error
       when scanning for records using an indexed field.
  
(All) #1304
       If you have a fatal error (such as "file not found" on
       import) in a CALLed table, filePro might crash upon exit.
  
(All) #1305
       If you print a form from *clerk via "F"orm (not from FORM
       within processing), and that form's output processing does
       a lookup to the same file as an open lookup in input/auto
       processing, and CLOSEs that lookup, filePro can crash if
       the input/auto processing re-executes that lookup.
  
(All) Version 5.8
       New function to get error code for ENCRYPT()/DECRYPT()
       failure.
       status = CRYPTERROR( [format] )
       If "format" is omitted, or zero, then the value is
       returned as a numeric error number, or zero for "no
       error". If "format" is "1", then the value is returned
       as a string. Other values for "format" are undefined.
       (If ENCRYPT/DEcrypt fails, a null string -- "" -- is
       returned.)
  
(All) Version 5.8
       New function to set the ODBC query timeout:
       old = @ODBC.handle.TIMEOUT(timeout)
       where "timeout" is the desired timeout in seconds. The
       function returns the old timeout value, if available, or ""
       if not.
       The default timeout is 15 seconds. Not all ODBC sources
       allow the timeout to be set. Setting the timeout to zero
       disables any timeout fuctionality, and can cause filePro to
       simply wait forever.
       This only affects future queries. Also, some ODBC sources
       share the timeout between all handles attached to the same
       ODBC_CONNECTION handle.
  
===================================
End End End End End End End End End
===================================



 



=====================================
5.7.(00,01,02,03,04).07 Release Notes
=====================================
(Windows) #1226

The Windows version of filepro didn't show the user limit on the Alt-F10 screen.
(Windows) #1271

If you have a large number of large arrays (ie: 96 arrays of 1000 elements each) in processing, filePro may be slow to exit.
(Windows) #1277

Setting PFEOF changes the "Press <--+ to continue" prompt. (All) #1278 LOCKED(-) would always test "false".
(SCO OSR5 only) #1279

Running an FPSQL query with a WHERE clause containing a date literal could crash.
(All) #1280

Using the processing debugger, if you use "E" to enter an expression ising an invalid field (such as "imp(10") on a 9-field import), filePro can crash after giving the error message.
(All) #1288

If you have a lookup to the current record in the main file, and MEMO EXPORT a field via the lookup, filePro will complain that you are trying to modify the current record via a lookup.
(All) #1289

When hardcopying a file in ddefine, if the output was not to "PDF:", the heading wasn't printed on the first page.
(*nix) #1290

On some *nix systems, an idle runmenu can wake up every 3 minutes and cause a spike in CPU usage for 1 second.  While not usually noticable, this can be a problem on a system with many
users.

(All) #1291
If you execute a DELETE (no lookup name), and then a CALL, the record was not deleted.

(Linux only) #1292
On some Linux systems, filePro would see a different MAC address than reported by "ifconfig" or "ip addr".

=====================================
5.7.(00,01,02,03,04).06 Release Notes
=====================================
(All) #1272
    When printing to a PDF document, if you have an FPML tag with
    attribute="value" (using quotes around "value") and "value" is
    longer than 1024 characters, filePro could crash.
    Note that this could also happen if you tried to embed a PCL
    file which happened to include "just the right sequence" of
    characters.
(All) #1273
    fPSQL would crash on files with MEMO/BLOB fields.  Note that
    such fields are still not yet supported, but fPSQL will no
    longer crash on such files.
(SCO only) #1274
    The HASH() and HMAC_HASH() functions would crash on SCO if
    passed an invalid hash name.
(SCO only) #1275
    There appears to be a bug in the SCO C runtimes library, where
    the text-to-binary (strtod) function would return "not a number"
    for valid numbers, in some not-yet-determined scenario.  This
    version of filePro works aorund it.
    This would manifest itself within filePro in the power ( )̂
    operator sometimes returning "-NaN".
(*nix only) #1276
    License check in 5.7.xx.05 versions of *nix filePro wouldn't
    work correctly for MAC-based licenses.
==================================
5.7.(00,01,02,03,04).05 Release Notes
==================================
(All) #1272
    When printing to a PDF document, if you have an FPML tag with
    attribute="value" (using quotes around "value") and "value" is
    longer than 1042 characters, filePro could crash.
(Windows) #1250
    If PFDSK wasn't set, dexpand could fail to check disk space.
(All) #1251
    The "grace period" warning wasn't always shown properly when
    running in the grace period.
(Linux) #1254
    Attempting to resolve fields in dscreen on a screen with @UB
    and/or @CB could crash on Linux.
(Linux) #1264
    PFMONO=ON wasn't respected on Linux.
(*nix) #1265



    Two new termcap entries -- PL and PM -- represent a second set
    of keys which can be used to DELC and INSC, respectively.
(Windows) #1267
    When sending output to a PDF file, "H"ardcopy in *clerk might
    not open/print the PDF until you exited.
(All) #1268
    If you execute PRINT @SBRK on the very first record of output,
    *report might crash.
===============================
5.7.(00,01,02,03).04 Release Notes
===============================
(All) #1230
    Removed starting splash screen and added customer and version to
    the clerk Index Selection screen.
(All) #1223
    DOKEY did not switch screens if passed a digit.
(Windows) #1228
    The default location for the PFCHECKLOCK=ON log file is moved
    from the root directory (which is not writable on current versions
    of Windows) to the user's HOME directory.
    If %HOME% isn't set, filePro uses %HOMEPATH%.  If that is not
    set either, then filePro will use the user's "my documents"
    directory.
(GI) #1229
    When using @GUI.RECVFILE(), if the client gets an error (file not
    found, permission denied, etc.) or if the file is zero length,
    filePro would write garbage to the destination file.
(All) #1233
    On filePro-MySQL, it was possible to crash filePro with certain
    combinations of lookup-dash followed by "if: not -" and "if: -".
(All) #1234
    Using "if: locked(-)" could crash filePro.
(All) #1235
    If you are sitting in an ODBC file, and have a lookup (not lookup
    dash) to the same file, filePro can crash when the file is closed.
    (Syntax check in *cabe on such processing could crash as well.)
(All) #1236
    If you use one of the PRINTER commands to send the output to a PDF
    destination, followed by PRINTER RESET, and then come other PRINTER
    command to set the destination to a non-PDF destination, that output
    will be "lost", and no output generated.
(All) #1237
    If you have a menu command with "@" for wait-on-return, and press
    Ctrl-C/Del/Break at the "Press enter to continue" prompt, runmenu
    would exit completely, even if this was a nested menu.
(All) #1241
    If you have a memo field which you grow over time, such that the
    memo becomes fragmented, and then shrink the memo such that the
    last fragment is no longer needed, the blob file will be in an
    inconsistent state.  If you then grow the memo again, the file
    will be corrupted such that either (1) filePro will crash when
    upating that memo, or (2) two memos will be "cross-linked"
    together.
(ODBC/MySQL) #1242
    If you are sitting in an ODBC/MySQL file, and have a (non-dash)
    indexed lookup into the same file, GETNEXT will always find the
    record after the one you're sitting on, and not the lookup record.
(ODBC/MySQL) #1243
    A browse lookup on an ODBC/MySQL file to itself would not respect
    the "must match" flag.
===============================
5.7.(00,01,02).03 Release Notes
===============================
(Quikstart) #1188
    If you have a DECLARE GLOBAL variable in input processing, and CHAIN
    to another prc file, and then CHAIN back to the original input
    processing, the DECLARE GLOBAL variables would be cleared.
(All) #1204
    If you have a processing table created outside of filePro, with a



    "then" line longer than *cabe's 127-character limit, *cabe may crash
    on Windows 8 systems with a stack corruption error when you try to
    save the processing.
(All) #1205
    There is now a "-FC" flag to ddir to delete selection sets.
(All) #1206
    If you have a CALL from automatic processing, and that called table
    closes a lookup which is already open in input (or output) processing,
    then filePro may crash when that lookup is accessed in input (or
    output) processing.
(All) #1207
    If you have a protected lookup-dash, followed by an unadorned "WRITE",
    the current record would be unlocked.
(All) #1208
    If, in add records mode, you have a lookup to the current file, a
    DELETE, and a lookup-dash, you can get a "deleted key not found" error
    on the lookup-dash.
(All) #1209
    If you executed an unprotected lookup-dash while in update mode, the
    resulting record was left unlocked, despite being treated as being in
    update mode.  Such a lookup will now be implicitly locked.
(All) #1211
    filePro didn't properly handle deleting an ODBC connection:
        ODBC_CONNECTION handle DELETE
    if there were open recordsets on that connection.  filePro will now
    implicitly close (but not delete) any recordsets on that connection
    prior to closing the connection.  (The recordset handles will remain
    valid, but the only operation permited on such recordsets is to delete
    them.)
(Windows) #1213
    When comparing a date field to a non-date field, it was possible to
    cause a Windows "debug assertion failed" error in "just the right
    combination of circumstances".
(All) #1214
    If you are adding a new record, and have a lookup-dash to a record
    which is locked, and press BREAK/DEL while the "waiting for record
    to be unlocked" message is on the screen, filePro would delete the
    lookup record, rather than the yet-to-be-created record you were
    sitting on.
(All) #1215
    Attempting to do date arrithmetic on a date field containing "/OV"
    could cause filePro to hang/crash.  filePro will now correctly return
    "/OV" in those cases.
(fileProGI) #1216
    Under GI, ddefine didn't move the cursor into another field if you
    clicked the mouse.
(All) #1217
    If the main file is encrypted, and you have a lookup to the main
    file, and you then close that lookup, further access to the main
    file may no longer decrypt/encrypt correctly.
(All) #1218
    Task item #1181 caused @SF/@SH on output formats to always be blank.
    (Note that they still worked in output processing.  It was only on
    the output format that failed.)
(*nix) #1220
    Fix for #1127 (restore umask for SYSTEM) caused ddefine to not
    create new directories with the correct permissions.
(Windows) #1221
    5.7.01 (and later) fpcopy didn't properly rename files under Windows.
(All) #1223
    DOKEY would not properly handle a number to switch screens.
=========================
5.7.01.01 Release Notes
=========================
(All) #1175
    When using dexpand to pre-expand an encrypted file, the new
    records could contain garbage.
=========================
5.7.00.02 Release Notes



=========================
(All) #1013
    The @WORDWRAP[] data would include the newline at the end of the
    last line, even when requesting that newlines be stripped.
(All) #1058
    licinfo did not respect PFLICFILE.
(Windows) #1131
    Some Windows systems were unable to read the MAC address for
    licensing.
(All) #1145
    Grace period splash screen time can now be dismissed by pressing
    a key.
(All) #1178
    A selection set passed with "-s", which had a "-" in the name,
    would be truncated at the "-".
(Windows) #1185
    Some Windows systems were unable to read the Windows product key
    for licensing.
(Quikstart) #1186
    Datemath on 2-digit-year fields which overflowed the 2-digit-year
    range would result in erroneous values, rather than "/OV". (Quikstart
    only.)
(All) #1190
    Fixed cosmetic errors when displaying record numbers beyond
    99,999,999.
(All) #1191
    Selection sets in files larger than 99,999,999 records which
    referenced @RN, did not properly select records.
(All) #1193
    INPUT POPUP had an undocumented limit of 70 characters for the
    input field.  If the field was longer than 70, the remaining
    characters were filled with spaces.  This limit has been removed,
    and the field will now scroll if too wide for the screen.
(All) #1194
    Fields @PM, @PW, @PX, @PY, and @PZ defaulted to the value " ",
    rather than "".
(*nix) #1195
    The USER command could leave defunct processes after CLOSE.
(All) #1196
    @TS is now (10,.0) on files larger than 99,999,999 records.
(All) #1197
    More information will be recorded in the license log file for
    license failures.
(All) #1199
    If you have an F6-defined browse lookup which requires more than
    73 characters to display the data, and then edit the format, the
    end of the data of the selected record would "bleed" into the
    format.
=========================
5.7.00.01 Release Notes
=========================
(*nix) #1001
    filePro didn't properly read free space on some systems with more
    than 4GB of free space.
(*nix) #1127
    When executing SYSTEM() commands in processing, filePro now
    restores the original umask value.
(All) #1130
    If you have a protected lookup to the main file, and end up on
    the same record you are updating (such as via a GETNEXT loop),
    and modify that record, and then move off the current record, the
    lookup (ie: the record you are sitting on) will be written and
    unlocked.  This leaves you in update on an unlocked record, with
    the old data.
    filePro will now prevent you from modifying the current record
    via a lookup while in update mode.  (Just as it prevents you from
    deleting it.)
(All) #1169
    Some edits punctuation that occurred within a literal when that



    literal was within the same punctuation, could cause filePro to
    crash.  For example:
        < "<" >
        ( "hello(there" )
 
(All) #1170
    When restructuring files larger than 4GB, ddefine could hang.
(All) #1171
    If you run a report with sort/select processing, but no automatic
    or output processing, it is possible for *report to crash when it
    gets to the grand totals.
(All) #1173
    When using fuzzy browse mode, if you search on an associated
    field, it is posible that the field name will be rejected upon
    returning to the "enter field" screen.
(All) #1179
    If you have a protected lookup using an alias, and modify the
    lookup, and then execute another lookup using the same alias
    without issuing a WRITE, the previous lookup record will be
    unlocked before being written.  This leaves a small windows of
    opportunity to have another process read and lock the record
    before the first process writes the new data.
(All) #1180
    A browse lookup-dash did not properly handle record locking,
    either leaving the previous record locked, nor not locking the new
    record.
(All) #1181
    On files with more than 99,999,999 records, @RN was not properly
    set to 10 characters, causing erroneous record numbers to be
    reported for record 100,000,000 onwards.
    Note the following issue still remains for now;  If you enter    
    *clerk on a file with less than 100 million records, and have @RN
    on the screen, and then start adding records so that the file   
    then contains more than 100 million records, the value of @RN as
    displayed on the screen will remain at 8 characters until you  
    switch screens.  Other references to @RN will properly adjust to
    10 characters.
(All) #1182
    If you have a file with no automatic or input processing, and use
    "F-Form" to print a form that has output processing, then use "7-
    Change File" to another file with no automatic or input
    processing, attempting to then update/add a record can crash
    *clerk.
(All) #1184
    A selection set which includes 12 AND/OR items in the sentence
    can crash filePro.
=========================
5.7.01.00 Release Notes
=========================
(All)
    Encrypted filePro key/data/blob.
(All)
    "PFREADONLYWARNING=OFF" turns off all read-only warning messages.
(All) #1169
    Some edits punctuation that occurred within a literal, when that
    literal was within that same punctuation, could cause filePro to
    crash.  For example:
    
    <"<">
    ( "hello(there" )
(All) #1170
    When restructuring files larger than 4GB, ddefine could hang.
(All) #1171
    If you run a report with sort/select processing, but no
automatic or output processing, it is possible for *report to
crash when it gets to the grand totals.
=========================
5.7.00.00 Release Notes
=========================



All platforms
All bug fixes from 5.6.11 and prior revisions are included
in this product.  Refer to the readme_5.6.11.txt file.
SCO OSR5
Note that on SCO's OSR5, "AF_INET6" is unknown, as our OSR5
development system does not support IPv6 as far as we can
tell.
All platforms
If you pass an unknown family to SOCKET(), AF_INET
("IPv4") is used.
If you pass an unknown family to BIND2(), AF_UNSPEC
("any") is used.
All platforms
xx = @ODBCEXCEPTION.CLEAR
 
This will clear any text currently returned
by @ODBCEXCEPTION[]
Windows
Windows GI GIclient -pq local printer support
All platforms
When using ENCRYPT() and not passing a nonce (ie: allow
filePro to generate the nonce), it was possible to generate
the same nonce on two calls in a row.
All platforms
The HMS edit in filePro 5.7 now supports times up to
1999999999:59:59, rather than the previous limit of
596523:14:07.
Windows
Under Windows, if a filePro program was run from the task
scheduler, and an error occurred, filePro would wait forever
for the non-existent user to press Enter to continue.
All platforms
If you have a MEMO EDIT command within @WUK processing, and
have the "-d" flag on the command line, the memo editor prompts
were left on-screen upon saving the memo.
All platforms
In some cases, if you get a syntax error on a "large"
processing table in rcabe, the program will crash upon
pressing Enter at the error message. Note, this is rcabe only.
All platforms
If you have an index built on a field with a user edit (ie:
not a system edit), and you add or delete edits prior to the
edit definition, dclerk might not respect the edit in the
"enter index search data" dialog after the initial scan.
Note that this is typically harmless, but it can interfere
with the behavior of right-justified edits.



5.6.11 Release Notes

(All) # 1162
    In rclerk/rreport (only), the functions FIELDNAME(), FIELDEDIT(),
    FIELDLEN(),  and FIELDVAL() would all fail with fatal "reference
    to a field that doesn't exist" error if given a non-existent
    field.  In dclerk/dreport, such a condition was handled by
    returning a null string.?

(All) #1091
    If you have a protected lookup in @WBRK processing, and don't modify
    or WRITE the lookup, the record would remain locked.

(All) #1093
    A selection set comparing a memo field equal to "" doesn't work.

(All) #1107
    DOKEY from a CALLed table would not do anything.

(All) #1113
    If you use a file I/O function in output processing, and assign the
    result to a dummy field not defined in automatic processing, the I/O
    will occur multiple times.

(fileProGI) #1121
    Under some circumstances, GI could change the contents of a field on
    the screen, even if the user never entered that field.

(Linux) #1122
    dmakemenu could crash when pressing DEL/Ctrl-C after using the F5
    shell script editor.

(All) #1123
    dmoedef could crash when loading an output format with a sort field
    higher than any field number in the file.

(Linux) #1124
    F9/search in *cabe wouldn't properly update the display when the user
    presses Backspace in the search field.

(*nix) #1132
    Improved signal handling, to properly handle things such as closing
    a window in FacetTerm while filePro is still running.

(fileProGI) #1133
    Under fileProGI, if you use the MENU command with an array, where some
    elements were never assigned a value, filePro could crash.  (For example,
    DIM the array for 10 elements, and only assign a value to the first 5.)
(Linux) #1135
    ddefine could crash on some Linux systems on some circumstances.

(fileProGI) #1136
    Under fileProGI, if you have PFPT=ON set, and do not have any values
    set for PFTEMP, TEMP, and TMP, filePro can crash when executing a
    command with the "-pq" flag.

(*nix) #1139
    showlock didn't display correct information on some 64-bit *nix
    releases.

(All) #1150
    It was possible to get an erroneous "subscript out of bounds" error
    when referring to an array which was aliased to dummy fields or an
    associated field group.

(All) #1151
    On some platforms, it was possible for opendir() to reurn a list of
    filenames of the correct length, but which contained some blank
    entries instead of the names.

(All) #1152
    If you assign a value to a memo field via processing, and then refer
    to that same memo field before writing the record, the memo field
    can become corrupted, or cause filePro to crash.

(All) #1153
    When building an old-style index, dmxaint can fail with an "invalid
    argument" error should the index exceed 2GB in size, even on
    platforms that support 64-bit I/O.

(All)
    When restructuring a file larger than 2GB in size, ddefine could
    corrupt the data.

(All) #1154
    ddefine will now update the record counter during restructure only
    once a second, rather than every 100 records.

(All) #1155
    When calling ENCRYPT() without a nonce, and then calling GETNONCE()
    to read the value, it is possible for the same nonce to be generated
    more than once.



(All) #1140
    Under Windows, if a filePro program was run from the task scheduler,
    and an error occurred, filePro would wait forever for the non-existent
    user to press Enter to continue.

(All) #1141
    If you have a MEMO EDIT command within @WUK processing, and have
    the "-d" flag on the command line, the memo editor prompts were
    left on-screen upon saving the memo.

(All) #1142
    Quikstart didn't properly support dummy fields declared as (16,memo).
    See also #915.

(All) #1143
    In some cases, if you got a symtax error on a "large" processing
    table in rcabe, the program would crash upon pressing Enter at the
    error message.  (Note: rcabe only.)

(fileProGI) #1147
    When running under GI, filePro on Windows will now include "local
    printer" as a destination when using "-pt".

(All) #1154
    When restructuring a file, ddefine/autoshuf will now update the
    record counter only once a second, rather than every 100 records.

(All) #1159
    Under "just the right combination of conditions", using *cabe's
    lookup wizard would change the lookup type to "Z-Fuzzy" within
    the wizard.

(All) #1161
    If you have an index built on a field with a user edit (ie: not a 
    system edit), and you add or delete edits prior to the edit
    definition, dclerk might not respect the edit in the "enter index
    search data" dialog after the initial scan.
    Note that this is typically harmless, but it can interfere with
    the behavior of right-justified edits.
 

 



5.6.10 Release Notes

(Nix)
    Fixed a bug introduced where @sk did not hold special key when
    exiting a browse.

 
 



5.6.09 Release Notes

(All)
    The SYSTEM() function would give a syntax error on some platforms.

(All) #1063
    blobfix now takes command line parameters:
        blobfix [filename | -] ( -m qualifier )

(Windows) #1074
    fpcopy would give a "cannot create new file" error upon doing a "copy
    file formats only".

(Quickstart only) #1104

    Executing a LOOKUP in a processing table, CALLing another table
    which executes a LOOKUP to the same file, and then CLOSEs that
    lookup, can cause filePro to crash and/or give unusual errors
    upon re-executing the LOOKUP in the original processing table.

(All) #1105
    The configuration editor did not allow an equals sign to appear in
    the value of a setting.

(All) #1106
    Under certain circumstances, CLOSEDIR() could cause filePro to hang
    or crash.

(All) #1108
    A new config variable, PFPRTFIND=logfilename, was added to help
    debug problems in resolving printer name to destination.

(All) #1109
    In request output, if you execute a CALL in sort/select processing,
    and then execute a CLOSE in output processing with no intervening
    CALLs, filePro would crash.

(All) #????
    The SYSTEM() function would give a syntax error on some platforms.

(All) #596
    blobfix did not properly fix qualified blob files.

(fPSQL) #701
    fPSQL queries that selected based on associated fields behaved 
    differently if an index was built on that associated field group.

(All) #865
    Selection sets did not properly compare memo fields no empty.
    For example, if field 6 is a memo field:
        6  ne   <nothing>
    all recods would be selected, even those where field 6 is empty.

(All) #1078
    fpconfig did not allow values which contained an equals sign ('=').

(SCO OSR5) #1031
    fpcopy on SCO OSR5 did not copy files whose name was longer than
    14 characters.

(fPSQL) #1060
    fPSQL on some systems would crash on queries using associated fields.

(All) #1067
    dxmaint did not override PFQUAL of passed -m "" on the command line.

(All) #1094
    A printer with a destination of "LOCAL" was not recognized as
    setting the destination to the local printer.

(fPSQL) #1111
    fPSQL could not use "filename.fieldname" format if the filename
    started with a digit.
    Note that, with this change, invalid numeric literals such as
    "123b4" will now give an "unknown field" error rather than an
    "invalid numeric literal" error.

(All) #1112
    When converting from a non-time field to an HMS field, the conversion
    would not be correct if the input field were longer than 8 characters,
    or the hours value was larger than 99, regardless of the length of
    the destination field.

(SCO OSR5)
    Add a new variable, PFRENEWTIMEOUT=nnn, to control the license renew
    message timeout on SCO OSR5.  The value "nnn" is the number of seconds
    between renewal messages, and can be any number from 2 to 600.  The
    default is 60.
    Note that this variable is unnecessary, and ignored, on other platforms.
    Connectivity issues on OSR5 (cabling, router, TCP/IP stack, network
    congestion) can cause unexpected delays in OSR5 filePro programs (some
    long enough to seem like program hangs). Reducing the value of the
    license renew timeout messages can reduce and even eliminate these



    delays.

(*nix)
    The following environment variables will be set within filePro if the
    license server is not being used:
    PFPID - the process id of the filePro program.
    PFSID - the session id of the filePro program.
    PFLICENSESUSED - the number of licenses that filePro shows to be
        currently in use.
    PFPROCESSCOUNT - the number of license-counted programs that filePro
        shows to be currently running this may be higher than the number
        of licenses used since multiple sessions with the same session
        id will only use one license count.

(Windows) #1114
        fP-SQL would crash when opening an ODBC alien file.

(All) #1115
        fPcopy would crash on a very long filename.

(Windows) #1116
    If the code:
         handle = new odbc_connection(dsn) failed due to a license 
         failure, "handle" would remain unchanged. The typical symptom 
         would be seen as "odbc_conection returned a blank value".

 
 



5.6.08 Release Notes
 
(Windows) #1016     ddefine did not allow filenames with "." in Windows     
(Linux) #1018     showlock did not display all locked records Linux     
 (All) #1026     Only one index was deleted when selecting multiple indexes in ddir/dprodir     
(All) #1072 - enhancement     GETENV("PFREADONLY") will now return "ON" if the "-ro" flag is used, even     if not set in the environment.     
(Quickstart) #1075     If you have a label "foo" and another "foo-bar" (ie: the same prefix, with     a hyphen and a suffix added), references to "foo-bar" would refer to "foo"     if "foo" occurs earler in
the processing. (All) #1068     If you had something following the "b=(expression)" part of a browse     lookup which "looks" like part of a valid expression, filePro would     take that as part of the "b=
(expression)" part of the browse lookup.          For example:              lookup foo k=xx i=a -nx b=(brwhead&brwdata)          *2"          (If, for example, you were to edit the lookup line to remove a literal
    browse lookup, and missed the trailing "*2".)
 (All) #1021     In dcabe, if you load a processing table with a DECLARE GLOBAL and syntax     check it, and then load and syntax check another processing table which has     the same DECLARE
GLOBAL name, but a different definition, you would get an     "already defined" warning.     
(All) #1040     EXIT in @ONCE processing didn't exit *report.
(Linux) #974     Website didn't allow license to be downloaded when using Domain Name     as the license check value for Linux systems.
 (All) #975    The following flags have been added to swapcpu:     -Q  = Quiet mode.  Suppresses "file already in destination order".     -CN = Convert to native byte order.     -CF = Convert to foreign
byte order.
 (All) #977     swapcpu didn't swap the "blob" file.
(All) #982     PFMBTO only caused the first message box to time out.  All subsequent     message boxes still required Enter.
 (Windows) #1016     On Windows, ddefine did not allow you to create or access files with     a dot in the filename.
(Linux) #1071     On some systems, a fresh filePro install would fail with "fatal error     check current user count: invalid argument".
(All) #1077     filePro 5.6 is now available on FreeBSD.
 (All) #1088     Calling READLINE() with an uncast dummy field, which has never been     assigned a value, and not including a maximum length, could crash     filePro.
(All) #1099     There was a memory leak in nested CALLs which has been fixed.
(All) #1100     Under some circumstances, filePro would not use the available free     space in the blob file for new blobs/memos, causing the blob file to     grow larger than needed.     Note that the
updated blobfix utility can be used to "fix" this, and     shrink the blob file to the "correct" size.
(All) #1101     If you have a lookup to a file that has an automatic index built on     an associated field group, but the lookup is not on that index, it     was possible for filePro to crash.
(All) #1102     Executing a LOOKUP in a processing table, CALLing another table     which executes a LOOKUP to the same file, and then CLOSEs that     lookup, can cause filePro to crash and/or give
unusual errors     upon re-executing the LOOKUP in the original processing table.
 (Linux) #1103     The Linux distribution included an old "lib/rename" utility, which     wouldn't run on some current Linux distributions.
 (*nix) #1014     User-count debug logging can now be controlled via the new config     variable "PFCHKUSER=logfilename".
 (All)     xfer now handles the blob file.
 (*nix)     filePro could crash in some debugging modes of the system environment     variable MALLOC_CHECKS.
 (*nix) #1070/#1096/#1097/#1098     Some places in filePro didn't properly require double-break.
(*nix)     Debug versions hard-coded the user-count logging filename.  This is     now controlled with PFCHKUSER=logfilename.
(All)     OPENDIR() could crash if given a directory with thousands of files,     all in alphabetical order.
(All)     If a user menu's title and version number filled the space allotted,     filePro could crash.
 (*nix)     On some *nix systems, DEL (when not used as the Break key) would not     be treated as a backspace.

 
 



5.6.07 Release Notes
 
(All) #964
 
ddir/dprodir would display "datax3" rather than "data"
 
(All) #967
 
In the memo editor, using the up and down arrows, if the cursor
is in a column on the source line beyond the last column of the
destination row, the cursor may be placed in the wrong location.
 
(*nix only) #968
 
When running without the license manager under Unix/Linux, *report
and *cabe would not release the session upon exit.
 
(All) #969
 
TAB characters in help files were not properly handled.
 
(Sun) #1011
 
Files > 2gb cannot be accessed on SUN OS
 
(All) #975
 
Added the following flags to swapcpu:
 
-Q - Quiet mode. Supresses "file already in destination order"
messages.
 
-CN - Convert to native byte order.
 
-CF - Convert to foreign byte order.
 
(All) #976 swapcpu index already swapped crash segv
 
Running swapcpu on a file with an index already in destation byte
order could crash swapcpu.
 
(All) #992
 
The following scenario corrupts the index, possibly giving a DKNF
error in the future:
 
A new key is being inserted into the index. (Or, an existing key
is being modified, and the new key value is being inserted.) The
leaf node into which the ken would be inserted is full, as are
both of its sibling nodes. (Meaning a new leaf node gets created
by splitting the current node.) The parent node needs to be
updated to insert the new leaf node. The problem comes when the
parent node, and the parent's right-side sibling are full. (And
possibly the left-side sibling as well, in which case we need to
continue up to the grandparent node, where the same situation
occurs.)
 
(All) #1042
 
Blobfix doesn't fix the internal record number reference within
the blob header. This does no affect anything at runtime, but
does make examining the structure for debugging purposes more
difficult.
 
 
(All) #1047
 
If you have more than ome memo fieidl in a record, update one of
them, and then execute a "memo ... delete" on the other one, and
the other memo field never had any data in it, the blob file can
be corrupted.
 
(All) #1059
 
In *report, if you CALL a process from within @WBRK or @WGT, and
that processing table DECLAREs new variables, referencing those



variables can cause *report to crash/freeze.
 
(All) #1064
 
OPENDIR()'s return value was truncated to the last 3 digits, so
if more than 999 files are returned, the return value was wrong.
Note, however, that all files were returned.
 
(All) #966
 
If you have a lookup file with memo fields, and to a COPY to that
lookup, the memo fields won't be copied correctly.
 
(All) #970
 
If you have an array aliased to fields which includes a memo
field, executing "CLEAR arrayname" will crash filePro later.
 
(All) #1003
 
If you defined memo dummy fields or variables in a file which has
to "real" memo or blob fields, filePro would crash upon access to
those fields.
 
(All) #1012
 
If you have a filePro map with empty field names in the middle,
any reference-by-name of the first field after the blank field
name(s) will not work correctly.
 
(All) #1017
 
If you concatenate fields such that the combined length is greater
than 32,767 you would get an out-of-memory error.
 
(All) #1027
 
In *report, if the first assignment to a dummy field that is not
declared in automatic is in a CALLed table, then *report may crash
at a reference to a dummy field dome within @DONE processing.
 
(All) #1028
 
Under certain circumstances, using "@" in an edit cn crash filePro.
 
(All) #886
 
Attempting to use sockets without a socket license could crash
filePro rather than give an error.
 
(All) #963
 
In the meo editor, if the cursor is on the last line of a word-
wrapped line of text, and is on the first line within the memo
editor window, and the rest of the window is fil;led with
additional text, then placing the cursor at the end of the test
on that line and backspacing such that the now-shorter text
would re-wordwrap to take less lines, taking the cursor to the
text which has been re-wordwrapped to the previous line (ie: the
one above the top of the window), can cause filePro to crash.
 
(All) #1002
 
If the width of a listbox was at least 78, and dropshadows are
turned off, the contents of the listbox are shifted right 2 by
columns.
 
(All) #1048
 
DECLARE EXTERN in sort/select processing for a vairable which is
DECLAREd GLOBAL within automatic processing could cause a
"variable already declared" error after sort/select processing
was finished.



5.6.06 Release Notes
 
(Nix) #968
 
When running without the license manager, *report and *cabe did
not release their session license upon exit.
 
(Nix) #965
 
The SCO version of filePro could fail to validate a MAC-address-based
license if enough filePro sessions were open. (Even though there
were less sessions than the license would allow.)
 
(All) #966
 
If you have a lookup file with memo fields, and do a COPY to that
lookup, the memos won't be copied correctly.
 
(All) #963
 
If the cursor is on the last line of a wordwrapped line of text,
and is on the first line within the memo editor window, and the
rest of the window is filled with additional text, then placing
the cursor at the end of the text on that line and backspacing
such that the now-shorter text would re-wordwrap to take less
lines, taking the cursor to the text which has been re-wrapped to
the previous line (ie: the one above the top of the window), can
cause filePro to crash.
 
(All) #967
 
In the memo editor, using the up and down arrows, if the cursor
is in a column on the source line beyond the last column of the
destination row, the cursor may be placed in the wrong location.



5.6.05 Release Notes
 
 
(All) #949
 
The 2-digit-year system date fields resolved without an EOF
marker in dscreen/dmoedef.
 
(All) #957
 
LISTBOX() would expand embedded TAB characters within items.
 
(All) #958
 
If you are on the last line of text in a memo, and that line wraps,
and the end of that line (ie: the end of the memo itself) is visible
as the last line in the memo window, and you start deleting text on
that line such that the wordwrap now takes up less lines (ie: the
word on the last line gets "pulled" up to the previous line), then
filePro can crash.
 
(All) #959
 
autoshuf didn't run with a runtime-only license.
 
(All) #960
 
The default value for PFLISTSLASH has been changed from ON to OFF.
 
(*nix) #961
 
Under certain circumstances, the first time you accessed a
licensed feature, filePro would freeze while doing the license
check. This only happened if the license manager was not running.



5.6.04 Release Notes
 
(Linux) #940
 
Using LOCKED() in rclerk/rreport on Linux could crash filePro.
 
(All) #941
 

fPSQL could crash if the query required 10K of output per record. (Default increased to 100K, and it now properly reports error if exceeded.)
 
(All)
 
Corrected some licensing issues with session and feature counts not being released in some circumstances.
 
(ODBC) #943
 
Define files fails on an ODBC data source when the table name has embedded spaces.
 
(All) #947
 

If you have a dummy field which has not been given a length/type in processing, and place it on a screen, and then have a popup screen over that field, and when the popup isn't active (ie: after a
POPUP UPDATE, but before a CLEARP, do a SHOW "@...", the contents of that dummy field will bleed through to the popup.

 
(All) #951
 
If you have a fuzzy browse lookup with "show=pkeep", filePro would crash upon re-executing the lookup.
 
(All) #952
 
New system array -- @FUZZY[] -- contains information about the most recent fuzzy browse lookup.
 
Currently, the only info available is the record number, via @FUZZY.RECNO[subscript]
 
(All) #954
 

If you have any pending PUSHKEYed keystrokes, the filePro processing debugger didn't update the screen as you stepped through processing.
 
(All) #955
 
-SX flag to *report did not load the selection set.
 
(All) #956 Memo editor spellcheck crashes
 

Pressing F8/S in the memo editor to run spellcheck would crash filePro if you hadn't previously done a SPELLCHECK() function within processing.
 
(*nix)
 

On Unix/Linux, when not using the license server, if the license file was missing or was determined to be invalid for any reason, the filepro program would abort with a segmentation violation. This
has been corrected and the filePro program now displays a licensing error message and exits cleanly.

 
(*nix)
 

On Unix/Linux, when not using the license server, filePro could incorrectly create many semaphores and shared memory segments.



5.6.03 Release Notes
 
(*nix)
 
fplmserver wouldn't recover disconnected sockets in a timely manner.
 
(SCO OSR5)
 
fplmserver would freeze when running a filePro program from within a SYSTEM command on SCO OpenServer 5.
 
(All) #939
 

PFNUMIXBUILD was incorrectly documented as allowing up to 128000. The real maximum is 32767, which is now enforced by filePro. (Setting it higher than the maximum value will result in using
the maximum.)

 
(Linux) #940
 
Using LOCKED() in rclerk/rreport on Linux could crash filePro.
 
(All) #941
 

fPSQL could crash if the query required 10K of output per record. (Default increased to 100K, and it now properly reports error if exceeded.)
 
(All)
 
Corrected some licensing issues with session and feature counts not being released in some circumstances.



5.6.02 Release Notes
(All)

PFNUMIXBUILD was incorrectly documented as allowing up to 128000. The real maximum is 32767, which is now enforced by filePro.  (Setting it higher than 32767 in previous versions could crash
filePro.)

(*nix)
 
Some license server sockets in fplmserver were not being closed and released in a timely fashion.
 
(OSR5)
 
Nested sessions of clerk/report could cause an infinite loop in the license server on OpenServer 5.
 
(*nix)
 
Problems with the DEL/Ctrl-C interrupt on multi-threaded platforms could cause crashes.
 
(Linux)
 

filePro had problems with the shared libtermcap on 64-bit Linux platforms, so we now statically link to our own termcap library.
 
(All)

 
@LICENSE[] will now show a feature as licensed, even if the session limit has been reached for that feature.

 
(All) #924
 

PFNODFMSG=OFF turns off ddefine's "PFNODF=ON" notice. (Default: ON)
 
(*nix) #925

 
Fixed a problem on *nix boxes with filePro not properly counting sessions if the license manager is not running, and one filePro program calls another.

 
(5.6) #928
 

RECV() and RECVLINE() now accept DECLAREd variables, in addition to real and dummy fields, as the destination.
 
(Windows)
 

Index Maintenance (pmaint) now has an F6 option to display a list of system-defined printers while in the "destination" field of the printer config screen.
 
(All) #927
 

Fixed a problem with node_addr and DKNF errors on indexes which are larger than 65536 blocks in size.
 
(5.6) #937
 

Added PFENTSELDISABLE=list to disable (and remove prompts for) a set of default behavior of *clerk at the "Enter Selection" prompt.
A question mark ('?') represents HELP. Note that the HELP key cannot be disabled with this variable, although you can keep the new prompt from appearing.
The default value is "?", which causes the same prompts as before to appear.
Any "invalid" keys listed are ignored.
Note that any @KEY events are not disabled. Only filePro's default behavior for the keystrokes is affected. Also note that, if the HELP key label is longer than 3 characters, enabling all of the
prompts will not fit in 80 columns.

 
(All) #938
 

MEMO handle EXPORT filename APPEND
BLOB handle EXPORT filename APPEND
The above would crash at runtime.

 
(All) #931
 

FIELDNAME/LEN/EDIT/VAL didn't take an expression for the field number.
 
(ODBC) #932
 

dreport was unable to post new records to some high-level ODBC data sources.
 
(*nix) #933
 

If you were to have a variable/array/lookup/etc called "USER", then the parser would allow some invalid syntax, where part of an expression was missing, such as "aa = bb +".
 
(Linux) #934
 

There are two distinct, and incompatible, pty methods on different Linux boxes. fpdaemon now includes both methods in a single binary, and determines at runtime which method to use.
 
(All) #935
 



dxmaint would show "not available" on indexes that were in use, but it would still let you rebuild them.
 
(All) #936
 

MEMO...SHOW now accepts the NOWRAP flag, just as MEMO...EDIT does.
 
(Linux) #926
 

fpcopy would fail with "cannot create new data file" on some Linux systems.
 
(*nix) #929
 

DOKEY would not work if you used a lower-case letter.



5.6.01 Release Notes
 
(*nix)
 

Problems with the DEL/Ctrl-C interrupt on multi-threaded platforms could cause crashes.
 
(Linux)
 

filePro had problems with the shared libtermcap on 64-bit Linux platforms, so we now statically link to our own termcap library.
 
(All)
 

@LICENSE[] will now show a feature as licensed, even if the session limit has been reached for that feature.



 

5.6.00 Release Notes

Data encryption supports various encryption standards.

 Blowfish, Twofish, AES, Rijandel, DES, Safer+, and Rc2
 result = ENCRYPT/DECRYPT(data,method,key [ ,nonce ] )

 

64-bit file I/O breaks the 2 GB file size limit

 

Nested Calls

 Calls within processing can now be nested, limited only by system resources
 

Windows UNC Support

 Store your data at \\machine\sharename
 

SPELLCHECK command

 Check your text memos or fields for spelling accuracy Custom dictionaries by user login
 

26 Automatic Indexes

 Now you can have 26 automatic indexes A-Z
 

Socket Access commands

  ( Requires additional purchase & annual license fee )
 Open and monitor TCP/IP ports
 Pass information back and forth through the ports

 

License Protection

 System calls are excluded from the license user count.
  "Free" evaluation software available with expiration dates.
 

Increased the number of extended key/data segments from 3 to 6 

 
Functions Added
RESET @PN
 
GETPID() returns the process ID of the current process.
 
GETPPID() returns the process ID of the parent process under Unix/Linux. On Windows, this information is not available, and an empty string is returned.
 
GET16/GET32/PUT16/PUT32
value = GET16( buffer [ ,offset [ ,byteorder ]] )
value = GET32( buffer [ ,offset [ ,byteorder ]] )
binval = PUT16( value [ ,byteorder ] )
binval = PUT32( value [ ,byteorder ] )
The GETnn functions retrieve a binary value from a buffer, and the PUTnn functions convert the value into binary. The offset parameter specifies the zero-relative offset within the buffer where the
value resides. The byteorder parameter specifies the byte order of the binary value, with "L" meaning little-endian, "B" meaning big-endian, and the default being the native order of the current system.
For example, to get the 32-bit little-endian value at offset 8 within the MyBuffer variable, you would use:
GET32(MyBuffer,"8","L")
 
To convert the RouterHandle variable into a 16-bit little-endian value, you would use:
PUT16(RouterHandle,"L")
Note that 8-bit values can already be read/written using the existing ASC and CHR functions.
 
FIELDNUM()
 
FIELDNUM(lookupname,fieldname) returns the field number of the given field name. If no such field exists, a null string is returned.
 
WORDWRAP()/@WORDWRAP[]
Used to manually do word-wrapping of fields.
xx = WORDWRAP(field,width)
xx = @WORDWRAP[linenum]
 
The WORDWRAP() function generates wrap information for the given field, as wrapped to the given width. It returns the number of lines that result. (The field need not be a memo field.)
The @WORDWRAP[] array returns information about the most recent WORDWRAP() call. It is an array of zero-relative values containing the offsets for the start of each line. Note that some values
will be negative, meaning that the line break was caused by a hard return in the buffer just before it. (Also note that the hard return is still in the buffer and would need to be excluded from any
printout.)
 
@LICENSE[]



Contains license information.
 
 Subscripts:
  1 = A comma-separated list of licensed features.
  2 = Name
  3 = Serial number
  4 = Platform
  5 = Product name
  6 = Version
  7 = User count
DOKEY
The new DOKEY function allows @key to trap a keystroke and then tell filePro to act on that keystroke as if where were no @key trap. Its syntax is:
 DOKEY expr
where "expr" is the keystroke to perform. Note that only the first character is used, and it need not necessarily be the same as the current @key event.
Note that DOKEY does an implicit END.
 
For example:
@keyX
Then: mesgbox "Are you sure you want to exit?","","YN"
If: @bk = "Y"
Then: dokey "X"
Then: mesgbox "Exit cancelled"
Then: end
 
@keyF
If: UserCanPrint ne "Y"
Then: errorbox "You are not allowed to print forms!" ; end
Then: dokey "F"
Also note that DOKEY does not interfere with PUSHKEY, and they can be used in conjunction. For example, to trap "B" and then load the "mybrowse" browse format:
 
@keyB
Then: pushkey "flmybrowse[ENTR][ENTR]" ; dokey "B"
 
@SBRKn event
"Start of break" event.
 
This event is triggered on the first record of a subtotal break. Unlike @WBRKn, this processing is run prior to the normal processing, and if multiple @SBRKns are triggered at the same time, they are
executed from the outermost level inward. (ie: the opposite order of @WBRKn processing.)
 
SYSTEM() function
xx = SYSTEM(command [,noredrawflag] )
Equivalent to SYSTEM and SYSTEM NOREDRAW, except that the exit value is returned.
If "noredrawflag" is zero or not supplied, the screen is redrawn after executing the command. If "noredrawflag" is "1", the screen is not redrawn (the equivalent of a SYSTEM NOREDRAW command).
Other values are not currently defined.
 
Note: See 5.0.15 Release Notes for bug fixes since 5.0.14



5.0.15 Release Notes
 
(All) #966
 
If you have a lookup file with memo fields, and do a COPY to that lookup, the memos won't be copied correctly.
 
(All) #963
 
If the cursor is on the last line of a wordwrapped line of text, and is on the first line within the memo editor window, and the rest of the window is filled with additional text, then placing the cursor at
the end of the text on that line and backspacing such that the now-shorter text would re-wordwrap to take less lines, taking the cursor to the text which has been re-wrapped to the previous line (ie:
the one above the top of the window), can cause filePro to crash.
 
(All) #967
 
In the memo editor, using the up and down arrows, if the cursor is in a column on the source line beyond the last column of the destination row, the cursor may be placed in the wrong location.
 
(All) #949
 
The 2-digit-year system date fields resolved without an EOFmarker in dscreen/dmoedef.
 
(All) #957
 
LISTBOX() would expand embedded TAB characters within items.
 
(All) #958
 
If you are on the last line of text in a memo, and that line wraps, and the end of that line (ie: the end of the memo itself) is visible as the last line in the memo window, and you start deleting text on that
line such that the wordwrap now takes up less lines (ie: the word on the last line gets "pulled" up to the previous line), then filePro can crash.
 
(All) #960
 
The default value for PFLISTSLASH has been changed from ON to OFF.
 
(Linux) #940
 
Using LOCKED() in rclerk/rreport on Linux could crash filePro.
 
(All) #941
 
fPSQL could crash if the query required 10K of output per record. (Default increased to 100K, and it now properly reports error if exceeded.)
 
(ODBC) #943
 
Define files fails on an ODBC data source when the table name has embedded spaces.
 
(All) #947
 
If you have a dummy field which has not been given a length/type in processing, and place it on a screen, and then have a popup screen over that field, and when the popup isn't active (ie: after a
POPUP UPDATE, but before a CLEARP, do a SHOW "@...", the contents of that dummy field will bleed through to the popup.
 
(All) #951
 
If you have a fuzzy browse lookup with "show=pkeep", filePro would crash upon re-executing the lookup.
 
(All) #954
 
If you have any pending PUSHKEYed keystrokes, the filePro processing debugger didn't update the screen as you stepped through processing.
 
(All) #955
 
-SX flag to *report did not load the selection set.
 
(All) #939
 
PFNUMIXBUILD was incorrectly documented as allowing up to 128000. The real maximum is 32767, which is now enforced by filePro. (Setting it higher than the maximum value will result in using the
maximum.)
 
(Linux)
 
filePro had problems with the shared libtermcap on 64-bit Linux platforms, so we now statically link to our own termcap library.
 
(All) #924
 
PFNODFMSG=OFF turns off ddefine's "PFNODF=ON" notice. (Default: ON)
 
(Windows)
 
pmaint now has an F6 option to display a list of system-defined printers while in the "destination" field of the printer config screen.
 
(All) #927



 
Fixed a problem with node_addr and DKNF errors on indexes which are larger than 65536 blocks in size.
 
(All) #938
 
MEMO handle EXPORT filename APPEND
BLOB handle EXPORT filename APPEND
 
Would crash at runtime.
 
(All) #931
 
FIELDNAME/LEN/EDIT/VAL didn't take an expression for the field number.
 
(ODBC) #932
 
dreport was unable to post new records to some high-level ODBC data sources.
 
(*nix) #933
 
If you were to have a variable/array/lookup/etc called "USER", then the parser would allow some invalid syntax, where part of an expression was missing, such as "aa = bb +".
 
(Linux) #934
 
There are two distinct, and incompatible, pty methods on different Linux boxes. fpdaemon now includes both methods in a single binary, and determines at runtime which method to use.
 
(All) #935
 
dxmaint would show "not available" on indexes that were in use, but it would still let you rebuild them.
 
(All) #936
 
MEMO...SHOW now accepts the NOWRAP flag, just as MEMO...EDIT does.
 
(Linux) #926
 
fpcopy would fail with "cannot create new data file" on some Linux systems.
 
(All) #779
 
Executing a multi-line DIM would cause line 1 of the processing table to be executed for each of the continuation lines.
 
(All) #783
 
A non-dash lookup to the main file may clear non-",g" DECLAREd variables. (See also #785.)
 
(All) #785
 
If you have DECLAREd GLOBAL variables in the automatic and/or the input/output table, and then CALL another table which DECLAREs addtional GLOBAL variables, such that the total number of
such variables crosses a multiple-of-32 boundary, and then from within the main input/output table execute a non-dash lookup to the main file, filePro may crash. (See also #783.)
 
(All)
 
Add PFCLOSEPENDWARNING=OFF to disable the warning if you attempt to close an HTML tag when it was not open.
 
(All) #801
 
Swapped the memo editor extended functions T and I from:
T - Toggle insert
I - Insert time
to
I - Toggle insert
T - Insert time
 
Use PFMEMOEDITOLDKEYS=ON to restore the old keys.
 
(All) #803
 
Increase the compiled tok code limit from 128K to 2MB.
 
(All) #808
 
When passing both "-XIn" and "-D" flags to *clerk, the "Press DEL" prompt from the index box wasn't cleared.
 
(fPSQL) #817
 
"SET QUALIFIER" was ignored in the network version of fPSQL.
 



(Solaris/AIX) #822
 
"GOSUB (expr) OF ..." could crash the prc compiler on Solaris and AIX platforms with a SEGV or bus error.
 
(Solaris/AIX) #823
 
A DKNF error could cause a SEGV or bus error on Solaris and AIX platforms.
 
(*nix) #827
 
The MSB of the color attribute bit originally meant "blink" on MS-DOS systems. Windows changed the meaning to "high-intensity background". The *nix version of filePro still used this for "blink".
Moving color screens from Windows to *nix would cause a different appearance between Windows and *nix if this bit was used anywhere.
The *nix version of filePro now ignores this bit by default, as ANSI does not define a "high-intensity background" escape sequence.
 
PFMSBBLINK=ON will restore the old behavior of MSB meaning "blink".
 
(Quikstart) #784
 
If you have an array aliased to dummy fields and use "CLEAR arrayname", and run in read-only mode, filePro would report an "attempt to modify read-only file" warning, even though no real fields
were modified.
 
(All) #707
 
Some old output formats would cause dmoedef to crash.
 
(fileProGI) #720
 
ddir/dprodir did not prompt to confirm deletions under fileProGI.
 
(All) #763
 
Using a DECLARE LOCAL variable as an array subscript could give a false "subscript out of range" error in *report.
 
(fPSQL) #769
 
When running a query from the command line, and sending the output to a file (via SET OUTPUT), if no records are selected, the "no output generated" message box is no longer displayed.
 
(All) #777
 
A stray graphics character was printed at the very end of memos.
 
(Cosmetic) #780
 
The spacing of prompts in dscreen's F8/options screen was not consistent.
 
(All) #781
 
dxmaint did not allow indexes to be built on the 4-digit-year system date fields.
 
(All) #786
 
FORM now strips trailing blanks from the format name, eliminating the need to use FORM name{""
 
(All) #790
 
Pressing F8/Options in dscreen would cause a screen's password to be removed.
 
(All) #791
 
When placing a memo on a subtotal/grand total line, the memo's height would be shortened.
 
(ODBC) #794
 
Due to a bug in Microsoft's runtime libraries, pmaint would crash if the .prt file was in Unix format (LF line endings) rather than Windows format (CRLF line endings).
 
(All) #809
 
The filePro debugger would read PUSHKEYed keystrokes.
 
(All) #813
 
A lookup back to the main file on an index built on a key length of a multiple of 32 bytes could crash filePro. ("Debug error DAMAGE" on Windows, and SEGV on *nix.)
 
(All) #841
 
A "WRITE lookupname" where "lookupname" has been closed can cause filePro to crash.
 
(fileProGI) #829
 



After executing the configuration editor in ddir, the display was corrupted.
 
(All) #833
 
A SHOWCTR or SHOWTOCOL executed after a SHOW (w/o row and column) would be displayed centered on line 23 after doing a browse lookup.
 
(All) #854
 
LISTBOX and FIELD* functions would pass syntax check (but fail at runtime) if the close parenthesis was missing.
 
(All) #856
 
Marking text in the memo editor would sometimes hightlight the wrong part of the memo.
 
(All) #857
 
An automatic index built on multiple associated fields could cause the wrong record to be read on lookups or index-by searches.
 
(All) #859
 
F7 in the memo editor when on the last word-wrapped line of a line of text would place the cursor on the last character in the text, rather than on the end-of-line marker.
 
(All) #867
 
Index scan (PFIXS=ON, -j) would not correctly handle indexes with descending sorts on scans other than "EQ". (It would only find matching records.)
 
(All) #874
 
Hardcopies from pmaint would print 1 more line per page than defined for the printer.
 
(All) #879
 
If you do multiple cross-reference hardcopies in *cabe in a single session, without printing the prc itself, the page number is not reset between printouts.
 
(All) #880
 
The cross-reference listing in *cabe would leave off the field numbers in lookup files if the field number was greater than the number of fields in the main file. (For example, "lookupfile[20]" would print
wth a blank number if there were less than 20 fields in the main file.)
 
(All) #704
 
fPCopy couldn't copy ODBC files.
 
(All) #865
 
A selection set with memo_field gt "" a a condition would select all records, rather than just those with the memo not blank.
 
(All) #866
 
If you left the menu item "title" entry blank, the item was not drawn, though you could still highlight it.
 
(All) #871
 
If you chose to xfer to a file by selecting the menu choice within xfer, rather than the "-lf" flag, it was possible to crash xfer if the record size was very large.
 
(All) #881
 
If you brought up the memo editor in READONLY mode, the prompts still included those options which would not be applicable.
 
(All) #882
 
IMPORT/EXPORT files were closed before @DONE was executed.
 
(All) #884
 
Browse lookups with "show=pkeep" would not retain the cursor position if the key length were zero.
 
(All ODBC) #793
 
Under MS-SQL ODBC server, in some conditions, *report and dxmaint would fail with an "invalid descriptor index" error.
 
(All) #847
 
Running *report with the "-ro" flag could cause a "file table full" error on some platforms.
 
(All) #885
 
Calling DLEN() with a string longer than 256 characters and of "just the right length", or SHOWTOCOL with "just the right length" could crash filePro. ("Just the right length" being dependant on the
particular platform.)



 
(ODBC) #887
 
There is an undoumented limit to Microsoft's MFC ODBC library which restricts you to 256 columns in any given view.
 
(*nix fPSQL) #889
 
fPSQL's help engine didn't handle Windows-formatted text files on *nix systems.
 
(All) #892
 
If you modify a real field in automatic processing in *report, and an automatic index is built on that field, the index may not be properly updated.
 
(All) #896
 
DIM of an array name which started with a number did not give a syntax error.
 
(ODBC) #897
 
Given the right combination of data source, ID field type, and PFODBCCOMMITTYPE setting could cause dxmaint and *report to improperly sort the file.
 
(Windows) #904
 
Under Windows, dxmaint used to show a date of "00/00/00" for demand indexes.
 
(All) #909
 
If you have a browse lookup with "-m" on a multi-key index, and pass a blank key, no records will be matched unless the entire key in the lookup file is all blank, rather than just the key specified in the
lookup.
 
Changes to filePro behavior:
 
A null key passed to a browse lookup now means "find the lowest key", rather than "find an all blank key". If you specify "mlen=" on a browse lookup, and do not nave PFBRWM=ON to make trailing
blanks significant, filePro will not make the key shorter than the specified mlen length. (For example, a key of 8 spaces with "mlen=4" will result in a key of 4 spaces.)
 
(All) #718
 
With PFIXS=ON, filePro scans could fail with an index built in descending order.
 
(ODBC) #799
 
ddefine would allow you to build default (empty) indexes on ODBC data sources that had data in them.
 
(All) #802
 
If you executed a CHAIN command from within an event which was triggered while updating a screen from a SCREEN command within another event, then when you save the original SCREEN, filePro
would attempt to continue from the original SCREEN command, which is no longer there due to the CHAIN.
 
For example:
 
@UPDATE issues a SCREEN command. While updating the screen, an @WLF event is triggered. Within the @WLF, a CHAIN is executed. You continue updating the original screen, and press SAVE.
At this point, filePro attempted to continue from the SCREEN statement above.
 
(Windows) #818
 
The Windows version of filePro used to permit PFDIR to include a drive letter, which should not have been permitted. filePro no longer allows this. Should you absolutely need to have a drive letter in
PFDIR, then you can set "PFDSK=;", and "trick" filePro into "working" again.
 
(*nix) #890
 
setperms and fp.list updated to not touch files placed in the filepro/filename directory which are not part of filePro.
 
(All) #898
 
The memo editor didn't have a way to cancel "mark" mode without actually doing a cut or copy. You can now cancel "mark" mode with "X".
 
(All) #899
 
Pressing up-arrow from a field on the first row on a screen without a cursor path would not move the cursor to another field.
 
(Windows) #903
 
If the last character on a screen was green-on-blue (attribute 0x1A), the screen format would get the last byte truncated, making the file invalid.
 
(All) #905
 
ddir/dprodir would give an error if you tried to delete the data from a non-filePro file that pointed to a non-existent file.
 
(Windows fPSQL) #906
 



If an error occurred and fPSQL displayed a filename in an errorbox, and that filename included backslashes (ie: "\filepro\filename" as opposed to "/filepro/filename"), the errorbox would be displayed
improperly.
 
(All) #907
 
The index selection box in dxmaint would not respond to a keypress if that keypress corresponded to the currently-highlighted index.
 
(All) #911
 
dclerk would crash if you attempted to display an old-style screen which had been corrupted.
 
(All) #914
 
If you have the same variable DECLAREd more than one in the prc file, then F6/D to display dummy fields and variable would show none.
 
(All) #917
 
If you have an uncast dummy field which has never had a value assigned to it, filePro could crash if you try to SHOW that field.
 
(All) #921
 
In dscreen and dmoedef, importing a text file that didn't end in a newline would not import the last line of the file.
 
(All) #922
 
Browsing on an inde built on an associated field would show the first instance regardless of the correct instance, for the top record on the screen after pressing "R" to reset the browse to the
beginning.
 
(All) #923
 
A browse lookup on an index built on an associated field would show the first instance regardless of the correct instance, for the first record shown in the browse window.
 
 
===================================
Spooling for Native Windows filePro
===================================
 
Windows apparently doesn't spool print jobs sent by native windows console applications to local printer ports, the way that it does for MS-DOS programs that do the same thing. (That is, open "lpt1"
as a file and write to it.)
 
We have added the necessary code to the native windows version of filePro to use the Windows printer routines (ie: OpenPrinter, StartDocPrinter, etc.) which do respect the Windows spooler.
However, the spooler is also limited to those printers defined in the printer control panel. Therefore, we have made it a requirement that, in order to use the Windows spooler, you must prefix the
filePro destination with "win:", as in "win:lpt1:". 
 
The rest of the destination must be the exact port name or printer name as you have defined it to Windows. So, if you have a printer attached to LPT1 that is named "HP DeskJet 870Cse", you would
use either:
 
 win:lpt1:
or win:HP DeskJet 870Cse
 
If you have a network printer "\\server\printer" that is captured to LPT2, called "Bob's printer", and the Windows destination is \\server\printer then you would use either:
 
 win:\\server\printer
or win:Bob's printer
 
You could not use "win:lpt2:" as "lpt2" is not the destination that Windows knows the printer by. (Though you could use "lpt2" without the "win:" and go directly to that port without the spooler.)
 
Remember: You can only use the exact port name or printer name that Windows uses. Anything else will result in a "the parameter is incorrect" error when filePro tries to open the printer.



5.0.14 Release Notes
(ODBC) #726
 
PFODBCCOMMITTYPE=n
 
Selects the open-commit-type to use for high-level ODBC data sources,
where:
 0 = "SELECT * FROM tablename" (default)
  Very slow on some data sources with very large files,
  but uses nothing non-standard.
 1 = "SELECT * FROM tablename WHERE id_field = nnn"
  (Where "id_field" is the name of the ID field, and "nnn"
  is a valid ID.)
  Usually faster, but may be slower on some systems, as
  filePro must first determine a valid ID to use.
 2 = "SELECT TOP 1 FROM tablename"
  Fastest version, but "TOP 1" is non-standard and not
  supported everywhere. Will cause ODBC failure on those
  DSNs that don't support it.
 
(fPSQL) #1
 
fPSQL now respects PFUMASK for output files it generates.
 
(All) #237
 
If BREAK OFF is executed in a CALL/CHAIN process, it now remains off
upon returning. Also, it is restored to ON if you go to a new record.
 
(*nix) #285
 
fPCopy didn't copy formats with names longer than 14 characters.
 
(Network) #409
 
If PFQUAL is set to a non-existent qualifier, the network version of
filePro gave an incorrect error message.
 
(All) #550
 
The page number was not reset before F8/hardcopy in *cabe.
 
(All) #634
 
DECLAREd variables over 34 characters caused errors in *report.
 
(fileProGI) #663
 
If you define buttons while displaying a record, go into browse, and
come back, the buttons are gone.
 
(All) #666
 
WRITE was not blocked in a table CALLed from automatic.
 
(All) #681
 
PFCHECKLOCK didn't pick up some unprotected writes in browse lookups.
 
(All) #684
 
When defining processing from dmoedef, PFTOKSIZE was not respected if
the file had no automatic processing table.
 
(fPSQL) #706
 
A query with a WHERE clause on a field with an automatic index built
on it could fail if the index was built in descending order.
 
(All) #708
 
DECLARED variables defined without the ",g" attribute were not cleared
between records.
 
(Linux) #711
 



Running "dcabe filename prcname" could crash on some Linux systems.
 
(All) #712
 
PFLOGAPPEND was actually LOGAPPEND. Changed to PFLOGAPPEND as per
documentation.
 
(All) #717
 
Given the correct sequence of keystrokes, dmoedef could release its
lock on the output format, thereby allowing more than one person to
be updating it.
 
(All) #714
 
EXPORT ASCII with both "-a" and "-x" flags didn't work.
 
(All) #719
 
If you modify an index using the "save options without rebuild" and
then tried to rebuild a different index, it wouldn't rebuild.
 
(*nix) #707, #722, #736
 
Some output formats saved under 4.8 dmoedef would crash 5.0 dmoedef.
 
(*nix) #724
 
Only root could delete files in ddir.
 
(All) #725
 
EXIT within a CALLed table did not exit, but acted like END.
 
(All) #727
 
"CLEAR arrayname" when the array is aliased to real fields did not
cause the record to be written if that were the only modification
made to the record.
 
(All) #728
 
ddir's "delete index" showed all index letters/numbers, even if those
indexes did not exist.
 
(Linux) #729
 
ddir would crash when deleting indexes.
 
(All) #733
 
dxmaint's "save options without rebuild" could corrupt idex.
 
(All) #734
 
When using *cabe's lookup wizard, using a non-existent qualifier in
the filename would crash *cabe.
 
(All) #735
 
dscreen would resolve @PD to only 20 characters, when it's really 80.
 
(All) #740
 
Although @ONCE in *report is documented as being run prior to any
output being done, it was run while sitting on the last record read
during the sort/select process. Some people thought that this meant
that it was sitting on a selected record.
 
@ONCE has now been fixed to be not sitting on any record. However,
some people depend on their incorrect interpretation of the old
behavior, so setting PFOLDONCE=ON will "revert back" to a modified
version of the old behavior, where it will now be run while sitting
on the last record _selected_ during the sort/select process.
 
Note that PFOLDONCE=ON may disappear in some future version.
 



(All) #747
 
If you were to DECLARE the same variable more than once, and then
press F6/D in *cabe to show dummy fields, *cabe could crash.
 
(All) #750
 
When a print code requiring a space is on an output format, and you
use F7 block functions to move it, the '%' marker is left behind.
 
(All) #752
 
When using F6 in pmaint's printer definition screen to change to
printer type, if you select a type with a shorter name than the
one currently there, the field was not properly cleared.
 
(All) #753
 
filePro used to accept a period in variable names. This is now not
allowed (it never should have been allowed in the first place), in
order to permit enhanced functionalities. To revert to the old
behavior and allow periods in variable names, you can set
PFLONGVARDOT=OLD. Note, however, that this will disable certain
features, such as access to ODBC and biometrics, which require that
periods not be allowed here.
 
(All) #757
 
BLOB/MEMO functions did not work within lookup files.
 
(All) #766
 
*cabe could crash when accessing a zero-length prc file.
 
(All) #767
 
MIN/MAX functions did not properly handle expressions as parameters.
 
(All) #80
 
Printing of MEMO fields now available.
 
 
(Network) #191
 
The network version of ddefine did not create qualified indexes on
new files.
 
(All) #709
 
EXPORT ASCII/WORD would always export the same number of fields,
regardless of whether the fields were assigned to on each record,
even if they were only referenced in a comment.
 
Now, filePro will only export the number of fields as the highest-
reference field actually assigned.
 
For example:
 
If:
Then: out[1] = 1 ; out[2] = 4
If: xx = "y"
Then: out[3] = 3 ; out[4] = 4
If:
Then: ' out[5] = 5
 
filePro would previously always exported 5 fields. Now, if x="y"
is true, it will export 4 fields, and if false will export 2 fields.
 
To revert back to the old behavior, set PFEXPORTALL=ON.
 
(All) #282
 
If you do a fuzzy browse lookup on a field that has an index built
on it, the wrong instance will be shown in the browse.
 



Also, if you were in index mode on the main file, the wrong instance
would be shown, even though @AF was correct.
 
(All) #770
 
If you perform a browse lookup with a "-m" (must match) flag on an
index built across multiple fields, and the major sort key is a date
or time field, the "must match" portion was limited to the major sort
key only, regardless of the mlen parameter.
 
(All) #758
 
When using a browse lookup on a multi-field index, with "-m" (must
match) across multiple fields, it was possible to get an erroneous
"top of file" after scrolling down and then up again.
 
(fileProGI only) #720
 
No confirmation was asked for when deleting formats in ddir/dprodir.
 
(All) #773
 
When accessing BLOB/MEMO fields from lookup files, it was possible
for the data to get corrupted.
 
(All) #774
 
Under certain conditions, re-executing a fuzzy browse lookup could
cause filePro to crash.



5.0.13 Release Notes
(SCO only) #???
 
Fields with extended-ASCII characters ( >=128 ) might not compare
correctly.
 
(All) #653
 
Browse lookups with only a single line could crash filePro.
 
(All) #662
 
DLEN() had an undocumented limit of 255 characters on the input
string. The input is now unlimited, and the output is limited
to 4095.
 
(*nix only) #667
 
Some *nix systems prevent a setuid program running with a real uid
of root from executing child processes. The previous workaround
(setting the real uid to "filepro" when running as root) causes
some things (such as printer banner pages) to report "filepro" as
the user.
 
Added "PFROOTFIX=OFF" to turn off the fix for systems that don't
require it.
 
(Native windows) #???
 
@ID will now contain the current user name, up to the first 8 letters.
 
(All) #633
 
If you have a memo with a line so long that it doesn't fit within
the memo editor window, and while in insert mode press Enter near
the top of the memo (to split the line), the program may crash.
 
(All) #???
 
Enhanced the blobfix utility to do a better job at extracting data
from a blob within a corrupted section of the file.
 
(All) #587
 
"lookup - -pw" did not honor the "-w" flag.
 
(All) #656
 
FORM command within a CALL NOAUTO'ed processing table would use
fields from the automatic table.
 
(Native Windows) #671
 
sitepwd.exe did not work under XP.
 
(All) #668
 
Output formats would not function properly if the height*width
was more than 32K.
 
(All) #672
 
"ddir -k" did not respect the lockfile.
 
(Native Windows) #673
 
p.exe splash screen would fail if the licensee's name contained
a lower-case "z".
 



(Sun and PPC Linux) #675
 
filePro would crash if TERM/PFTERM was set to an entry that
contained a "tc=" value.
 
(All) #674
 
IMPORT/EXPORT using an expression for the filename would not
compile properly in just the right circumstances. (Symptoms
included adding or deleting lines with literal strings would
make the problem go away.)
 
(GI) #644
 
Timing issues caused connections to GIserver over a satellite
link to fail.
 
(GI) #651
 
Prompt buttons were missing with browse lookup windows.
 
(All) #670
 
autoshuf would crash on some systems when adding fields.
 
(All) #676
 
dxmaint would not update the status screen while reading large
sections of deleted records within the file.
 
(All) #680
 
filepro would crash on "-pq" if a printer was defined without
any comment.
 
(All) #682
 
Dummy fields set in @ONCE did not hold their values in @BRKn
and @WGT processing.
 
(All) #690
 
In just the right combination of circumstances (full desription
to come), filePro could crash in the index delete routine.
 
(All) #683
 
System fields didn't push left with "<" on the output form.
 
(All) #700
 
If @ONCE processing makes an assignment to a dummy field that is
not defined in automatic processing, *report may crash.
 
(ODBC) #692
 
In some ODBC data sources, updating a record via high-level ODBC
would cause a nul character to be appended to the data in some
field types.
 
(All) #686
 
MESGBOX/ERROROX with long lines would drop 1 character at the end
of each wrapped line.
 
(All) #695
 
*cabe didn't recognize the new @DV system field.
 



(Native Windows only) #698
 
EXISTS() would return "1" (true) if the specified path included
an existing filename as part of the path. For example, if the
file "c:/filepro/backup.zip" exists, then passing EXISTS() the
name "c:/filepro/backup.zip/map" would return true.
 
(ODBC) #691
 
dprodir would crash attempting to display info on an ODBC file.
 
(fileProGI) #688
 
"MEMO ... EDIT TITLE ..." didn't display the title.
 
(fPSQL) #618
 
fPSQL did not recognize new 4-digit-year system date fields,
nor PFSYSYR4=ON.
 
(Unix xfer) #687
 
The Unix version of xfer did not send screen/output formats
that were longer than the old limit of 14 characters.
 
(All) #661
 
BREAK OFF wasn't honored within a browse lookup.
 
(SCO only) #677
 
If a file exceeded the ulimit file size, filePro would crash with
a SIGXFSZ signal, rather than give the "file too large" error.



5.0.12 Release Notes
Never released



5.0.11Release Notes
 
5.0.11 Windows versions includes the use of encrypted distribution files.
In order to install, you will need an Authentication Key file which you can
get from our download site or can request from customer service. You will
need the End-user Company Name in order to request/download this keys file
 
(All) #???
 
In just the right circumstances, it is possible for ddefine to
crash in the middle of a restructure when adding fields off the
end of the record. (Special "5.0.10a" release of ddefine made.)
 
(All) #654
 
If you execute a lookup r=free to the current file, followed by
a lookup-dash by record number to that record, and there were
no free records in the file, the lookup-dash will fail.
 
(All) #630
 
menupass now accepts menu name from the command line.
 
(All) #620
 
A protected lookup to the current file, to the current record,
would unlock the current record, even in update mode.
 
(All) #647
 
If the very first thing you do in dscreen is attempt to create
a new screen, dscreen would crash.
 
(Windows) #649
 
The initial splash screen now responds immediately to a keypress.
 
(All) #650
 
A menu commandline that included the sequence slash-p-space (as
in "-h 'A/P menu'") wouldn't work.
 
(All) #646
 
Renaming a file in fpcopy might not remove the old directory.
 
(All) #357
 
BREAK OFF did not carry through call/chain.
 
(All) #648
 
dxmaint would not accept system fields on the command line.
 
(GI) #655
 
pmaint printer editor did not accept F5/F6 function keys.



5.0.10 Release Notes
5.0.10 Windows versions include the use of encrypted distribution files.
In order to install, you will need an Authentication Key file which you can
get from our download site or can request from customer service. You will
need the End-user Company Name in order to request/download this keys file
 
(All) #577
HTML :IN :ML generated "MAXLEN=n" rather than "MAXLENGTH=n" attribute.
 
(5.0) #582
The TVM_*() functions did not handle comma-type edits for input.
(ie: "12,345.67" was treated as "12".)
 
(4.9) #581
Add PFMEMOINSERTMODE=ON to set insert mode on by default in the
memo editor.
 
(All) #585

    PFCHECKLOCK does not report errors on "-p" lookups if you
    modify fields after a WRITE.
 
(All) #???
Enhancement to PFTMP for specifying temp directory:
 If PFTMP is not set, then use TMP. If both are unset, use TEMP.
 
(All) #???
Tweak to the above: some versions of Windows allow for a list of
directories in the TMP/TEMP variables, separated by semicolons.
In such instances, filePro will use the first directory listed.
(And, change the Unix version to do the same, should there be a
version of Unix that allows a colon-separated list of directories.)
 
(All) #615
runmenu was using PFTEMP rather than PFTMP to store menu batch files.
(Quickstart) #616
SHOW statements were truncated to 255 characters.
 
(All) #617
Fuzzy browse lookups with processing caused non-global dummy fields
to be cleared. ("Normal" browse lookups were okay.)
 
(All) #619
Fix case where "node_addr(x!=y)" error would be generated.
 
(All) #621
If you have an unprotected lookup to the current file, and find
the current record, do a GETNEXT, modify that record, and CLOSE
the lookup, the modified record will remain locked.
 
(All) #628
If you have a lookup dash in @ENTSEL processing on a file with no
automatic processing, it is possible to get DKNF errors displayed.
(Note that the indexes aren't actually corrupted in this case.)
 
(All *nix) #???
Pressing "N" or "I" in the monochrome attribute editor of dscreen
caused the display to fill with text.
 
(fileProGI) #???
Shrinking a memo in the GI memo editor caused the tail end of
the original memo to remain.
 
(Some *nix) #???
Running menu items with the "no return" flag ("#") could cause
the stty settings to get confused.
 
(All) #275
Using F8/Options to set the processing password in *cabe would



cause subsequent tables loaded in the same session to have the
same password assigned.
 
(All) #588
A "lookup - r=nn" which fails due to an EOF condition would cause
the current record to be unlocked.
 
(All) #601
Using block functions to copy processing lines from beyond the
last one could cause garbage to be copied.
 
(All) #602
fPTransfer now copies "map.new" files as a map.
 
(All) #604
Pressing F6 in ddir does not bring up the config editor if the
highlighted name is not a valid filePro file.
 
(All) #610
PFLOOKWIZPROT=ON was not recognized properly.
 
(All) #612
ddir did not empty the blob file on kill data / retain formats.
 
(All) #613
Lookup aliases in the format "letter-number-others" (ie: "d4a")
would fail syntax on assignments.
 
(All) #614
You can now do COntains comparisons on memo fields.
 
(fPSQL) #618
fPSQL did not recognize 4-digit-year date fields, nor PFSYSYR4=ON
 
(UnixWare only) #640
Some configurations of UnixWare do not allow a setuid program
when running as real-uid root to execute child processes.
 
(UnixWare only) #641
An incompatibility in UnixWare running OpenServer binaries caused
SLEEP to be ignored.
 
(All) #635
dxmaint -M "" did not override PFQUAL environment setting.
 
(Linux only) #642
Fuzzy searches on Linux did not return results consistent with
other filePro systems.
 
(All) #637
Extended selection sets didn't work if comparing to a value with
a colon in it.
 
(All) #591
RAND("-1") didn't properly seed the random number generator on
some systems.



5.0.09 Release Notes
 
All Platforms
 
#489
Backed out change in behavior regarding browse lookup prompts being
displayed even if xkeys specified.
 
Added "-DL" flag to *clerk to tell filePro to display the prompts,
even if xkeys are specified.
 
#547
Shrinking an existing memo/blob to zero bytes would corrupt the blob
file. (Note that this is not the same as deleting the object.)
 
#214
If you use ddir/dprodir to empty a file, and have not yet added any
records nor rebuilt indexes, it is possible that *clerk/*report will
still see the indexes as empty if another process has added records
to the file while you are still in your *clerk/*report session.
 
Note that the records will be correctly seen -- it is only the indexes
that may still be thought to be empty. (The symptom is "no matches
found" or failed lookups.)
 
(No task #)
Add a new end-of-line option for printing -- backslash+LF. Mostly,
this is for the RTF printer table, which requires the backslash at
the end of every line for a continuation marker.
 
#566
 
If PFOLDIX=ON and you build a single-key index in dxmaint with a
descending sort, it erroneously built an old-style index, which do
not support descending keys.
 
#561
 
Change dxmaint to prevent building of indexes on BLOB/MEMO fields.
 
#501
 
Repeated use of F6/D/L to display long variable names in *cabe caused
corrupted list to be displayed.
 
#562
 
Add PFFIXNOLOCK=OFF to back out change related to automatically locking
future executions of a lookup which was modified without a "-p".
 
#536
 
DECLARE GLOBAL name(len,type,g) fields were not properly initialized in
quikstart.
 
#252
 
Assignment/concatenation operators ("=", "<", "{", and "&") now work
with memo fields.
 
eg: memofield = memofield & @TD
  field = memofield
  memofield = field
 
#515
 
If you have an array aliased to real fields, and the only modification
to the record in output processing is "CLEAR arrayname", the record
would not be written without an explicit WRITE.



 
#534
 
LOGTEXT would log some filePro debug information into the log file,
in addition to the LOGTEXT items.
 
(No task #)
 
Add MOUSE PATH [ON|OFF] as an alias for CURSOR PATH [ON|OFF]
 
(No task #)
 
Add PFFIXEDLISTSIZE=ON to prevent filePro from shrinking selection
lists. This allows screen readers for the blind to be programmed
with fixed screen locations for such lists.
 
#569
 
CLOSE() did not return zero on success. (Return value was undetermined.)
 
(Windows network only) #570
 
It was possible that, if one process was accessing an index for the
first time and another was reading/writing the head of that index at
the exact same time, the read/write process would get a Windows
locking violation (Windows error #33).
 
(fileProGI) #573
 
filePro will now break up queued BUTTON_OP commands into 50-command
chunks, to prevent any buffer overruns in the fileProGI client.
 
(*nix only)
 
When using the "+ENV+" command syntax in a user menu, it was possible
to get an error that "exec" was not a valid command/filename.
 
(No task #)
 
Add the ability to put "%varname%" and "$varname" in the title of
user menus, and have them displayed at runtime.
 
(No task #)
 
Add PFSHOWROWCOL=OFF to turn off the row/column display in programs
like dscreen, dmoedef, and *cabe. It can confuse screen readers for
the blind, as the numbers are read every time you press a key.
 
(No task #)
 
Add PFINSERTMODE=ON to set insert mode in by default in *cabe/*clerk.
 
(Native windows, network only) #517
 
Native Windows vetwork version did not respect PFDIRFILTER=ON.
 
#576
 
If you executed a record-number lookup with "-p", and the lookup
failed due to the record being deleted, the record was locked
anyway.
 
(No task #)
 
New flags for dxmaint:
 
 -LY/-LN Include/Exclude index from lists.
 -KY/-KN Save / don't save changes without rebuilding.
 



(fileProGI) #479
 
Short selection didn't set date field types, preventing GI from
properly displaying calendars.
 
(fileProGI) #522
 
Under GI, only a single click of the cancel button is required,
even if the server is Unix. However, this would cause problems
if PUSHKEY "[BRKY]" is used. Change so that double-break is
still needed under Unix if they are sent via PUSHKEY to make
text and GI consistent.
 
#508
 
When rebuilding indexes with -r/-ra, the hidden flag was lost.



5.0.08 Release Notes
 
(Native windows)
On some Windows systems, p.exe couldn't execute "/fp/progname"
command lines. (It would work with "\fp\progname" or just
"progname".)
 
(All)
On some systems, the following expression would generate undefined
results:
 
 UncastVariable = mid(UncastVariable,start,len)
 
(All)
The following code could leave the record being updated unlocked:
 
 @wlf1
  lookup self=filename k=1 i=a -nxp
  rn = self(@rn)
  lookup - r=rn
 
(ie: a protected lookup to the current file, and then a lookup-dash
to that record.)
 
(All)
Upon returning to a user menu with "@command", garbage might appear
on the screen before the "Press Enter to return to menu" prompt.
 
(All)
Add a title to the dxmaint main menu.
 
(GI)
Garbage could appear on the screen following the location for file
name input.
 
(GI)
Make sure that pty device is in raw mode before sending PROCESS_INIT
message. (Could cause lockup if PID/PPID happened to contain a 0x0A
byte.)
 
(GI)
Allow pmaint's printer configuration screen to accept mouse input.
 
(GI)
If an edit definition was changed, leaving existing data that would
fail the new edit, using the mouse to move around the screen in *clerk
could freeze filePro as it attempted to display the "edit failed"
message.



5.0.07 Release Notes
(GI) #2
Strip out / expand backslash codes from selectlists.
 
(GI) #478
When returning to user menu with "@command", leave the raw-mode screen
rather than the filePro splash screen, when waiting for Enter.
 
(All) #480
"COPY lookup1 TO lookup2" didn't force write of lookup2, unless it
was a free-record lookup, or some other change was made to lookup2.
 
(GI) #481
showbutton/brwlook problem where button goes away
 
(All) #489
If exitkeys are specified on a browse lookup, filePro does not
display filePro's browse lookup prompts. (It assumes that you
have placed your own prompts to go with the exitkeys.) Now, if
you specify the new "-DE" flag (suppress filePro prompts only
at @entsel), filePro will still display the browse lookup prompts
even with exitkeys.
 
(All) #490
-DE flag browse text should not disappear
 
(5.0) #498
"MEMO lookupfile[fldno] EDIT" didn't write the updated memo.
 
(Native windows) #499
There is a bug in Windows' console application support that would
cause filePro to sometimes see two spaces for a single keypress.
This bug has been worked around.
 
(All *nix systems) #502
Close security hole in makedir.
 
(GI, UnixWare server) #503
Fix problem with default pseudo-tty port settings, to force a mode
that filePro can use.
 
(GI) #521
Make sure that filePro doesn't display end-of-field markers under GI.
 
(GI) #523
Fix problem with certain byte sequences in data stream causing the
stream to get corrupted.
 
(All) #540
REPEAT() would crash filePro ("out of memory" error) if passed a
negative length.



5.0.06 Release Notes
 
#N/A
xfer now includes the necessary "-m xxx" flag in the buildix
script to rebuild qualified indexes.
 
#N/A
The "PageUp/PageDown/F5" prompts are now shown in dxmaint/*report
on the sort screen's field listing.
 
#39
F9/goto in config editor will now accept line number as well as text.
 
#173
If you scrolled down in the config editor while just viewing, and then
entered update mode, you were returned to line 1.
 
#259
When the number of print codes was increased to 9999, pmaint no longer
allowed you to type "END" for F9/goto.
 
#264
Add F8/Options to *cabe, to allow setting of the processing password.
 
#N/A
When using F8/Save, the new prc table will have the same prc password
as the source table.
 
#249
fPcopy didn't copy blob files.
 
#252
You can now do a COntains compare on memo fields.
 
#57
HTML :TX can now take a memo field.
 
#183
"READONLY" flag added to MEMO nnn EDIT:
 
 MEMO nnn EDIT [ (row,col,height,width [,startrow,startcol] ) ]
  [ WRAP | NOWRAP ] [ READONLY ]
 
#N/A
When creating a new file in ddefine with BLOB or MEMO fields, the
blob file wouldn't get created.
 
#279 (native windows only)
On some systems, the text-mode mouse cursor would be enabled while
running filePro full-screen.
 
#101
Temporarily remove the F8/options box from dxmaint when building
demand indexes, as the options don't work (yet) with them.
 
#83
 
*cabe's F9/Goto will now find multiple occurrances of a string on the
same line. (And fixes the "not found" problem introduced in .05K1)
 
#123
 
Duplicate DECLAREs are now caught in *cabe.
 
#140
 
Browse lookups which had both "k=(expr)" and "b=(expr)" would not
work correctly. (Internally, filePro got the "k=" and "b=" values
backwards.)



 
#34 (native windows)
 
When using "WIN:printername" as a destination, FORMM left the spooler
in limbo.
 
#N/A
Add PRINTER FLUSH command, which flushes any printer buffers within
filePro.
 
#N/A
New system array, @UNAME[], which returns the system uname() info:
 
 [1] = sysname
 [2] = nodename
 [3] = release
 [4] = version
 [5] = machine
 
For Windows systems, the following values are returned:
 
 sysname: One of: "Win9x", "WinNT", or "Windows" (if type cannot
   be determined)
 nodename: the value from GetComputerName()
 release: major.minor.build (for example "4.10.1998" for Win98)
 version: the szCSDVersion from GetVersionEx()
 machine: blank
 
For *nix systems, see your O/S manual for details on each field's
meaning.
 
#280 (native windows only)
 
Restructure of files in ddefine would fail at the freespace check
if PFDSK was set to more than one drive.
 
#268 (native windows only)
 
SHOW on row 25 did not display anything.
 
#30
 
Variables DECLAREd in sort/select processing were not properly
retained for the output phase in quickstart.
 
#269
 
rreport could lose some printer setup information after executing
a PRINTER FILE command. (Symptom: no end-of-line generated at
page boundaries.)
 
#83
 
After doing an F9/text-search in *cabe and finding text that's not
at the beginning of the line, using F9/goto a line number (or "END")
would not position the cursor at the beginning of the line.
 
#298
 
MESSAGE SEND would crash filePro.
 
#284
 
@PD and @PC increased to 80 characters, to match pmaint.
 
#301
 
If a CALL has been executed, then using "E"xpressions in the processing
debugger may not recognize all variable/lookup names. Only occurs if



the CALLed processing table has fewer symbols than the table being
debugged.
 
#297
 
Within automatic processing, when scrolling through a file, memo
fields would always compare to null, even if filled in with text.
 
(Native windows) #300
 
"WIN:printername" syntax caused the printer init code to be sent
with each form printed to FORMM command.
 
#39
 
Configuration editor F9/search enhanced so that you can go to a
specific line by typing its line number, and you can search for
numbers by typing a quote as the first character. (Same as *cabe's
search.)
 
#N/A
 
Add PFLOOKWIZPROT=ON to change the lookup wizard's "protect record"
default to "Y".
 
#N/A
 
New STATUS object allows you to save/return the status of: break,
cursor, video, escape, and background. Allows subroutines to enable or
disable these items, and then restore them to their original state.
 
 handle = NEW STATUS()
 STATUS handle GET
 STATUS handle SET
 
#355 (native windows only)
 
Windows ME and/or 2000 appears to not beep when a ctrl-G is output from
a console application. Change the native windows version to use the
MessageBeep() API call instead.
 
#N/A (fileProGI only)
 
A new TITLE verb is added to the MEMO EDIT and MEMO SHOW commands, to
allow a title to be specified for the window. Currently, only the
fileProGI client will display the title.
 
Example:
 
 MEMO memofld EDIT (row,col) TITLE "Last updated: " < @UD
 
#N/A
 
The "-pq" list no longer interprets backslash codes, so that you can
have printer comments like "Send to \\server\printer".
 
#N/A
Adding more than 100 lines to a memo field in the non-wrapping editor
could crash filePro.
 
#358
PFSKIPPEDLOG=filename would crash *report.
 
#219 (fileProGI only)
 
Cursor path is now enforced within the GUI environment.
PFFORCECURSORPATH=OFF turns off forced cursor pathing logic.
 
#N/A (native windows only)



 
PFSHOWWINERROR=ON shows value of GetLastError() when system error
occurs.
 
#N/A (native windows only)
 
Some system errors didn't display the correct error message text.
 
#N/A
PFREFRESHRATE=nnn sets the screen refresh rate during sort/select and
output phases in dxmaint/*report to once every "nnn" seconds. (default=1)
 
#304
If you CHAIN from a processing table with a DECLARE GLOBAL, and then
CHAIN back, the value of that variable was lost upon return.
 
#N/A (fileProGI only)
New command "CURSOR PATH ON|OFF" to give programmer ability to turn off
forced cursor pathing in GUI.
 
#404
If you are building an index, and you have a duplicate key that spans
several blocks, and the last block is exactly filled, and you insert a
new key that comes between that multi-key and the next key, it was
possible for dxmaint to crash. (Though it appears to only have crashed
if running under fileProGI.)
 
#104
Pressing F2/DELC at the end of a line in the memo editor now joins the
lines together by deleting the end-of-line marker.
 
#16
If you have a memo that is smaller than the memo editor window, and you
start inserting blank lines with Enter in insert mode, then when the
memo reached the height of the editor window, it would crash.
 
#N/A
New *clerk flags:
 
 -de Turns off @entsel prompts, but leaves update mode prompts.
 -du Turns off update mode prompts, but leaves @entsel prompts.
 
#N/A
New environment variable PFNEWSK=ON (default: OFF) allows new @SK
values to be seen by processing. Specifically, the only one right now
is "MOUS", which will be seen as "ENTR" otherwise. (Lots of processing
tables depend on certain values in @SK in order to function. If an
unknown value is set, the cursor won't leave the field or will behave
in undesired ways.)
 
A new system field will be assigned later, which will always contain
the "real" keystroke value.
 
#N/A
Manipulating memo fields within a lookup file could crash quikstart.
 
#476
In *clerk, if you press F6 on a field with no browse lookup, and the
press BREAK when asked if you want to create one, you were taken out
of update mode, rather than just cancel the brwlook create.
 
#87
If you have an index with a duplicate key that requires more than one
block in the index, and add a record whose key comes immediately after
that duplicate key, and then continue adding records with the duplicate
key, while not adding any other key between it and the first key of the
next node in the tree, so that it no longer fits into the same block,
the parent node's pointers were not properly updated.
 



This could lead to a "deleted key not found" error.
 
#249
DOS/Windows version of fpcopy, when renaming a file with blobs, would
fail to move the blob file to the new directory.
 
(Native windows) #499
Native windows version would sometimes see two spaces when you pressed
the spacebar once.
 
#477
Hardcopying a screen in *clerk, when the printer destination was set
to the screen (ie: with "-pv") would produce a blank screen.



5.0.05 Release Notes
 
(All)
*clerk can now go to the end of a demand index via F7. (It used to
give a "can't do bxhigh() on demand index" error.)
 
(Native windows)
SYSTEM() will execute via command.com if a full path is not given
on the command line. (This was backed out while working on letting
fPclient run scripts, but now that we're using pipes rather than
sockets, that fix is no longer necessary, and running via command.com
is necessary to run any built-in commands or to respect I/O
redirection.)
 
(All)
Blob files can now be placed on drives other than PFDATA (just as
key/data/index files can).
 
(All)
Increase width of ddefine's "create screen 0"/"create default report"
dialog box, as messages are now wider due to showbuttons.
 
(All)
*cabe - immediately flush buffers after writing processing table,
in attempt to cut down on false "truncated processing table"
reports.
 
(Quikstart)
CREAT() was not accepted as an alternative to CREATE() in rcabe.
 
(All)
Add PFHELPDIR=path to set alternate help file directory. If help
not found there, filePro will then look in $PFPROG/fp/lib as well.
(This only affects the filePro fp/lib help files. Application
help files are not affected.)
 
(All)
Turn off expiration date. Programs will no longer expire.
 
(All)
Change locking logic for new-style automatic indexes. The new
logic will allow multiple read-only accesses to the index to
occur simultaneously. Only index-update accesses are now
single-threaded. On systems with many users doing many index
searches on the same file at the same time, the load on the
system is dramatically decreased and response time is dramatically
increased with the new logic.
 
(All)
If you had a duplicate label with a DECLAREd variable and a processing
line, and the prc line was empty except for the label, filePro could
get in an infinite loop attempting to display the syntax error.



5.0.04 Release Notes
 
Restructure of a file with data in it, to change between text and
memo didn't handle the qualified blob file.
 
While someone was in the memo editor, other people would be locked
out of accessing any memos/blobs from the same file.
 
(Native windows version only)
DOS commands built into command.com would not execute via SYSTEM
command.



5.0.03 Release Notes
 
After using "!menuname" to nest menus, returning from the nested menu,
and executing a menu command line, the wrong menu (the previously-
nested one) would be displayed.
 
Due to the change in 5.0.02 of re-reading the user menu, menus with
passwords started asking for the password every time you returned
from executing a command.
 
Changing a BLOB/MEMO field to a "regular" field in ddefine caused the
restructure to crash.
 
(Unix only)
dmakemenu would crash upon saving menus.



5.0.02 Release Notes
 
Using the syntax "MEMO fld EDIT ()" or "MEMO fld SHOW ()" would crash
*clerk/*report programs on some systems.
 
Enhance the "There are no filePro files" errorbox to include the
directory where filePro is looking.
 
Help screens lost the ability to show attributes in 5.0.00K5. Fixed.
 
Add PFHELPAUTOGOTO=ON to automatically force F9/goto upon entering help.
 
Fix memo/blob problem with deleting a memo and then lengthening a memo
(which happens to reside in the same block in the blob file) causing
corruption.
 
Adding more than 100 lines to a memo field in the wrapping editor
could crash filePro.
 
dxmaint F8/options screen didn't allow blank to represent "no".
 
Memo editor F8/options didn't have any text after "F10" in "F10 - help".
 
Memo editor respects "-d" flag to not display prompts.
 
runmenu re-reads the menu upon return, allowing the command to update
the menu and have the changes reflected on return.



5.0.01 Release Notes
 
Word wrap within memo editor. Also, the MEMO EDIT command is
enhanced to take an optional WRAP/NOWRAP flag. The default is
currently WRAP, but that may be configurable later.
 
MEMO field EDIT [(row,col,height,width,startrow,startcol)] [WRAP|NOWRAP]
 
(Native windows version only.)
Don't turn on mouse cursor while in full-screen mode.
 
Typing more than 100 characters at the end of a line in the memo editor
while not in insert mode, could crash filePro upon exiting the editor.
 
Fix buffer-overflow problem from increased max line within help.
 
Fuzzy browse lookups didn't work if helped by an index, if that index
was in 4.1-style format.
 
Last remaining known "deleted key not found" problem fixed.
If you had a duplicate key that spanned exactly 9 blocks in the index,
and the ninth block contained exactly one record, and you deleted a
record stored in the first block, the eighth (and now final) block was
sometimes not properly marked as end-of-chain.
 
Fix problem with opendir/nextdir truncating filenames at a space.
 
Fix single-break problem in *cabe under Unix/Linux.
 
Fix problem in word-wrap memo editor, where deleting lines could
leave a ghost of the last line at the bottom of the window.
 
Fix problem in word-wrap memo editor, where pressing Enter in insert
mode would still display the old line in its entirety.
 
Change logic of word-wrap editor, so that whitespace will wrap to the
next line if necessary.
 
If typing off the end of a line, in overstrike mode, every 100th
character might not be stored properly.



5.0.00K5 Release Notes
 
Increase max line within help file from 132 to 512, to allow for
multiple backslash-coded items.
 
Fixed MEMO DELETE to release memory location after delete.
 
Memo editor now keeps track of the desired column when moving
vertically through shorter lines.
 
Having an extraneous comma within a DECLARE statement would cause
an erroneous syntax error at the first reference to a literal. ie:
 
 DECLARE variable1, variable2,
or DECLARE variable1,, variable2
 
MEMO EDIT / MEMO SHOW can now leave off the (row,col,...) entirely,
and a default location/size will be used.
 
Fix *cabe DEL problems under Unix/Linux.



5.0.00K4 Release Notes
 
ddefine allows restructure of to and from memo/blob field types.
 
Deleting the last line of a memo could cause a crash upon save.
 
If the only changes made to a record were via MEMO EDIT, those changes
would not be saved.
 
Fix *cabe DEL problems under Unix/Linux.
 
Memo editor now requires double-break to cancel.
 
Memo editor - when you marked text end-to-front, cut/copy would
crash.
 
Memo editor didn't find text at end-of-line.
 
"Toggle insert" added to memo editor F8/options menu.
 
Repeated use of the sequence MEMO DELETE, MEMO IMPORT, MEMO EDIT
while remaining within the processing, could corrupt the blob file.



5.0.00K3 Release Notes
Never Released.



5.0.00K2 Release Notes
MEMO EDIT would crash at 101 lines or any increment beyond a per 100
line entry before the 100 line buffer established was refreshed.
 
Added SAVE and BRKY references to the prompts of MEMO EDIT windows
 
PFNOBOX=ON created a piece of box that displays in lower right quadrant
of MEMO EDIT box.
 
Changed MEMO EDIT Extended Functions for Find to respect the PFDLGENTER
setting
 
Fixed [field] copy to a lookup[field] of a MEMO field
 
Fixed lookup[field] CLEAR after a MEMO lookup[field] SHOW
 
Fixed Native/DOS saving proper CR/LF of a MEMO TEXT EXPORT after MEMO EDIT
 
Fixed Memo Paste Function which would not work at the End of File



5.0.00K1 Release Notes
 
New Extended Features (F8) in MEMO editing which includes
 
Mark, Cut, Delete, & Paste
Find & Find Next
Insert Current Date
Insert Current Time
 
Environment Variable for *NIX platforms to set the Graphics
character for PFSHOWF6ARROW is now GY
 
fPTransfer has been update to handle blobs as binary files.
 
Many cosmetic and messaging enhancements



5.0.00 Release Notes
 
Commands for MEMO management
 
To Display a text MEMO field with allowing edit
 
MEMO field SHOW (row,col,height,width)
 
To Remove a text MEMO field display-only window
 
MEMO field CLEAR
 
PFLOOKUPNOFILE=ON
 
In *cabe, if you define a lookup to a file that does not yet exist, and
this is set, you will no longer get a "No or invalid map" error.
Default is OFF.
 
Spooling for Native Windows filePro
 
Windows apparently doesn't spool print jobs sent by native windows console
applications to local printer ports, the way that it does for MS-DOS programs
that do the same thing. (That is, open "lpt1" as a file and write to it.)
 
We have added the necessary code to the native windows version of filePro
to use the Windows printer routines (ie: OpenPrinter, StartDocPrinter, etc.)
which do respect the Windows spooler. However, the spooler is also limited
to those printers defined in the printer control panel. Therefore, we have
made it a requirement that, in order to use the Windows spooler, you must
prefix the filePro destination with "win:", as in "win:lpt1:". The rest
of the destination must be the exact port name or printer name as you have
defined it to Windows. So, if you have a printer attached to LPT1 that is
named "HP DeskJet 870Cse", you would use either:
 
 win:lpt1:
or win:HP DeskJet 870Cse
 
If you have a network printer "\\server\printer" that is captured to LPT2,
called "Bob's printer", and the Windows destination is "\\server\printer"
then you would use either:
 
 win:\\server\printer
or win:Bob's printer
 
You could not use "win:lpt2:" as "lpt2" is not the destination that Windows
knows the printer by. (Though you could use "lpt2" without the "win:" and
go directly to that port without the spooler.)
 
Remember: You can only use the exact port name or printer name that Windows
uses. Anything else will result in a "the parameter is incorrect" error when
filePro tries to open the printer.
*******************************
 
To submit 4.8 bug reports
1. FAX them to (317) 826-0932 clearly marking them as 4.8 bug reports
2. EMail them to fpsupport@fileproplus.com including the text
4.8 Bug Report in the subject line
3. Call the customer support number (317) 802-0138



4.8.12 Release Notes
 
Changes from 4.8.10 to 4.8.12
All
Various Index Fixes
 
Fixed Incorrect Prompt Display in Help
 
Correct a different result between d & r clerk in the handling of
Global variables.
 
Fixed an error in debugging CALL's when long expressions
 
Erroneous data display on Associated Fields in Browse Lookups
 
Bug in F9 GOTO search on *cabe on same line duplicates
 
Native
 
Fixed sending init code on every occurance of FORMM



4.8.11 Release Notes
 
All
DECLAREd variables that have the ",g" flag were not initialized to blank.
 
Native95
A version of native95 went out in the past that had an internal
debugging flag set, causing @SK to contain the internal hex value
of any keystroke that wasn't a "normal" special key. (This would
cause @SK="" to fail in tests.) This was corrected, but some
people commented that they liked that feature, so a new config
variable PFSKHEX=ON will turn it back on.
 
All
*cabe didn't recognize -pn/-pc command-line flags.
 
All
If you build a demand index on a zero-length field, *clerk would
freeze if you attempted to go into index mode on that index.
 
Native95, plus only
If you have multiple import/export statements in a processing table,
with a variable-named import/export followed by a hardcoded-filename
import/export, dclerk/dreport would crash upon loading the prc table.
 
All
Fix problem with HTML :CE for <CENTER> which would cause a superfluous
<BLOCKQUOTE> tag to be generated.
 
DOS versions (NO LONGER USED)
If a file used all 16 automatic indexes, and you did a dxmaint "-ra"
on the file, it would fail on index.P (unless you increased PFFILES).
 
Native95
Native windows *clerk, when attempting to delete a record immediately
after finding the record by index mode, would display the confirmation
message in DialogNormal rather than TextNormal.
 
All
INPUT POPUP for some reason set a minimum width at 10. Change to 1.
(If there was a reason, I don't recall what is was.)
 
All
READ()/READLINE() now accept long-named variables as the second
parameter.
 
All
HTML :DI <DIV> and :SP <SPAN> produced junk close-tags.
 
All
In some instances where a subtotal-with-pagebreak contained a
single record to be printed, the page's heading wasn't printed.
 
All
When doing a browse lookup "-l" and there were more than
approximately 250 exact matches, and using the new 4.5-style
indexes, the browse would not place the cursor on the last
match. (The cursor would position to the last match listed
within the first index block.)
 
All
The following would crash on some systems:
 
   xx(12,.0) = "0"
  yy(11,rj0) = xx
 
Unix
Fix *cabe DEL problems under Unix/Linux.
 



All
Having an extraneous comma within a DECLARE statement would cause
an erroneous syntax error at the first reference to a literal. ie:
 
 DECLARE variable1, variable2,
or DECLARE variable1,, variable2
 
All
Fuzzy browse lookups didn't work if helped by an index, if that index
was in 4.1-style format.
 
All
"Deleted key not found" problem fixed.
If you had a duplicate key that spanned exactly 9 blocks in the index,
and the ninth block contained exactly one record, and you deleted a
record stored in the first block, the eighth (and now final) block was
not properly marked as end-of-chain.
 
All
Fix problem with opendir/nextdir truncating filenames at a space.



4.8.10 Release Notes
4.8 Unix
Fix problem with "-pq"/filename attempting to execute filename, rather
than output to it.
 
Native95
Fix problem of occassionally missing release of Alt when CapsLock down,
causing Windows CapsLock bug workaround to be disabled.
 
Native95
Fix problem when pressing shift-numpad key twice in a row would act as
a Break.
 
All
Fix @FN length problem, where it was truncated to 10 characters in
some places in filePro.
 
All
Fix problem with SQRT(0) returning "/D0". Now returns "0" as it should.
 
All
Fix ddir problem emptying indexes when nodesize > 1K.
 
All
Fix fuzzy browse lookup problem when scanning on associated field,
where first instance would always be used.
 
DOS/Native95 Network
EXPORT ASCII -A truncated file on network version.
 
All
If filePro cannot read the full lockfile, an error is now generated.
 
All
DECLARE will now correctly give a syntax error if you try to declare
a variable that starts with a digit.
 
All
If an invalid edit name was given to DOEDIT(), the function returned
garbage. It will now return a null field.
 
All
If an error occurs in automatic processing (one that would normally
cause the "A system/filepro error has occurred" message to appear)
while in add records mode, no error is reported, and a new record
is added. (If this error occurs repeatedly, you will be stuck in
an infinite loop.) Note that the error must be in automatic and
you must be in add records mode.
 
Native95
Under certain conditions, Windows will return ERROR_WRITE_FAULT
or ERROR_IO_DEVICE, rather than ERROR_NOT_READY, for a printer-
not-ready condition. These are now trapped as a not-ready error,
rather than reporting "error -1"
 
If you continue to get "error -1" errors on printing, you can set
PFNTPRTERR=ON, and filePro will display the internal Windows error
number, which we can use to determine the cause.
 
Unix
If PFREADONLY=ON, "invalid argument" errors could occur if you access
a 4.5-style automatic index.
 
Unix
On some systems, ASC() would return negative numbers for characters
greater than ASCII 127. (Specifically, it would return the proper
value, minus 256.)
 
All



If you have a getnext loop, and within that loop you have another
lookup to the same file, and are posting new records (or changing
existing records' index key) such that the new index key value is
in close proximity to the current getnext-loop index key, it is
possible for the getnext loop to malfunction. (Skip records, or
duplicate records.)
 
Unix
If a help file was in DOS format (ie: includes "^M" for end-of-line)
then filePro would freeze when reading that help file.
 
All
If PFCHECKLOCK=ON, the error is now reported only once per lookup,
rather than on every assignment.
 
All
Dxmaint would display demand index dates after 12/31/99 as "mm/dd/100".
 
Native95
Added ability to use the Windows spooler:
 
Spooling for native windows filePro
 
Windows apparently doesn't spool print jobs sent by native windows console
applications to local printer ports, the way that it does for MS-DOS programs
that do the same thing. (That is, open "lpt1" as a file and write to it.)
 
We have added the necessary code to the native windows version of filePro
to use the Windows printer routines (ie: OpenPrinter, StartDocPrinter, etc.)
which do respect the Windows spooler. However, the spooler is also limited
to those printers defined in the printer control panel. Therefore, we have
made it a requirement that, in order to use the Windows spooler, you must
prefix the filePro destination with "win:", as in "win:lpt1:". The rest
of the destination must be the exact port name or printer name as you have
defined it to Windows. So, if you have a printer attached to LPT1 that is
named "HP DeskJet 870Cse", you would use either:
 
 win:lpt1:
or win:HP DeskJet 870Cse
 
If you have a network printer "\\server\printer" that is captured to LPT2,
called "Bob's printer", and the Windows destination is "\\server\printer"
then you would use either:
 
 win:\\server\printer
or win:Bob's printer
 
You could not use "win:lpt2:" as "lpt2" is not the destination that Windows
knows the printer by. (Though you could use "lpt2" without the "win:" and
go directly to that port without the spooler.)
 
Remember: You can only use the exact port name or printer name that Windows
uses. Anything else will result in a "the parameter is incorrect" error when
filePro tries to open the printer.



4.8.09K Release Notes
4.8 Unix
Fix problem with "-pq"/filename attempting to execute filename, rather
than output to it.
 
Native95
Fix problem of occassionally missing release of Alt when CapsLock down,
causing Windows CapsLock bug workaround to be disabled.
 
Native95
Enhance video I/O by enabling video buffering as under Unix.
 
Native95
Fix problem when pressing shift-numpad key twice in a row would act as
a Break.
 
All
Fix @FN length problem, where it was truncated to 10 characters in
some places in filePro.
 
All
Fix problem with SQRT(0) returning "/D0". Now returns "0" as it should.
 
All
Fix ddir problem emptying indexes when nodesize > 1K.
 
All
Fix fuzzy browse lookup problem when scanning on associated field,
where first instance would always be used.
 
DOS/Native95 Network
EXPORT ASCII -A truncated file on network version.
 
All
If filePro cannot read the full lockfile, an error is generated.
 
All
DECLARE will now correctly give a syntax error if you try to declare
a variable that starts with a digit.
 
All
If an invalid edit name was given to DOEDIT(), the function returned
garbage. It will now return a null field.



4.8.09 Release Notes
Changes from 4.8.07 to 4.8.09
 
All
If PFWGT0=ON, then report will now print headings and grand totals.
 
All
Change HTML :BA for <BASEFONT> to HTML :BF, as :BA is already used
for <BASE>.
 
Unix
Fix Unix code for HTML and JSFILE :CR when checking for leading "/".
(Would prepend $PFSERVROOT even if it started with "/".)
 
All - QuikStart (rcabe)
It was possible for an array reference to return "bad assignment at
position indicated" even on valid references, at runtime.
 
All
If you are inserting a duplicate key, in a record higher than any
of the other records with that key, and the block in the index that
stores that key is continued into another block, but it is not this
key that is continued, the key is inserted into the continued-key
value rather than the correct key value. This can cause "deleted
key not found" errors.
 
Unix
Fixed Unix OpenDir()/NextDir() problem of not returning filenames
in the same format as the DOS version.
 
Unix
Fixed Unix OpenDir()/NextDir() problem of not having the dates line
up correctly.
 
Unix (SCO/iBCS2 only)
Fix occasional "too many open files" on systems with NFILES > 64
 
All
Add PFUFLAG=ON to *report to force "-u" operation.
 
All
Add PFBLANKOV=ON to cause math arithmetic involving blank dates to
return "/OV" (which is apparently how the Sun version used to work).
 
All
If you are browsing on a demand index, and use a selection set which
causes no records to be selected, pressing up-arrow generated an
"invalid index" error.
 
All (cosmetic)
dxmaint's list of automatic indexes overwrote the filename/indexname
info on line 20. Move dialog box up.
 
All
If you have a shared index block that is continued into the next block,
but the continued key has only a single instance of the key within this
block, and you delete that key, the rest of the continuation chain is
left dangling. This can cause "delete key not found" errors.
 
All
New variable (since 4.8.01, but missing from the prior readme) called
PFCONFIG=pathname allows you to specify the full path to an alternate
filePro configuration file.



4.8.07 Release Notes
Unix
Fix problem with Break/DEL messing up screen on some systems.
 
4.8
Still had a bug in GETNEXT if "k=(expr)" was used in lookup.
(Would get "invalid field" error.)
 
All
Fixed fuzzy browse lookup problem where duplicate key values would
display the first record repeatedly, if using a 4.5-style index to
assist the browse.
 
4.8
Fix HTML :DI and HTML :SP crashes.
 
All
Fix problem in dxmaint if demand index info was too wide, dialog box
would wrap around screen.
 
Native95
Fix keyboard problem where some keystrokes would cause a second
(invalid, keyval=-1) keystroke to be seen. (Would cause "press any
key to continue" and WAITKEY to return prematurely.)



4.8.06 Release Notes
 
Native95
Handle Ctrl-Break correctly, in addition to Ctrl-C.
 
Native95
Fix directory read problem in xfer, so can now transmit as well as
receive.
 
DOS
Change "BREAK" to "Ctrl-C" in prompts.
 
All
PFBIXBUILD=2 didn't handle date field correctly if you mixed "/"
and "-" and separators.
 
All
Add PFF6PROMPT=OLD to turn off the fix of taking @WBL processing
into account when displaying the F6 prompt in *clerk.
 
Native95
*report wouldn't accept ENTER at the index prompt if PFME=ON.
 
Native95
System command could leave keyboard in funky state, depending on
the program executed.
 
Native95
*cabe didn't wait after displaying duplicate field definitions.
 
Big-endian systems (IBM RS/6000 and Sun Sparc)
Deleting the last key from an index leaf node could corrupt the
key count in the parent node, resulting in either "deleted key
not found", "IOT trap", or "segmentation violation" on the next
access to the same parent node.
 
All
Fix problem with ADDMONTH() not returning "/OV" if 2-digit-year
result is out of range.
 
All
PFBIXNODESIZE=n will have dxmaint build indexes with a nodesize of
nK bytes (1 <= n <= 63) rather than the default value calculated by
filePro.
 
4.8
PFBIXBUILD=2 had a bug that would build a node incorrectly if there
was exactly enough room at the end of the block for 1 new non-dupe
key.
 
All
If a processing table had more than 32K of literals, references to
those beyond the 32K boundary weren't accessed correctly.
 
4.8
PFPOSTPRINT=cmdline will execute "cmdline filename" after any printout
or hardcopy, when printing to a file.
 
Native95
Microsoft's keyboard input routines for native console apps do not
support Alt+numpad entry. Added code to allow users to use this method.
 
All
Don't lock demand indexes in *clerk's index menu, unless the user
selects that particular index.
 
All
Add HTML :FN to set <FONT> attributes. Optional value. Flags: SI1CO1
 



  SI SIZE
  CO COLOR
 
 If the optional value is given, it is output as text, and a closing
 </FONT> is automatically generated. The following generate identical
 output:
 
  HTML :FN :SI "+2"
  HTML :TX "This is big text."
  HTML :FN-
 and
  HTML :FN "This is big text." :SI "+2"
 
 both generate
 
  <FONT SIZE="+2">This is big text.</FONT>
 
Add HTML :IM to set <IMG> attributes. No value. Flags:
      SR1AT1AL1HI1WI1BO1HS1VS1US1IS1
 
  SR SOURCE
  AT ALT
  AL ALIGN
  HI HEIGHT
  WI WIDTH
  BO BORDER
  HS HSPACE
  VS VSPACE
  US USEMAP
  IS ISMAP
 
Add :DT flag to HTML :CR to add DOCTYPE tag:
 
  <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
 
Add HTML :IS for <ISINDEX>. No value. Flags: PR1
 
  PR PROMPT
 
Add HTML :BA for <BASE>. No value. Flags: HR1
 
  HR HREF
 
Add HTML :ME for <META>. No value. Flags: HT1NA1CO1
 
  HT HTTP_EQUIV
  NA NAME
  CO CONTENT
 
Add HTML :LN for <LINK>. No value. Flags: HR1RL1RV1TI1
 
  HR HREF
  RL REL
  RV REV
  TI TITLE
 
Add flags to HTML :FO <FORM> tag. New flag: EN1
 
  EN ENCTYPE
 
Add flag to HTML :HR <HR> tag. New flag: NS0
 
  NS NOSHADE
 
Add flags to HTML :AN <A> tag. New flags: RL1RV1TI1
 
  RL REL
  RV REV
  TI TITLE



 
Add HTML :AD for <ADDRESS> tag. Option value. Flags: none
 
  If value given, its text is used, and </ADDRESS> automatically
  closed.
 
Add HTML :PR for <PRE> tag. Optional value. Flags: WI1
 
  WI WIDTH
 
  If value given, its text is used, and </PRE> automatically
  closed.
 
Add HTML :DI for <DIV> tag. Optional value. Flags: AL1
 
  AL ALIGN
 
  If value given, its text is used, and </DIV> automatically
  closed.
 
Add HTML :BQ for <BLOCKQUOTE> tag. Optional value. Flags: none
 
  If value given, its text is used, and </BLOCKQUOTE> automatically
  closed.
 
Add HTML :UL for <UL> tag. No value. Flags: TY1CO0
Add HTML :OL for <OL> tag. No value. Flags: TY1ST1CO0
Add HTML :DL for <DL> tag. No value. Flags: CO0
 
  TY TYPE
  ST START
  CO COMPACT
 
Add HTML :LI for <LI> tag. Optional value. Flags: TY1VA1
Add HTML :DT for <DT> tag. Optional value. Flags: none
Add HTML :DD for <DD> tag. Optional value. Flags: none
 
  TY TYPE
  VA VALUE
 
Add HTML :CE for <CENTER> tag. Optional value. Flags: none
 
  If value given, its text is used, and </CENTER> automatically
  closed.
 
Add HTML :SP for <SPAN> tag. Optional value. Flags: none
 
  If value given, its text is used, and </SPAN> automatically
  closed.
 
Add HTML :MA for <MAP> tag. No value. Flags: NA1
Add HTML :AR for <AREA> tag. No value. Flags: HR1SH1CO*NO0AL1
 
  NA NAME
 
  HR HREF
  SH SHAPE
  CO COORDS
  NO NOHREF
  AL ALT



4.8.05K Release Notes
Changes from 04.08.05 to 04.08.05K
 
Native95
Handle Ctrl-Break correctly, in addition to Ctrl-C.
 
Native95
Fix directory read problem in xfer, so can now transmit as well as
receive.
 
DOS
Change "BREAK" to "Ctrl-C" in prompts.
 
All
PFBIXBUILD=2 didn't handle date field correctly if you mixed "/"
and "-" and separators.
 
All
Add PFF6PROMPT=OLD to turn off the fix of taking @WBL processing
into account when displaying the F6 prompt in *clerk.



04.08.05 Release Notes
 
All
If you define a fuzzy browse lookup, and tell filePro to display
less matches than there are lines in the browse window, it used to
fill the top of the window with false matches. Now it will simply
leave the bottom of the window blank, as it should.
 
All
If you use the lookup editor and specify a non-existant qualifier in
the filename, an error message appeared with erroneous filenames.
 
Native95
drunmenu only allowed 8 characters for "set/change filename".
 
All
Browse lookup wizard didn't leave enough room after "popup screen
name" field for row and column prompts. (Wasn't noticable unless
screen name was >6 characters. More noticable in 4.8, which allows
25-character screen names.)
 
All
Fix "read-node 0" message if getnext done on read-only lookup.
 
[04.08.04K3]
 
Native95
CURSOR=LINE now works in native95 versions.
 
Native95
CURSOR=nnn/PFCURSOR=nnn sets the size of the cursor as a percentage
of character height. "nnn" must be from 1 to 100. CURSOR=LINE is
the same as CURSOR=10.
 
All
Configuration editor had limit of 256 lines. Increased to 1000.
 
All
Attempt to use aggregate functions (TOT, AVG, etc.) in automatic
processing could crash filePro.



04.08.04 Release Notes
 
Unix *clerk/*report
READSCREEN()/READOUTPUT() always returned null.
 
All
Fixed index corruption problem. (File with hundreds of duplicates
of the lowest key in the file, with a 2-level b-tree, and adding a
record with a lower key, requiring that the index become a 3-level
b-tree at the same time, could cause a 'read_node address 0' error.)
 
All
Memory leak in index routines fixed. (Did not affect 4.5)
 
All
Lookups with "... r=(expr) -n" could get erroneous syntax errors.
 
Native95
Filenames can contain "."
 
All
POPUP command would crash filePro if screen name longer than 10 chars.
 
All
(Cosmetic) Debugger would wrap processing table name if longer than
14 chars.
 
All
Protected lookups in CALLed processing tables would not automatically
be released when called from normal input processing. (If called from
when processing, such as @key or @update, the locks were released.)
 
All
If the default printer wasn't one of the first 9, pmaint would
reset PFPRINTER to the first defined printer.



04.08.03 Release Notes
 
Memory Leak
It is IMPORTANT to re-index all filePro files after updating
to this release.



04.08.02 Release Notes
 
Lookup wizard
If a non-existent filename (or "(xx)" format) is specified, pressing
F6 to display a list of indexes would crash the program.
 
clerk/report
Don't blow up on "HTML :CR" if file cannot be created.
 
New processing statement
"If: NOT HTML"
 Tests if the last HTML/JSFILE processing statement failed.
 
New processing function
xx = HTMLERRNO()
 Returns an error code for the last HTML/JSFILE statement.
 Zero means the statement succeeded. "1" means that the
 specified document-id is not an open document. A negative
 number is the system error number.
 
Processing debugger
Debugger no longer affects @SK.
 
Install
Wouldn't read free space correctly if PFDIR was set but PFDATA
was not.
 
dreport/rreport
Wouldn't allow long filenames for output formats.
 
Native Win95 programs
Eliminate busy-wait problem in keyboard input routine.
 
DOS/Network
Display correct text for "0x20 error" and "0x24 error" messages. (As
well as all other errors from 0x12 to 0x24)
 0x20 = "Sharing violation"
 0x24 = "Sharing buffer overflow"
 
dclerk/rclerk
Check for @WBL processing when deciding which "F6" prompt to display.
 
New flag to lookup statements
"-w" flag will cause protected lookups to locked records to fail
rather than wait for the record to be unlocked.
 
New processing statement
"If: LOCKED(lookupname)"
 Tests if the specified lookup failed because the record was locked.
 (Requires new "-w" flag on lookup, in addition to the "-p" flag.)
 
File name selection
The list of filenames will have the column width shrunk to the longest
existing filename. This will permit more filenames to be displayed if
you don't use the longer names.
 
Unix ddir
"Kill data / retain formats" set the execute bit on indexes.
 
PFNOBOX=ON
Wasn't respected everywhere.
 
New environment variable
PFDIRFILTER=ON
 Turns on the filter that verifies that only directories appear in
 the filePro filename list. Some Unix users had serious slowdowns
 with the filter enabled. (Default: OFF)
 
dmoedef



In box move/copy mode, display prompts for what to do.
 
Unix
Executing SLEEP multiple times in processing could cause filePro to
crash with "alarm call".
 
dcabe/rcabe
Pressing F10/Help now keeps the cursor position upon return.
 
dcabe/rcabe
Pressing F6 within the lookup editor will respect any qualifier
already specified in the filename.



04.08.00 Release Notes
 
NEW Environmental variable that didn't make it to the docs.
 
PFIXGT=ON
This will allow *clerk to do a next-greater-than if no
exact match is found when selecting through Index Selection.
 
PFSCC=ON
This will enable the "!scc" shell-escape within dclerk
and rclerk, which has been disabled by default.
 
-ro and PFREADONLY=ON
These features have not been fully tested and may not
work for your specific application.



04.05.08K6 Release Notes
 
PFBACKGROUND=OFF
Turns off *report/dxmaint "-bg" and "!g" to enter background.
 
PFBIXBLANK=OFF
Tells filePro that a null key in a lookup on a
4.5-style index should find the lowest key, which was the default
4.5 behavior until now. Default of ON matches an entirely-blank
key, which is the behavior of 4.1-style indexes.
 
DOS Fixed PFKEYTAB=DOS use of Ctrl-Up and Ctrl-Down. (Actually,
any key combination whose scancode >= 0x80.)
 
UNIX Fixed flooding the keyboard buffer in *clerk browse mode with
'N' and 'P' could cause the graphics line at the top/bottom of the
screen to be corrupted.
 
All Platforms Fix ddir crashing on files with large number of
formats. (More than 12 screens full.)
 
All Platforms ddir will now display alien file info even if alien
file doesn't exist.
 
All Platforms Lookup editor -- If you have backslash codes in the
browse lookup, the editor's display was corrupted.
 
DOS dxmaint and *report will recognize and ignore "-bg" and "-bs"
flags.
 
All Platforms When prompting for a filePro file name, only show
subdirectories of the filepro directory, rather than all items
(including non-dir's) in the filepro directory.
 
All Platforms When doing a browse lookup with "-nl" and giving a key
less than the lowest key in the file (or "-ng" with a key above the
highest key) you were placed at the wrong end of the file. ("-nl"
placed you at the highest key, and "-ng" placed you at the lowest
key.)
 
All Platforms fPCopy - Would crash if more than 255 files in
.../filepro/filename directory.
 
DOS fPCopy - Recognize lowercase filenames on systems that allow DOS
programs to see lowercase names. (Win'95 workstation networked to an
OS/2 server. Unknown if network software a factor.)
 
DOS dscreen would give a permission denied error if you tried to
delete the current screen format.
 
All Platforms If you have a variable-name lookup, and the variable
you use to specify the name does not exist, no syntax error was
reported, and invalid code was generated.
 
ie: lookup foo = (aa) i=a k=ky -nx
 
...and there is no "aa" anywhere else on the prc table.



04.05.08 Release Notes
 
Fixes for 4.5 style index problems - primarily resulting from changes to
index keys inside large (over 10 index blocks) duplicate key sequences.
 
Fixed bug related to SHOW(row,col) when the message started with @
 
Expanded processing editor to 9999 lines maximum.



04.05.07 Release Notes
 
Extended selection. After entering an "xxF" relationship, you could not
press DMAP or HELP until there was a valid field number in the "value"
column.
 
If a CALLed process had a syntax error, it was possible for filePro to crash
rather than report the error.
 
If you do a lookup, specifying a qualifier, and filePro needs to rebuild
the freechain on that file, it would build it using the default qualifier,
not the one specified in the lookup.
 
The OPEN() function, when passed the "C" flag to create the file if necessary,
could create the file without write permission.
 
The CLOSE() function wouldn't free the closed handle, reducing the available
open files.
 
The LSEEK() function required the (optional) third parameter to be specified.
 
New environment variable:
 
PFKEEPIXVAL=OFF When returning to the "index by" prompt in *clerk,
   the value previously entered will be cleared.
 
When returning to the "select index" prompt, the highlight is now back at the
last index selected.
 
If the highlight was not on index "A", you could not press "A" to select it.
(All other valid letters would work.)
 
Demand indexes can only search on the major key. (This has always been the
case.) Change the prompts to reflect this.
 
The "kill data / retain formats" could corrupt 4.5-style automatic indexes.
 
Numerous fixes for 4.5-style index "deleted key not found" and "node_address"
errors.
 
The PRINTER TYPE command closed the printer, rather than just changing the
type.
 
When entering sort information, the popup window showing the fields could be
missing the sides of the border.
 
When creating a new qualifier in ddefine, 4.5-style automatic indexes would
not be created correctly.
 
The latest version of SCO Unix changed the syntax of the "doscp" command.
Xferdos now handles the new syntax. Added "PFXFERDOS=OLD" to allow it to
run on systems with the old syntax.



04.05.06 Release Notes
 
Numerous fixes for "deleted key not found" errors.
Especially for indexes with large numbers of duplicate keys.
(Unix) fPCopy was missing the "rename" program.
(rclerk) The following combination of events could cause rclerk to crash:
* rclerk is run without a filename on the command line.
* File has automatic and input processing.
* Do not do anything that displays a record on the screen.
* Press <break> from the rclerk menu.
(deddef) If you copy edits from another file, you could not test the
new edits until you entered update and re-saved the edits table.
(ddir/dprodir) After killing the key/data files, the displayed
record count would not reset to zero.
(ddir/dprodir) If you manually edit the fp/lib/config file to contain
a line longer than 80 characters, the filePro configuration editor
may crash. Length increased to 200. (Printer definitions may
require longer than 80.)
(DOS network, dmoedef) You could not delete the output format
currently displayed in the editor.
(dxmaint) Dxmaint would not recognize 4.5-style indexes that had been
sent via fPTransfer.



04.05.05 Release Notes
 
If you broke out of update mode on a non-filePro file in *clerk,
the record was deleted.
 
dreport now recognizes "-tf" flag. rreport now recognizes and ignores "-ty"
and "-tf" flags.
 
If index.A is built on multiple fields, and user presses ENTER on one of
the secondary fields at the "select index" prompt, clerk would crash.
Other indexes were okay.
 
FIELDNAME(), FIELDLEN(), and FIELDEDIT() can now take associated fields,
rather than just real fields. [ie: FIELDNAME(lookup,"a0)") ]
 
If you CALL a table with several lookups, and the table has a syntax error,
filePro could have crashed.
 
An invalid demand index would crash ddir.
 
Multiple index fixes for "deleted key not found" and dxmaint speed.
 
If you break out of creating a script file in dmakemenu, you cannot break
out of the menu.
 
Script file may not be made executable under Unix.
 
VIDEO OFF did not always work under Unix when used with PUSHKEY.



04.05.03 Release Notes
 
* (SCO Unix) Count the multi-screen console as a single user for licensing.
*
* (Unix/Xenix) Fixed problem of @ID/@CB/@UB returning a number rather than
* the name if there are too many open files.
*
* Demand indexes built with associated field as a non-major key did not set
* @AF correctly.
*
* (Unix) PUTENV command prevented further use of the SYSTEM command.
*
* The F6 popup list of indexes in dcabe's lookup editor wrapped across the
* right side of the screen.
*
* There was no space after the field name in the "index by" dialog if the
* field name was 40 characters long.
*
* Browse using a demand index or a pre-4.5 automatic index would repeat the
* first record indefinitely.
*
* (DOS/LAN) If you SHOW a message starting with "\r\K" (no spaces
* around the "\r") the program would abort with a "DOS/4GW error" message.
*
* (DOS/LAN) If you install filePro into a subdirectory several levels
* deep (such as D:\PROGRAMS\DOSAPPS\FP) and use forward slashes in your
* menu command line ("/fp/dclerk") the program will abort immediately
* with a "DOS/4GW error (2001): exception 0Dh" message. This is a bug in
* the DOS/4GW startup code.
*
* (Unix) F8/Options dialog in dmoedef required a triple-break to cancel.
*



04.05.02 Release Notes
 
* 04.05.02 12/03/96
*
* Adding records to a non-filePro file could result in erroneous
* "deleted key not found" errors.
*
* In add records mode, the freechain was locked during execution of
* automatic processing. If user input was needed, this would lock all
* users out of adding records until the input was supplied.
* Automatic processing is now run after the freechain is released.
*
* It was possible to get an "error 2001 (page fault)" under DOS or a
* "segmentation violation" under Unix if all the following conditions are met:
* 1 - You have an index built on an associated field in the current file.
* 2 - You are in index mode on that index.
* 3 - You do a lookup to yourself based on the same index.
* 4 - This is the first time executing the lookup.
*
* DOS/LAN The screen did not redraw correctly if you canceled the options
* dialog in printer maintainence.
*
* The column offsets could be improperly calculated in a popup window
* if the field length caused the field to extend past 80 columns.
*
* Deleting the highlighted record in a browse lookup window with the pkeep
* option set could cause the new highlighted record to be displayed twice.
*
* Using inverse video codes around a key code at the start of the message
* in a show statement could result in a "page fault" under dos or a
* "segmentation violation" under UNIX. This same bug existed in 4.1, but
* the 'damage' was undetectable.
*
* There was a token table incompatability between tables produced by rcabe in
* 4.5 and 4.1 if there was more than one import or export statement in the
* table.
*
* If you moved an index to a different drive, everything was okay until
* you went to dxmaint to rebuild it. dxmaint would build it back on the
* default drive (and not get rid of the one on the other drive).
* This caused "duplicate file" errors. Dxmaint now finds and rebuilds
* the existing index.
*
* -bg -bs flags functionality restored in UNIX *report
*
* fixed cosmetic problems in index search dialog
* also now use index comment if only one field in index
*
* modified index search dialog
* if PFDLGENTER is TRUE
* ENTER now performs a SAVE only if exiting last field
* or if field just exited was empty, otherwise is does a
* CDWN (cursor down)
*



Automatic Processing Tables
When compiling processing tables that rely on dummy fields defined in an automatic processing table having a name other than " automatic " (UNIX) or " auto " ( Windows), you need to specify the
automatic processing table name with the " -y " flag when defining the processing table.
Example:
If you are using dummy field " aa " to keep track of a subtotal in a report1 and you are going to run rreport with a different automatic processing table named " autotot " (which defines dummy variable
" aa " ), then you must compile the report processing table as follows.
rcabe filename report1 - y autotot
Or, put another way:

If you are using "aa" to subtotal, and are going to run rreport with an automatic processing that does not define "aa", then you must also compile with an automatic table that doesn't define "aa". (Or
vice versa.)
Of course, your best bet is to simply compile with the same automatic table.
See PFZEROLENWARN to turn off assigning to a zero length field warning



Blinking Text
Windows does not support blinking text for native console applications, such as the native Windows version of filePro. Instead, the attribute bit that DOS uses for blink is used for high-intensity
background color by windows.
Note: DOS can set the video to either mode, but it defaults to blink. Windows will set it for high-intensity background, disabling the blink feature for use by filePro.



Browse and Creation Password
Keep in mind that a browse will not display fields in the current file if the field is not included on the screen when the filePro file has a creation password.



Button Problem
When using fileProGI, buttons either disappear or are hidden when using the " cls " . This only occurs with user prompts for browse lookups, and only appears to be a problem if you start the
processing with:

cls("something") ; show "string with button definitions"

The simple workaround is to split the cls() into its own line:

cls("something")
show "string with button definitions"

Note: "show" can also be "show (row,col)", "showctr", and any of the other show variations.



DOS4GW
*********** IMPORTANT For DOS and LAN users (non-Native versions) ********************
You must make sure the supplied DOS4GW.EXE is in your PATH. We are also including with this distribution three utility programs for DOS4GW as well as a short text file DOS4GW.DOC which
describes their use. These files will be placed in your program directory by the installation program. You should move them to whatever location you desire.
Because of the way the DOS4GW 386 DOS extender works - the maximum allowable filePro command line has been reduced from 127 characters (the maximum allowable under DOS) to 120
characters. This involves all command lines, whether run from a DOS prompt, or system command, or menu, or batch file, which run filePro versions 4.5 through 4.8 programs. It does not affect
command lines that run other programs.
 
Note: The above does not apply for Windows Native versions of filePro. If you are using these versions, the DOS4GW program and related documentation can be removed. Non-Native distribution
was discontinued with version 5.0



Emulation Problems on LINUX
In some cases, graphics characters and colors may not be properly displayed for filePro. This is due to system configuration and can be corrected by doing the following.

Edit this file /etc/sysconfig/i18n to look like this
LANG="en_US.iso885915"
SUPPORTED="en_US.iso885915:en_US:en"
SYSFONT="lat0-sun16"
SYSFONTACM="iso15"
Logout and then back in and make sure your term is linux.



fppath
Contents of this section   

Description
Environment Variables [link]
Path Environment Variables
fppath

Description:
FilePro uses many environment variables to alter the way it functions. These variables are recognized by the various filePro programs. They are stored in the environment as would be any
environment variable. FilePro environment variables can also be stored in a special configuration file you can maintain with an editor found in filePro. This file is called " config " and it lives in the " fp/lib
" (fp\lib) directory. It is edited with the Configuration Editor found within the FilePro Directory choice on the filePro Plus Main Menu.
Path Environment Variables
There are four filePro environment variables that cannot be set in this file. (Actually, PFDSK may be set in the filePro config file, but you would do well to treat it like the other 3 PATH variables and set
it outside of the config file.)
These 4 variables are loosely called the filePro PATH variables since they tell filePro programs where to find the filePro program directory "fp" (the filePro executables and configuration files are in this
directory), and the "filepro" directory (your applications and data are in this directory).

 
PFDSK Sets the filesystem

PFPROG Sets the program directory (by appending "/fp" or "\fp").

PFDATA Sets the mount point of a filesystem

PFDIR Sets the data directory (by appending "filepro"

 
To locate the filePro program directory (fp):

Unix   - $PFPROG/fp
Windows - %PFPROG%\fp

To locate the filePro data directory (filepro):
Unix   - $PFDATA$PFDIR/filepro
Windows - %PFDATA%%PFDIR%\filepro

Then filePro will scan for key/data/index files by looking in the directories listed in PFDSK, substituting each entry for PFDATA above.
/etc/default/fppath

Under Unix, there is a special filePro default file (/etc/default/fppath). Under Windows, the fppath file will be located in the /fp parent directory. This file contains four lines and may look something like
the following:
 
       /u/appl
       /u
       /appl
       9eaNE%WWFYbfeL
This file represents the three variables, PFPROG (first line), PFDATA (second line) and PFDIR (third line). If they are set, the environment variables themselves OVERRIDE this file  s contents, but in
their absence, this file dictates where filePro programs look for their own libraries and where these programs look for your data files. Again, the first line is where the programs live, the combination
of the second and third line show where the filePro directory lives. You append "/fp" to the first line and "/filePro" to the second/third lines separated by a /.
The fourth line of this file is an encoded site password. This password is set or unset on the filePro Utilities Menu. ("util"). If this line is blank, there is no site password.
NOTE: When setting a site password, keep in mind that this will affect your processing tables so make sure that you dont lose the assigned password and when moving from one system to another
that you set the same site password.



Hide Indexes
5.0 Enhancement - When using the index maintenance program, you can specify which indexes you want to hide from users while in the " Index Selection " menu for " Inquire/Update/Add ".
After selecting an index, press [ F8 ] to access the extended features " Index options " popup screen. You should see a screen as depicted in figure 1.
 

Figure 1 - Index Options
Press " Y ", [ ESC ] to hide the index for " Inquire/Update/Add ", or press " N ", [ ESC ] to unhide the index.



This may help if you find that indexes are rebuilding slowly.
To speed up index building, set the following config var:
    pfnumixbuild=10000 (10 <= n <= 128000)
    PFBIXBUILD shouldn't be required to be set
    PFNUMIXBUF can also be set but isn't usually required.
    PFOLDIX should not be set



pfdsk
This is a path environment variable that should be set in all cases to avoid searching all available disk drives and to avoid errors when searching for filePro files. Refer to the Environment Variables
section of the manual for syntax. By setting "pfdsk", you can avoid searching the floppy drives.



License Manager
Version 5.0.15 / 5.6.00
License Manager is implemented to allow for better control of user counts and to address licensing requirements for host and mirror/backup servers.
Environmental variable PFLMHOST tells filePro where the license manager resides.  The values of PFLMHOST must match the register license (licfp.dat) for the machine that it resides and runs on.

Syntax

PFLMHOST=address:port

Most of the licenses will use the default port of 6556. If the address is the local machine and the port is the default, PFLMHOST does not need to be set.
 
Example:

Machine 192.168.0.1 is the host and license server. PFLMHOST need not be set.
 
Machine 192.168.0.2 is a backup/mirror machine.
Set PFLMHOST in the starting environment or the config file for filePro of machine 2 as follows.
PFLMHOST=192.168.0.1:6556 (on the backup/mirror machine)

 
filePro will operate on each of the machines using the license server on machine 1.
 
NOTE: User counts per product will be accumulated as if all programs were running local. Should the host server (machine 1) be "out of service" machine 2 will run in a seven (7) day grace period using
the backup/mirror (machine 2). If you install a new machine, you will need to request a new license with new machine information. By using the license manager, you can utilize one (1) license on both the
host and backup/mirror machine and still be in compliance with the filePro licensing policy of one license per server since the 2nd machine is a mirror of host machine and not an active machine. Should the
backup/mirror machine be put into an active non-mirror/backup status, a valid license must be obtained from www.fptech.com website or by calling our sales office at 1-800-847-4740.
 
License Server Program
The license server will look for the license file %pfprog%/fp/lib/licfp.dat. Make sure that you have downloaded and saved the license file in the right location before attempting to start the license server
program.
 

OS Program Name
NIX fplmserver
Windows 98 fplmserver.exe
Windows NT fplmservice.exe

 

Starting the License Server Program

You can start the license server program from a terminal window command prompt on NIX and Windows systems by changing to the directory where the license server program resides and starting the
license server program.
 
Examples:

AIX / LINUX / UNIX
cd /u/appl/fp
nohup ./fplmserver&
 
Windows
cd \appl\fp
fplmserver

 
Although the above will start the license server, this would only be used for testing or troubleshooting to make sure that the license server will start and that you have a good license in the right location
e.g. %pfprog%/fp/lib/licfp.dat.
 
LINUX/UNIX
For LINUX and UNIX systems, you will typically want to autostart the license server by creating a script that can be launched during the system boot process or by including the required lines in an
existing script that is called during the boot process.

cd /u/appl/fp
./fplmserver

A sample script named "startfplmserver" is included in the filePro distributions for UNIX and LINUX systems in the ~/fp directory containing the above lines.
Modify the first line of the sample script to change directory to your filePro program directory and then call this script from a boot startup script. The location and filename of boot startup script varies
depending on the Operating Systems version and particular distribution. Refer to the operating system documentation for details on how to autostart scripts. Some typical locations/filenames for autostart
scripts are provided in the following table.

 
Redhat/Fedora/SuSe /etc/rc.d/rc.local
Gentoo /etc/conf.d/local.start
SCO Unixware /etc/rc2.d/userdef
SCO OSR5 and OSR6 /etc/rc.d/8/userdef

 
Windows NT, 2000, 2003 and XP
Although you can use "fplmserver.exe" to start the license server on Windows NT type operating systems, the license server is normally installed as service name "fplm_service" during the filePro install
and uses the "fplmservice.exe". Since the license file "licfp.dat" will normally be copied after the installation is complete, the service will not automatically start after the installing filePro on new
installations. Once you have placed the license in the appropriate directory e.g. ~/fp/lib/licfp.dat, you can start the license server by going to the Windows Control Panel, Administrative Tools, Services.
Find the fplm_service and click on "start". You should see "started" in the service status.
 

Installing the filePro License Service from a command line using "sc.exe"
In some instances, you may have a need to install the fplm_service as a service on your server without doing it during the filePro install. This is true for NETWARE installations where the service would be
installed on a Windows box that serves as your filePro License Server or in cases where you are temporarily using a Mirror/Backup server as your filePro License Server.
Also, some anti-virus software will prevent the license service "fplm_service" from being created during the install. Use this section to install the service when the "fplm_service" is not shown as a
service in the Windows "Service" panel.



Microsoft provides a command line utility named "sc.exe" that allows you to start a service.
To install the filePro License Server from a command line, do the following.
sc create "fplm_service" binpath= "c:\fp.56\fp\fplmservice.exe c:\fp.56\fp"
where "fplm_service" is the service name and "binpath" contains the full path to "fplmservice.exe" executable and the path parameter "c:\fp.56\fp" identifies the location of the \lib directory containing the
license file "licfp.dat".
Important: You need a space after each equal sign when using the sc.exe utility program.
The "sc.exe" allows you to manage the service based on the parameters that you pass to it. When executing sc.exe without parameters, the syntax and acceptable parameters are identified for things like
Stopping, Pausing, Removing and Querying the service.
Workstations - Connecting to a Windows NT License Server
 
Once the License Server is running, you will need to identify the server in your workstation startup file(s). The PFLMHOST variable is used to identify the server name or the server IP address as follows.
 
 set PFLMHOST=servername:6556
 
where servername is the Windows computer name where the filePro license server is running and "6556" is the reserved port number.
 
 set PFLMHOST=xxx.xxx.xxx.xxx:6556
 
where xxx.xxx.xxx.xxx is the statically assigned IP address of your server and ""6556" is the reserved port number.
 
Recommend using the "servername" rather than IP address since the license server will be found whether the server IP address is either statically or dynamically assigned.

Stopping the License Server Program
 
LINUX and UNIX systems
%pfprog%/fp/stopfplmserver contains the following.

kill `cat /u/appl/fp/lib/licfp.pid`
Note: Gentoo LINUX, add stopfplmserver to file /etc/conf.d/local.stop to allow you to stop the server.
 
Windows NT
Go to Control Panel, Administrative Tools, Services and select fplm_service. Click on "Stop" to stop the service.
 

License Server Logs

Located in the %pfprog%/fp directory is a directory called logs. In logs is a file for server logging configuration.

servlog.cfg

Default:

# type, level [,filename] [,max_size]
# type could be CONSOLE,FILE,ROLLING,or DAILY
# FILE,ROLLING, and DAILY require a filename
# ROLLING requires a maximum size
# level could be FATAL,ERROR,WARN,INFO, or DEBUG
# lines beginning with # are comments
# blank lines are skipped
# keywords are case-insensitive
# forward slashes (/) must be used for path separators
CONSOLE,FATAL
# ROLLING,DEBUG,server.log,60000
NEWFILE,DEBUG,server.log
DAILY,WARN,server_warn.log

ROLLING indicates that file will be renamed to a backup name (using the current timestamp) when it exceeds the specified size (60000). A new file with the specified name will then be opened.

NEWFILE indicates for server to remove the file and create a new log file when the license server is started.

By changing the name of servlog.cfg file to servlog.cfg.sv the server will eliminate creating any log files.

IMPORTANT: An update or upgrade of filePro will overwrite the servlog.cfg file or reinstall it if it does not exist or has been renamed.

Turning off Logging
Once you are comfortable with the licensing you can turn off the logging by commenting out the DEBUG line in the log file. You should leave the WARN line though.  You can also change the logtype from
NEWFILE to DAILY.  NEWFILE causes the server to restart the log file each time the server is started. Daily causes the server to restart the log file each day when the server is continuously running.
 



Take these steps to isolate a license problem when running filePro on Windows.
 
Go to the services of windows to stop or make sure the service is stopped.
Start - Control Panel - Administrative Tools - Services
Look for the entry called fplm_service
If the service is not already stopped, Right Click on fplm_service and select Stop then proceed to the next step.
 
Go to the ~/fp/logs directory where filePro is installed.
Edit the file called servlog.cfg
Make sure the lines towards the bottom are not commented out

NEWFILE,DEBUG,server.log
DAILY,WARN,server_warn.log

Save the servlog.cfg file
 
Then go to the services of Windows to try to start the license service.
Start - Control Panel - Administrative Tools - Services
Look for the entry called fplm_service
Right Click on fplm_service and select Start
 
If the service does not start, read or send the logs that are located in the ~/fp/logs directory of your installation. These logs will tell us what is not proper about your
license or configuration.



Map the drive of the server to the workstation.  C on the server may be F on the workstation.
Copy the FullDev.bat located in the c:\appl directory on the server to WS.bat for use by workstations.
Edit the WS.bat and Add after the first line
set FPLMHOST=88.118.118.88:6556
NOTE: Replace the IP address with the correct one for your server.
This tells the Workstation to use the machine at that IP address as the server license manager and to connect to port 6556 (the default).
Also change all references of the server Drive letter to the new Workstation Drive letter.    C on the server may be F on the workstation.
Change the short cut (or create) to use the WS.bat instead of the FullDev.bat
-------------------
When a Windows workstation cannot connect to the License Manager, it means one of 3 things.
1.  Make sure the license server is running on the server.  Does filePro run from the server properly?
2.  Make sure the bat file that launches filePro on the workstation has the appropriate environment setting of 'set PFLMHOST=serveraddress:port'   The port is set to 6556 on all filePro licenses.
3.  Make sure that the port (6556) is not blocked by either the operating system or by a firewall.
On the system where the license manager is running, do:
    telnet localhost 6556
If it connects (screen clears), use ctrl-] (control right-bracket) to get to the telnet promnpt, and then "q" to quit.
Then, from the workstation system, use:
    telnet  <ip_address>  6556
If both these telnet tests work properly, then the workstation connection should be made to the license server.



Syntax
 
Contents of this section

Description
Clear Screen Example
Variables
Literal Values
Use of [ ]

Description:
Syntax is the set of rules by which a program is made to operate properly. Any function, command or feature can be considered a " program " that needs to be operated correctly - by its rules.
Clear Screen Example
For example, the syntax for the "CLEAR SCREEN" function used on filePro processing tables is:

 
cls   Clear the entire screen.

cls(s)      Clear the screen starting from line # "s" to the bottom of the screen.

cls(s,n)   Clear the screen from line # "s" for "n" lines.

 
In other words, cls("10","5") would clear the screen starting at line # "10" through line # "14".
Variables
Generally, variables are used to indicate places where you will substitute your values. For instance, the " s " represents your " starting line " and the " n " represents your " number of lines to clear "
. You can usually determine what syntax instructions mean using your common sense and intuition. They are not meant to be obscure, their purpose is to be very clear.
Literal Values
In general, within filePro processing tables, literal values are placed inside quotes. If you mean to use the number " 10 " as in the above example, it must be in quotes. If you mean to use the contents
of field 10, you would just use 10. All filePro syntax is written with this as a basic assumption.
Use of [ ]
Items within [ ]  s are optional, i.e., the function will work with or without your substituting values for these items.
Example:

mdy[y][/] shows that "mdy", "mdyy", "mdy/", or "mdyy/" are valid constructions.



FilePro and Laserjet Printing
 

by
Jim Asman

Spectra Colour Svcs, Ltd.
Vancouver, BC

jim@spctra.wimsey.com
 

The filePro directories "ljet" and "widths" described in this article are on The filePro Bible CD.
They are in the directory ...\fpfiles, and must be copied to your system in order to be used.

 
 

Introduction
 
The modern laser printer can add much to filePro output but, as the "hplaser" print code table is ostensibly having the laser emulate a line printer, we really need a new table. Aside
from deciding on a structure to make some logical sense out of the 256 codes in filePro 4.1, programmers must take a whole new approach as to what the printer can do for them.
 
This article is an attempt to build a useful print code table for both Hewlett-Packard LaserJet III and LaserJet 4 printers (while keeping an eye toward future developments). Because
the LJ4 has many more internal fonts than the LJ3, and the LJ4 fixed pitch fonts are now scalable with different typeface numbers than those on the LJ3, I have worked up separate
tables for each printer. This article is NOT intended to be a tutorial on the use of the LaserJet, as HP has material to do that very well, and the reader is well advised to get the PCL
Technical Manual, if that hasn't been done already. You can use it quite effectively on a "need to know" basis, and get into it as deeply as you wish.
 
It is probably safe to assume that the majority of filePro applications running on a laser printer today are using either the Courier, lp.16, or another monospaced font. The printers,
though, are capable of much more, and with a little diligence you can make your filePro reports and forms look more like they came from a word processor than a database. In the
case of the LaserJet Series III and more recently the LaserJet 4, using the internal scalable fonts creates possibilities that we would never consider using a dot matrix printer, and
further, the added graphics capabilities by themselves can change the "look" of the output entirely. If you want a fat line, a skinny line, a double ruled box, just name it and you can
probably do it without very much effort. The HP-GL/2 plotter language can simplify drawing boxes and other graphic shapes, but that will have to be a topic for another time.
 
 

First Things First
 
Because of the sheer volume of useful printer codes (and maybe that should be rephrased to the codes that you do use), an orderly definition of the printer codes in the table needs
to be established. In using a line printer, most of us probably never embrace more than a dozen or so printer codes in our day to day doings, but with the laser, the current limit of
256 codes on the table with filePro 4.1 is already restrictive, and that will only get worse as new printer features become available.
 
To this end, abandoning the 54 "universal" codes and starting over from scratch may be worthwhile just to maintain structure in the table itself, but recognizing that many people
have built existing applications relying upon the supplied tables, I haven't changed the functionality of any of the codes at the beginning of the "hplaser" table, other than the
printer init (code #3), which now resets the printer to the control panel settings, sets the PC-8 symbol set for both the primary and secondary fonts, and nothing else.
 
It makes sense to lay out the printer code table in categories, much like Hewlett-Packard has done with their reference materials. So let's go through it in some order.
 

Job Level
 
There are any number of printer codes that we may need to issue to the printer before the first character is ever printed and which are generally only sent once during the print run. I
guess we have always thought of this as the printer initialization, and there are a lot of possibilities. We need to reset the printer first, define the page size, number of copies, margin
sizes, page orientation, initial font, etc., etc.
 
All of this can be amalgamated into a single filePro code, but because the number of permutations becomes so large, I suggest that we use a generic printer init (code #3) and then
get into the specifics with the form init . An implicit assumption made through all of this discussion is that we are not relying upon the lp interface script to establish any of the
printing parameters, and obviously, if we have a printer reset code in our filePro printer init , the goings on of the interface script become academic. Certainly, any printer setup that
you can use from the interface script is something that filePro doesn't have to deal with, but I see that script as something largely hidden and soon forgotten as to what it's doing.
 
Logically, then, we build our form init code by assembling other codes from the table. This need not be complex at all, and probably would only use a collection of a few codes put
together most of the time. The printer reset code sets all the printing parameters to the values set at the printer control panel. Unless you are the only person using the printer, and
maybe not even then, it is wise to assume that the values at the control panel may have been modified by yourself or others and should be set in your initialization of the job. Has
anybody set the number of copies at the panel to some number other than one, and not reset it before the next job was printed? I know that I have. To be safe then, our form init
should contain codes to set the number of copies, symbol set, font selection, paper source, page layout, and simplex/duplex printing, if you have a duplex printer.
 

Page Layout
 
Take a look at code 55. $1b &l2a0o6d3e60F
| | | | | |
$1b Sequence start---------------| | | | | |
2a Letter size paper--------------| | | | |
0o Portrait orientation-------------| | | |
6d 6 lpi------------------------------| | |
3e Top margin of 3 lines----------------| |
60F 60 Print lines--------------------------|
 
 
With this code we are telling the printer we have letter size paper, want to print 6 lines per inch, a top margin of 3 lines (1/2 inch), and a text length of 60 lines (10 inches). The PCL-5
language has no definition for the bottom margin as it is implied by the size of the top margin and text length. In this case, starting with an 11 inch sheet, we use 1/2 inch on top
followed by 10 inches of text, thus we are left with 1/2 inch at the bottom. So, the bottom margin is really defined by the text length and top margin. Look at the other codes for 8 lpi
in portrait and 6 lpi & 8 lpi in landscape mode, and study them until you understand the numbers. It's quite simple really.
 



Given the relative ease of formatting the page on the printer, I think that all filePro forms and reports should be defined as having the same number of lines to print as there are lines
per page. The printer can do the page formatting quite nicely, and it saves filePro from having to send blank lines to fill the page.
 

Font Selection
 
Before discussing the selection of fonts, let's define just what a font is, to avoid confusion. Many of us, myself included, will use the words font and typeface interchangeably but,
as the terms are used with a laser printer, they are not the same thing. In fact, the typeface is just one of several characteristics that describes a font. Quoting the HP Technical
Manual...
 

"A font is a set of characters that have similar characteristics. A font has an assigned name, typeface, and is further described by its spacing, height, pitch, style, stroke
weight, symbol set, and orientation."

 
While this may seem apparent, it is important to understand that if we want, for example, a Times 10 point medium upright proportional font, we would need a print code:
 
$ 1b (s1p10v0s0b4101T
| | | | | |
Sequence start--------| | | | | |
Proportional Spacing----| | | | |
10 pt----------------------| | | |
Upright(not italic)----------| | |
Medium stroke(not bold)--------| |
Typeface(4101 is Times)-------------|
 
 
Then later, to get the same thing in bold, we would only have to issue the "bold" code $1b (s3B). By giving the bold command, we haven't asked the printer to just modify the
existing font, but are actually requesting a totally different font. So changing any of the font select parameters is changing the font and, if the printer doesn't have that font, you may
get some surprises.
 
A font is selected by the printer based on its characteristics in the font select command, and the printer will do its best to oblige but, if there is no font that matches exactly, then
there is a pecking order of the characteristics that will determine which font is picked. In order of highest priority, the determining characteristics are as follows:
 
Symbol Set
Spacing(proportional or fixed pitch)
Pitch(cpi--valid only for fixed pitch)
Height
Style
Stroke Weight
Typeface
Location
Orientation
 
This is all covered quite well in the technical manual, and it is worth the time to study it.
 
In our printer code table, codes 88-97 contain font selects for all of the LaserJet fixed pitch fonts, while codes 101-128 are font selects for 10 point proportional fonts for all the
internal typefaces supported by the printer. Codes are provided for both the primary as well as the secondary font. Primary what?
 
The printer can maintain two distinct font select tables, with one of them being active at any given time. If you look at the font select codes in the table, you will see the codes for
both primary and secondary. They differ only in the start of the code sequence. What you can do is have the two fonts designated and bounce back and forth between them by
alternately sending codes 99 and 100.
 
These two tables needn't have anything in common, but they can. The secondary font could be the same as the primary, but italic instead, or could be completely different in every
respect. Do whatever is most advantageous to you.
 

Symbol Sets
 
Although many of the LaserJet fonts contain well over 500 characters, we can only access a portion of them at any one time. The symbol set that is selected determines which
characters are available and their order at any given time. Symbol sets are only a maximum of 255 characters in length, so you can see that if you only ever used one set, you'd be
missing half the fun. The PC-8 set, though, has most of what you are likely to need in day to day applications.
 
As the symbol set has the highest priority in font selection, you want to make sure that the font you are selecting supports the symbol set that you've chosen, or quite likely you'll
get something other that what you had expected. However, if you are using the LaserJet internal scalable fonts, you probably won't have to worry about that, as they support many
different sets. On the other hand, the LaserJet internal bitmapped fonts (i.e., courier and lp.16 on the LJ3 and just the lp.16 on the LJ4), support far fewer, and if you were printing a
bitmapped font and changed to a symbol set not supported by the font, you will end up with another typeface. This is all in the technical reference manual, but just to raise the level
of paranoia ...
 
Using "vi" or your favorite editor, type in the following, which selects the lp 16 pitch font with the PC-8 symbol set and then changes midstream to the Desktop Symbol Set. For the
purposes of this text, I will use "^[" to indicate the escape character, but keep in mind that you would use chr("27") in processing, or $1b when defining a printer code. To insert the
escape character using "vi", type "CTRL-V" followed by the escape key. When entered, it will appear as the two character sequence "^[" on the screen, but it is just a single
character in the file. Send the file to your printer and see what you get.
 
[̂(10Û [(s0p16.67h8.5v0s0b0T
Carrots are divine
You get a dozen for a dime



[̂(7JIt's maaaagic.
...B. Bunny

 
 
Food for thought, yes?
 
If you find you have an application where you regularly want to change back and forth from one symbol set to another, set it up with your primary and secondary fonts, leaving the
other font attributes the same.
 
Just an aside here: in the print code table, codes 32-54, which are on the universal table, are various odd characters and others for drawing lines and boxes, some of which are not in
the PC-8 set. If you look at them, you will see that the codes for a few, change symbol sets for the one character, and then change back to the PC-8 set. Of course, the assumption is
that you are using PC-8 to begin with. If you are using any other set and call one of these codes, you could be in for some surprises after the code is finished; or in the case of those
that are in the PC-8 set, you would almost certainly get a character other than the one you planned.
 

The Problem
 
Unfortunately, most of the goodness of the laser printer implies the use of proportional fonts and precise positioning of text on the page, but filePro output is designed for a fixed
pitch font. I know that I didn't buy a laser printer to print courier fonts. filePro expects that any character position, let's say character 23 on the line, will always be in the same
physical location along the line, regardless of what may have preceded. This is fundamental in output formats if fields are to line up in columns. That assumption certainly cannot be
made when using proportional fonts. Even mixing 12 and 16 pitch monospaced fonts within a box has unwanted ramifications. So, in all likelihood, any existing output format that
you now have which uses a fixed pitch would fall apart at the most fundamental level; i.e., to get the fields themselves to line up on the left, when using a proportional font. Our task
is largely to align the fields and to take care of any alignment required within the field. Centering headings and the like also requires some attention.
 
Hewlett-Packard's PCL-5 printer control language provides us with all the tools we need to make use of the printer's many features, and it is, of course, the basis for the filePro print
code table. At this point, let's have a look at why output formats can have problems once we start using the generally nicer looking proportional fonts.
 

Line Level
 
First, on a given line, we define any number of fields to be located at fixed positions on the line and, when a report is printed, these fields will all line up on the left, leaving us with
columns on the page. Pretty standard stuff. We know that when this scheme is used with a proportional font, the columns won't line up, so rather than rely upon the amount of
space previously consumed on the line to establish where a field will be printed, we will issue a code that positions the field at a specific location on the line, independent of what
else may be printed on that line.
 

Field Level
 
There are three types of fields from our standpoint: left justified , aligned , and right justified . Left justified is our typical field where everything is pushed to the left: names,
addresses, and the like. An aligned field usually would be a numeric field that is aligned on a decimal point or some other character: a dollar amount with a ".2" edit, perhaps. As the
name implies, in a right justified field, all data is pushed to the right: integer numerics and perhaps text that for whatever reason you want to line up at the end of the word rather that
the beginning.
 
All fields in filePro with fixed pitch fonts are really left justified, and any alignment that is required is taken care of by the "edit" that appropriately pads the field on the left or right
side with spaces. It is, though, important that you conceptually understand the differences between them to make it work with the Laserjet.
 

Using Printer Codes
 
The LaserJet makes use of a wealth of PCL-5 printer codes to position the printer "cursor", select fonts, draw graphics, and on and on. The thing that makes it really interesting for a
filePro programmer is that, aside from the escape character, chr("27"), that precedes every HP printer code, the rest is pure ASCII text. Actually, that is not quite true; the codes to
activate the primary/secondary fonts are also non ASCII, chr("14") and chr("15"). This means that we can very easily put a printer code into a variable and integrate it right into our
data, if appropriate, put it right on the output format as text, or in a code on the filePro printer table to achieve our goal.
 

Cursor Positioning
 
You can consider an 8 1/2 x 11 sheet of paper to be a 2550 x 3300 matrix of addressable dots, which translates to our 300 dpi but, as there are some margins imposed by the printer,
our workspace isn't quite that large. We can direct the printer to start printing at any one of these locations, so you can see that cursor positioning is very precise.
 

Absolute Positioning
 
Before we go any further, let's get one term or acronym defined. CAP. This stands for "current active position", which simply means the place on the page that the next character will
be printed, and is very analogous to the current location of the cursor on your monitor.
 
The code to position the cursor works like this.
 
[̂*p200x600Y

 
This instructs the printer to move the CAP to a point 200 dots along the horizontal axis from the left margin and 600 dots down from the top margin. We can move only to the
horizontal position by using ^[*p200X or only to the vertical position with ^[*p600Y. Note that only the last letter in the code is capitalized and that, when the command is
combined, characters in the middle of the string are lower case. Further, these are absolute positioning commands, i.e., the position 200X means 200 dots from the left margin and
600Y means 600 dots from the top margin, regardless of where the CAP was at the time the command was issued. So ^[*p200x600Y is a unique position on the page. If you issue
^[*p200X, only the horizontal position is changed and the vertical location remains the same, and ^[*p600Y only affects vertical positioning.
 

Relative Positioning
 
We can modify the previous example to ^[*p+200x+600Y, which will direct the cursor to move relative to the CAP 200 dots further to the right on the X axis and 600 dots further
down the Y axis, or ^[*p-200x+30Y would back up 200 dots to the left and move 30 dots down the page. The only difference is the inclusion of the "+,-" signs in the command.
Relative positioning commands can be positive or negative, meaning that you can back up on the current line and overprint, if you wish to do so. It is all very flexible. I should point



out here that, if you issue a positioning command that is beyond the bounds of the printable page, the new CAP will be at the printable margin.
 
Now how does this help us position our filePro fields? We only have to create filePro printer codes to create tab stops at regular intervals along the X axis. Ideally, we could have a
predefined code at every 10th dot or so, but there simply isn't room on the print code table. To cover a 10 inch wide line with codes every 10 dots would by itself require 300 codes,
so that is obviously out of the question at this time. The table presented here has a group of codes in 50 dot increments. While a tab at every 1/6th inch would seem adequate, you
may find that positioning fields onto a preprinted form may require a finer resolution. When we define the output format, the appropriate printer code to position the field is buried
under the first character of each field. For this purpose, we want absolute positioning on the X axis and, if you look at the codes beginning at #200 in the filePro print code
numbering scheme, you will see there are enough codes to cover a 9+ inch wide line. As the positioning codes begin at 200, it is fairly easy to work out what code you need without
consulting the table.
 
With the codes defined every 50 dots (which is 1/6 inch), when you need a code that will position your field 3.5 inches from the left margin, you will know that code 221 (6*3.5 +
(200)) is the right one. We don't really need a code for a field that begins on the left margin, as the margin is automatically tabbed as it were, but you will find from time to time that
you want to insert a couple of print codes before a field that is on the margin. With the positioning code, we can insert the spaces without changing the field's location on the
printed page. That is really all that is required to line up the fields on the line. You may find that you want to change these values some to narrower tab stops, if necessary, to put the
fields exactly where you want them on the line, but this is a place to start. If our print code table could be of unlimited length, then we could have a tab at every dot position!
 
Even though the fields are now lined up into columns, we've still got a real problem with with right justified text and numeric fields. Using a fixed pitch font, filePro simply left pads
the field with spaces and then treats it like any other field. For positive numbers, this would work with proportional fonts if the width of the space were the same as a numeral but,
unhappily, they are different on any of the LaserJet fonts I have seen. There are two general approaches to get numeric fields aligned.
 
If there are no characters other than a space or a numeral before the alignment point in the field (that means no commas or leading minus sign), then there is a relatively easy way.
This means 10000000, 1000000-, 1.00, 1.00- are all OK, but 10,000,000 , -1000000, -1.00 are not. Given that restriction is acceptable, then we can treat it as a left justified field. There is
still a problem, in that the width of the space is different from the numeral, but HP has conveniently provided us with something called the Horizontal Motion Index or HMI.
 
The HMI is the mechanism within the printer that defines the pitch of a fixed pitch font. You could be printing a 12 pitch font and, by changing the HMI value, have the same font
print at 8, 10, 18, or some other pitch. I don't know why you'd want to do this, but you could. Now back to our story. When you are using a proportional font and issue a new HMI
value, only the width of the space is affected. So all we need to do is make the width of the space equal to that of the numeral and then our numeric fields will print just fine. The
HMI command goes like this: ^[&k###H (where ### is the desired width of the space in 1/120ths of an inch and is valid to four decimal places). If we know the width of the numeral,
some simple math will give us the correct HMI value (numeral width in dots * .4). Only the Times and Univers fonts were considered when the codes were created. It is quite likely
that many of these codes will coincide with some of the additional LJ4 fonts.
 
The numeral widths come from a width table for each font and point size which we will get to shortly, but in the meantime, you can look at printer codes 184-199 in the table that
make reference to the HMI and indicate the font(s) and point sizes where the numeral and space character widths will be equated.
 
Be warned that after you have issued an HMI command to the printer, it will revert back to its default setting when you subsequently change any font characteristics, such as bold
on/off, for example. To use the HMI command in your output (and this assumes that you have the HMI values in your filePro printer code table), you would put the appropriate HMI
printer code under the character just before the numeric field, as the first character in the field already has a cursor positioning code there.
 
If you must have commas (etc.) in your numeric field or you want to right justify a text field, then you will have to have filePro consult a character width table to establish the
printing width of the field and then issue an appropriate cursor positioning command. All of this will have to be calculated in processing, as the data contained in the field will
directly determine the positioning values needed for proper alignment. Essentially, we read the widths of all the characters in the field up to the alignment point, total them, subtract
that amount from the dot position on the line where we want the fields to align, and then have the field print beginning at that point. For example, if you want to align some text fields
on the right at dot position 2100, you would first measure the length of the field, assume real field #6, which works out to be 622 dots, let's say, then create a dummy variable that
contains ^[*p1478X{6, and that dummy field would be the field on the output format. Note that the dummy variable contains both the positioning code as well as the field's
contents. For numeric fields with decimal values, you would establish your alignment point at the decimal, rather than the end of the field. It isn't as complex as it probably reads, as
you will see in examples presented later.
 

Character Width Tables
 
The width table is but a list of the character widths for each font and point size. For the HP scalable fonts, we only need to have one table for each of the font attributes, i.e., upright,
bold, italic, and bold italic, etc. The character widths scale in direct proportion to the point size, so we can derive the width for any point size from a single table.
 
Hewlett-Packard was kind enough to send me the font metric files for the LJ3 internal scalable fonts. From that data, I have extracted into a filePro database the character widths of all
characters for all of the symbol sets that the LJ3 supports. This is a lot of info, and the key file is on the order of 250K and is really quite easy to use in your programming. Similarly,
the font metric files for the LJ4 were uploaded to the HP forum on Compuserve when the printer was announced, and those have been put into a filePro database as well. With a
significant increase in the number of internal fonts and supported symbol sets, the key file for the LJ4 is just under 2 meg.
 
If you want this information, you'll have to get the "cookBook" disk for this issue, as there is simply too much there to print, and I think it unlikely that anyone would have the
inclination to key it in anyway. More on the width tables and symbol sets in a bit.
 
I should probably interject here for those of you that are thinking about getting a laser printer, that Hewlett-Packard, aside from producing a fine printer, is really a good company to
do business with. Their customer support is absolutely outstanding. If the person on the phone doesn't know the answer, they will find out and call you back. Their technical
manuals are very well written, and it is clear that a great deal of care is taken in their preparation. I would personally need a very good reason to go to another brand. The LaserJet 4,
with its 600 dpi and increased font selection, looks pretty attractive right now. I recently bought one to have at home.
 
For non scalable fonts, you will have to have a separate table for each of the font attributes and point sizes that you want to use. If you have some other fonts for which you don't
have the character widths, send me some email, and I'll try to tell you how to measure them yourself, if I don't have the information somewhere.
 

filePro Output Formats
 
It is useful when inserting PCL codes into your output format, whether the code is integrated into one of your filePro variables or in a traditional filePro printer code, to consider
what is actually sent to the printer. Take a "form" that is defined as 75 characters wide and 60 lines long.
 
In theory, if you didn't put anything on the form, filePro would direct the printer to print 60 lines of 75 spaces, yielding a blank page. In fact, when filePro detects that there is nothing
else to print on the line, it immediately sends a linefeed.
 
Now, if you put a heading or other text on the form, that text simply replaces the spaces that would have been there otherwise. Similarly, if you put a field on the form, e.g., *1, the



spaces on the form are replaced by the contents of the field, beginning at the character position of the asterisk. It is important to understand that if you have a second field on the
same line that is too close to the first field, i.e., you haven't allowed enough room for the first field, then the first field will get truncated and overwritten by the second field.
Remember this. Its importance will become apparent later.
 
A filePro printer code, on the other hand, is inserted into the byte stream to the printer just before the character position it appears at on the line, in which case, we get our byte
count effectively lengthened for that line, assuming, of course, that the printer code is non printing. A printer code that actually prints a character and is defined that way in printer
maintenance will replace the "space" at the appropriate character position.
 
The point that I am making here is that any filePro output, be it a form or a report, is a long stream of bytes which arrives at the printer, and that by inserting various printer codes
into this stream at the appropriate spot, we can get our output formatted as desired. Ultimately, it makes no difference if the print code got into the stream, as filePro code, as a
variable, or directly on the output format itself. Things will be much tidier on your output format itself, however, if you can make use of a filePro printer code, but this isn't always
possible.
 
 
 

An Example
 
Before getting into the actual implementation of these concepts in filePro, we will create a raw text file using "vi" or your favorite editor and print it out as a demonstration. Enter the
text in Figure 1 into a new file. The grid showing the character numbers on the line shouldn't be entered, as it is only there for clarity.
 
The first section of the text prints data that is typical of (but abbreviated from) what many of us print in our day to day accounting. The very first line is the printer setup and
selection of the courier 12 pitch font. The fields begin at the margin for the name, character position 31 for the invoice number, and at position 43 for the amount. Note that the
amount field is left padded with spaces to fill a (8,.2) filePro field. This prints as we would expect. Refer to Figure 2.
 

 
 



 
Now, the second section begins with a font change to the Times 12 point proportional font. You can see that our output at this point is far from satisfactory. Let's get the fields in
line first. The left margin is OK but the other two fields need some work.
 
The invoice number begins at character position 31, which at 12 pitch translates at 300dpi to dot position 750, so, if we insert the printer code ^[*p750X immediately before the field
value, those fields will be aligned. If you don't understand where the 750 came from, we'll work it through. We want to know at which dot position the 31st character begins. At 12
pitch each character is 25 dots wide(300/12). The first 30 characters then consumed 750 dots(30*25), but as the PCL coordinate system begins at position 0, our 750 dots are filling
positions 0-749, conveniently starting char position 31 at dot 750. The same is true for the amount field at character 43, which translates to dot position 1050. The third section now
has the fields aligned on the left, although the amount field doesn't look like it. The problem there is, of course, that the space and numeral characters have different widths.
 
By inserting the HMI printer code ^[&k10.0H just before the beginning of the section, we have forced the width of the space to be the same 25 dot width as the numeral. The fourth
section then looks like what we are after. It is purely coincidental that the Times 12 pt numeral happens to be the same 25 dots wide as a 12 pitch monospaced font character. There
is one thing, though, which probably isn't apparent in this example, and that is that, when you have the space widened to the numeral width, it can appear visually too wide in
normal text; and, as mentioned earlier, if you change a font attribute, the HMI value reverts back to its default value. So what we can do is, instead of issuing the HMI code right at
the beginning of the text, we will insert it just before each numeric field's positioning code, and then just after each of the field's contents, issue an effectively null font attribute
code. In this case, it was ^[(s0B, which has no effect, as we are already printing non bold. As we are already printing at 12 pt, the command ^[(s12V, which would select 12 pt, would
have achieved the same thing, namely, to restore normal spacing without changing any other of the current printing characteristics.
 
The fifth section should then represent our original text, now aligned perfectly, just like the Courier 12 pitch, but now using the Times proportional font.
 
I strongly recommend that you enter the text into your own computer and get it to behave as shown. At that point, experiment a bit with changing the dot positioning values to
move the fields around. Put some extra spaces just before the dot positioning command, and you will see that it has no effect on where the field prints, as we are giving the printer
absolute positions on the line to place the text. Try reversing the 750 and 1050 values, and you will see that the fields print transposed from their locations in the text. I can't think of
a reason that you might want to do this, but it's possible.
 
Actually, if you had two or three numeric fields on one line that were separated by some text fields, you could place them side by side on the form with a beginning HMI code and a
trailing null font select code, and then, if your positioning commands were correct, it would all be located properly on your output, but would have only required one HMI command.
It would certainly make the output format confusing to the uninitiated, but could make the format design a bit easier.
 
Enter some HMI values that are wrong to see what happens. If you fully understand this example using raw text and inserting the printer codes manually, as it were, you will find all
the rest of it will come very easy.
 
 

filePro Formats
 
Referring back to the previous example, let's put the detail lines into a filePro report. To simplify the discussion, we will ignore any header or subtotal sections and just look at the
detail lines. We will define the fields as follows.
 



Field No. Description Length/Edit
 
1 Name (24,uplow)
2 Invoice No. (5,*)
3 Amount (8,.2)
 
 
Now refer to Figure 3 to see how this is laid out on the report format relating the filePro printer code numbers to the supplied table.
 

 
All that we have done in defining the report format is to insert the appropriate printer code from the table into the format at the right place, and that is really all there is to it.
Presumably, the output from our report format will be essentially identical to what we previously did by hand. Note that the positioning codes are buried under the first character of
their respective fields, and this is an absolute requirement. If there are any spaces or anything else between the printer code and the field's beginning, then our alignment goes right
in the toilet. In the case of the HMI code, it is only required that it arrive at the printer sometime before the field is to be printed and sometime after a previous field that may be
adversely affected by the code is encountered in the format.
 
Undoubtedly, we will never have enough room on the printer code table to meet every requirement, and further, some of the values required for the code may have to be established
at runtime; so what we can do is to put the printer code into a variable and put the variable on the output format or, more than likely, integrate our filePro data into one variable that
contains both the printer codes as well as the data. This is all done in processing.
 
There are two different approaches we can take in putting the printer codes into filePro variables. First, we can maintain our concept of fields on the report, and simply replace real
fields on the format with dummy variables that contain both the printer codes and the data in the real fields; or we could have one long variable that contains everything we need to
print on a single line. The former is probably less complex in processing, and the latter makes the output format definition an absolute breeze. The advantage, if you can call it that,
of the printer codes being contained within a dummy variable is that you don't have to rely upon any predefined values from your printer code table. All things being equal, though,
your life will be quite a bit simpler if you can make do with the printer codes off of the table.
 
Once we start embedding printer codes into variables, we totally lose any concept of the variable's length as it relates to the length of the field as it is actually printed on the output;
and, as mentioned previously, filePro will truncate any field that is overwritten subsequently by a field to the right of it on the line. If you have done your duty and slogged through
the original exercise, you will understand that the physical location of something on the output format only need have a general relationship as to where it will appear on the printed
page, namely on the same line, and not even there necessarily. Because, at the point of designing our format, we don't really know how wide our lines may prove to be including
both data and printer codes, define the format as being arbitrarily wide, maybe 200 char or to the maximum of 255 char. There isn't, at least from observation, any performance penalty
to speak of from defining the format from being overly wide.
 
Let's go back to our original report with the three fields. This time we will keep the semblance of the fields on the output format. The first field needs no special treatment of any kind
as it is on the margin and is a left justified field. We just print it as filePro delivers it. Field 2, however, needs to be positioned on the line at dot position 750. Rather than put field 2
on the format, in processing, we will create a variable that contains both the positioning code as well as the field data. A processing line similar to the following will do the deed.
 
 

aa(12,*)=chr("27"){"*p750X"{2
 
Similarly, field 3, the amount, could be defined:
 
ab(29,*)=chr("27"){"&k10.0H"{chr("27"){"*p1050X"&3{chr("27"){"(s0B"
 
Note the use of the "&" join character in the variable "ab". Because the width of the space is being manipulated to achieve alignment, the use of a "{" join would squeeze out the
spaces and destroy the alignment.
 
So then our output format could have:
 

*1 at position 1 on the format, *aa at position 27 on the format, and *ab at position 40 on the format. So, although the variable *ab eventually only prints 8 characters on
the output, its length (including printer codes contained within) is 29, and if you wanted to print another field to the right of *ab, it had better be located 31 characters or
more further to the right. The key thing to remember in this is that you have to leave enough room on your format for the entire variable, even though many of the bytes
will be consumed by the printer and not appear on the page, and, of course, the format must be wide enough to accommodate the length of the final variable on the line.

 
Taking this a step further, we could define yet another variable:
 

ac(66,*)=1{aa{ab



 
In this case, the output format would only need to have *ac appear at position 1 of the line. This makes your output format rather tidy.
 
Finally, there is yet one other method that could be used to get our printer codes inserted into the output, and that is simply to put the code physically onto the format itself. We still
need a printer code for the escape character (code 98), but as the balance of the HP codes are ASCII, we can put them directly on the format itself, leaving enough room for the
fields, of course. See Figure 4.
 
Putting codes directly onto the format is quite often the most practical approach. First, it makes them immediately visible when reviewing a format on the screen, and it saves the
need from defining obscure codes, particularly specific cursor positioning codes that in all likelihood would only be used on that particular format. Many times, you will find that
you have to position the cursor at a specific dot on the line, perhaps to right justify some text, and then a "custom" printer code on the form is in order. You will see examples of this
later.
 

 
 
Really, it should be a matter of personal preference as to how you get the codes into the output, and I don't see any particular superiority to any method. The nature of the output
may very well determine the appropriate approach.
 
 

Graphics
 
We will limit the definition of graphics in this discussion to drawing and filling boxes. While it sounds somewhat simplistic, much can be done that you would never have
considered with filePro before. Refer to Figure 5 as you read through this part of the text.
 
Again, think of our printed page as being a matrix of dots or pixels, if you prefer, and we "turn on" the appropriate dots to print black and the collection of dots that are "turned on"
represents our printed output. When we place a character on the format, the printer turns on the dots that will create the character at that location on the format.
 
Similarly, the box drawing printer codes turn on the appropriate dots to draw the box, as per the specifications in the code. We have codes to draw a solid black box, a solid white
box, and boxes filled with various patterns. A good question immediately arises. Why would you want to draw a solid white box on an already white page? Well, we draw white
boxes to "turn off" or reset dots that have previously turned on. You see, if we draw a solid black box and then decide that we would like the center of the box filled with a halftone
pattern, let's say, sending the code to print the halftone pattern would turn on its dots; but because we are printing onto an area that already has all its dots turned on, there would
be no effect. Printing a pattern only turns dots on and it doesn't reset any. So if you want a halftone or some other pattern, you would, in this case, have to reset all the dots in the
particular area before you laid down the halftone pattern.
 



 
 
The statements in the last paragraph are not always true. There are a couple of options in using fill patterns. The default is that the pattern is applied to the destination
transparently, which means that only the black dots in the pattern are turned on and the white dots in the pattern have no affect on the destination. A good analogy to this would be
the use of one of the yellow felt pens often used to highlight text in a book. Although the yellow covers the printing, you can still see the text through it and read the text, but if you
covered the same text with an opaque yellow oil paint, it would cover the printing so it was totally hidden. If we send the code ^[*v1O to the printer, and then our fill pattern, both
the black dots and white dots are copied from the pattern to the destination, i.e., any existing black dots on the page that coincide with white dots in the pattern will be turned off,
effectively overwriting anything that was "underneath the pattern". Figure 5-G shows a box drawn this way. The situation will dictate which is the appropriate approach. It is
probably wise to return the pattern transparency back to 0 when you are done (^[*v0O). Box drawing works like this. The following code will create a solid black box that is 1500
dots wide and 300 dots high.
 
[̂*c1500a300b0P

 
The value that precedes the "a" is the width, and the value preceding the "b" is the depth. The 0 preceding the "P" is calling for a black fill pattern, but note that the 0 need not be
present in this case, as the printer will presume a black fill in its absence. The box is drawn down and to the right of the CAP, but the CAP is NOT changed by the box drawing.
 
In most cases, a solid black box isn't terribly useful, but a really skinny long black box is. We call it a line.
 
[̂*c1500a3bP

or try
[̂*c3a1500bP

 
You can see then that we can draw lines any width and any thickness in increments of 1/300 of a inch. In Figure 5-B, you can see that by using cursor positioning commands we can
draw a "double" line. Varying line thickness and using a double rule here and there is ideal for separating sub total sections and the like in reports. A General Ledger is a natural for
this kind of treatment.
 
Back to the original example. Let's extend the code some.
 
[̂*c1500a300b0P̂ [*p+5x+5Ŷ [*c1490a290b1P

 
Now what we have done is drawn our original box, then moved the cursor in 5 dots on both axes and drawn a white box that is 10 dots smaller. The "1P" part of the code represents
a white fill or reset mode. We are left with a ruled box 1500 x 300 dots with 5 dot thick lines. If you want a fatter rule, move in a little further and draw an appropriately smaller white
box. There are other fill patterns besides black and white. "2P" represents a shaded fill and "3P" represents a cross-hatch fill. Because both of these fill patterns have their own
variations, we end up with another parameter in the code, e.g., to specify the level of the halftone shading. I will only deal with halftone shading and leave it to the reader to deal
with cross hatching. The game is the same, the numbers are different, and it is all covered quite well in the tech ref manual.



 
Although the box drawing codes do not change the CAP, in the last example, we actually moved the cursor to draw the white box, and the CAP would now be at the upper left hand
corner of the white box. As we go further, I will represent the last example with an ellipsis, to keep from getting bogged down repeating the same code.
 
Continuing now,
 
...̂ [*c1490a290b15g2P
 
The last addition to our code fills our "white" box with a 15% shading pattern. You can see that we now have a "2P" fill pattern and have picked up a new section in the code "15g",
which is the degree of shading. There are actually only eight levels of shading available, and they are defined by ranges in shading percentages, and whatever range your value falls
into will determine the actual density of the shading you get. At "15g" here, we are right in the middle of the "11-20" percent range. So, if we had used "11g", "15g", or "20g", the
result would have been the same. If you want a darker or lighter shading, change the value that precedes "g" in the code. Again, get the tech ref manual.
 
If you want to create a box that has a drop shadow, draw a second box that is shaded unruled, offset by 50 dots or so from the "real box". It's easy. See Figure 5-F.
 
Boxes don't have to start out as black and be worked over. If you want a shaded unruled box, the new part of our code will do that by itself, as you will see in a more real application
later. None of this is restrictive at all. One thing: when you draw a box using the PCL codes, that box is being deposited on the page at an absolute position, specific dots are turned
on, and none of your text is going to change its location. Boxes drawn by filePro in graphics mode, on the other hand, are merely text characters that, when aligned, will create a box,
but die swiftly if you are printing proportional text or if you change pitch within the box.
 
If you find that you are getting into some minor difficulties using the filePro generated boxes, you may find a simple fix in putting a cursor positioning code under box end
characters. If the box were defined at 12 pitch and the right hand edge of the box was at character position 50, just put ^[*p1225X under the right edge vertical box characters and
they will always print at the correct spot on the line.
 
One other thing that should be brought up is a further definition of the CAP as it relates to boxes and text. The CAP, when printing text, is located at the bottom left of a capital "M".
This may not be 100% accurate, but is close enough for our purposes. It is on the baseline, i.e., the line that represents the bottom of capital letters and most lower case letters. From
any CAP, a letter that is subsequently printed will ascend above the CAP, and many characters with descenders (g, p, q, etc.) will go below, so to put text into a box, you will either
have to make some effort in the positioning of the box or the text itself. Once you play with it a bit, you should be able to establish your own guidelines.
 
If you start mucking with the CAP to position a box vertically on the page, you want to at some point return the cursor to its original position, in the interest of getting the CAP back
in sync with filePro's idea of where lines are positioned; e.g., if, for some reason, you have issued ^[*p-25Y and don't subsequently do a ^[*p+25Y, then filePro lines that follow are
going to be (at 6 lpi), a half line off. It could be a big deal or maybe nothing, it depends.
 
In the course of drawing some graphics, if you have cause to reset some areas back to white, then the order in which things get executed becomes important. If you draw a ruled box
like the one in our earlier example and want to put text inside it, you absolutely must draw the box BEFORE you print the text, otherwise the text will get erased during the box's
creation. Just the other night, I must have spent 15 minutes trying to figure out what was wrong in a processing table because of missing bits on my output. The processing was
fine, my data was being erased by the graphics.
 
One extension of the box filling business is to use the different fill and shade patterns to print text in something other than solid black. Look at Figure 6 and refer to the "Print
Model" section of your tech manual. The codes that produced the graphics are underneath each of them. A pattern filled character is most effective at larger point sizes, as the
pattern doesn't scale with the text, and some patterns read better against a black background. In Figure 6, the code at the top right positions the cursor and draws the black box, and
is prepended to the codes that have the box. Note that in the examples neither the pattern transparency nor the selected pattern are returned to their default values after "filePro" is
printed, and in your programming you should make sure this is done.
 
Figure 7 shows the effect of first printing black text to create a shadow and then moving the cursor some and overprinting with an opaque pattern. The creation of the shadow is a
good demonstration of the push/pop printer codes. To do this, we issue the code to create the shadow pattern, if it isn't the current pattern, and, in this case, our shadow is black.
But before "filePro" is printed, we save the address where the word starts with "^[&f0S". After "filePro" is printed, we restore the address with "^[&f1S", which puts the cursor right
back to where it was before the "f" was printed. At that point, we issue a cursor move command, in this case, ^[*p-10x-10Y, select an opaque pattern and overprint the black with the
pattern. There are all sorts of themes and variations, a few of which are shown here. Note that in the third one we only have shaded the word "file". Let your creative juices flow!
Obviously, any of these code sequences could be assigned into a filePro variable and put anywhere on your output.
 



 
 



 
 
This type of thing tends to be somewhat of a gimmick and trite, but there are situations where it is quite appro
priate. Don't use shadowed lettering because your printer can do it, use it because it adds something visually to your layout. You see it all the time on TV. When a new techno
process evolves, every beer ad, car ad, and aspirin ad jumps on the bandwagon. The current one is the "morph".
 
I generally find it most efficient to develop a graphic sequence with a text editor, and once the codes are worked out, then worry about how to get it into the filePro application.
 
 

Practical Applications
 
I have created a filePro database called "ljet", which is a bare bones order entry file, purely for demonstration purposes. Within "ljet", there are a couple of output forms that
implement many of the LaserJet features. You will see that the output formats are using "hp3" as the printer, and if you install your printer as "hp4", you will want to change this in
the format "options".
 
First, is a form named "spine", and it could reside in any file, as the form supplies its own data. This is a small routine that prints a label for a binder which provides a clear sleeve
down the length of its spine for titles. This is quite handy for labelling manuals for public domain software. You could modify this to make labels for your video tapes or signs for
your store, etc. Get some Avery full page labels, stick one down on a piece of card, and you're done. We are going to draw some box shapes and center text supplied by the user at
runtime in both normal and reverse type. As we are centering text that is supplied when the form is printed, the character width table supplies the text width information we need to
center the text on the fly.
 
Have a look at both the processing table and output format for "spine." The processing is reasonably well commented as to what's going on. You will see that all of the work is
completed in the processing table and the format has but four variables. There are no filePro print codes on the spine format. You could repeat any one of these labels by placing it
on the form more than once. You do have to pay attention, though, that you don't put them so close together that they overlap.
 
The size of the labels reproduced here was construed to fit on the "cookBook" page and is really a bit small for a regular binder, so there is a second format on the disk called
"spine1" that creates labels of a more appropriate length for use in a binder.
 
It is pretty straightforward. The first 9 lines establish our working variables and get the character widths into an array, and lines 10 through 16 create the label, which is moved into
the variable "nl" for printing. Lines 17-24 print a similar label, but in reverse type. The remaining two labels are the same as the first two, except they are a bit deeper. Note at line 5,
there are variables created for setting normal and reverse (white on black) text. Make sure when you go to white on black mode that you return to "normal" printing when finished or
you may find yourself in possession of some blank sheets later on. In the processing here, the variable "bt" is tacked on the end of the print string in Line 24.
 



 
 

Calling the Width Table
 
The only thing that really needs to be brought up here is the use of the character width table. If you have the disk from this issue of the "cookBook", you will find a filePro file called
"widths". Each record contains 265 fields, the first 255 being 1 point character widths in ASCII order. To use the table, you must first "lookup" the correct record for the font and
symbol set in use and move the lookup record into an array. (See lines 6-7.) Fields 256-259 also contain 1 point font information in the same format as fields 1-255, so define your
array with 259 elements. Field 256 has the default space width, 257 the recommended line spacing in dots, 258 the Caps Height, and 259 the "lowercase" height. Look at the "widths"
map for a description of the balance of the fields.
 
Index A is built on field 261, which may require a bit of explanation. The index field is 8 char wide with the format, "ty ty wt st sy sy sy sy", where "ty" specifies the typeface, "wt"
the stroke weight, "st" the style, and "sy" the symbol set. See the accompanying table, which gives mnemonic definitions for the typeface, stroke weight, and style. The final four
characters are simply the call letters of the symbol set you are using. Some symbol sets only have a two character call sequence, in which case your search key would only be six
characters in length, while others have three, and at least one on the LJ4 is four characters. In line 2, our search key (sk) is defined as "unbu10U". This lookup will find the width
table for "Univers bold upright typeface PC-8 symbols".
 
Width Table Mnemonics
 
Typeface Mnemonic Typeface Mnemonic
 
Albertus al Omega om
Antique Olive ao Symbol sy
Arial ar Times ti
Clarendon cl Times New Roman tn
Coronet co Univers un
Garamond ga Wingdings wi
Marigold ma
 
Stroke Weight Mnemonic Style Mnemonic
 



Medium m Upright u
Bold b Italic i
Extra Bold x Condensed c
Condensed Italic k
 
 
Look at line 9 in the processing table. You will notice that our input string is assigned to the variable "l"(ell) which was never declared. If you squeeze out the spaces from both ends
of an undeclared variable, filePro's length for that variable won't include any trailing or beginning spaces, and that is quite handy if we want to center text.
 

Centering Text Horizontally
 
We center text as we would normally using a fixed pitch font, i.e., to divide the whitespace evenly on either side of the text, but in this case we are working in dots, so the the
process is quite precise. As mentioned before, when a box drawing operation is completed, the cursor remains at the upper left hand corner of the box.
 
The text length is measured in the subroutine "getwid" starting at line 41 in the processing table. We simply step through each character in the string using a "mid" statement and
get the ASCII value of each character, which is stored in variable "cn". As our width array is in ASCII order, the width for that particular character is the "cn"th element in the array.
Well, not quite.
 
Remember, the widths in the array are for a 1 point font with 5 decimal places, and we need to multiply the newly found width by the current point size to get the character width in
dots. The character width is an integer value. Our actual character width is stored in the variable "cw", which is declared as an integer, and filePro handles the rounding perfectly.
FYI, the printer rounds up on a fractional part of a dot .5 or greater, otherwise the fraction is ignored.
 
If you look at line 45, you will see that the widths for each character are accumulated into the variable "aw". There is a test at line 40 to see if we have reached the end of the text and,
if that is the case, we drop down to line 48 to work out the necessary cursor move to center the text. Note at line 44, there is a test for chr("0"). The printer makes no cursor move
upon receipt of chr("0") but, as we don't have an element wid("0") in the array, we must insure that we don't go looking for one. I don't know how a chr("0") would get into filePro
output, but ...
 
Speaking of illegal characters, should you try to print a character not supported by the symbol set in use, i.e., the symbol set has no character for the particular ASCII value, the
printer will print a space. The width table will get the width right but, of course, you won't get what you wanted.
 
In line 48, we subtract our text width from our box width and divide the result by 2 "xa=(bw-aw)/2", thus "xa" now contains the distance we need to move the cursor to center the text
along the X axis. Although this move will center us left and right, the cursor is still sitting at the top of the box vertically.
 

Centering Text Vertically
 
The vertical centering of the text is a bit trickier in a narrow box such as this, not so much in the implementation, but more in deciding what to center on! Character heights vary, e.g.,
Aag, so you have to decide whether you want to center on the Caps height, lowercase height, or Caps height plus descenders, lowercase plus descenders, etc., etc. In practice, you
really only have to decide between Caps and lowercase, with lowercase being the most common choice. It's purely a visual thing.
 
The more white space you have to play with, the less of an issue it becomes. This time, we will center on the Caps height. In the width table, field 258 contains the 1 pt Cap height
and field 259 contains the 1 pt "x" height (lowercase). If you multiply these fields by the current point size, you will get the uppercase or lowercase character height in dots. Line 41
on the table puts the Caps height into the variable "ch". To get our vertical cursor move, we first have to get our text into the box. Presently, the bottom of our text is at the very top
of the box. If we move the text down by the amount of the Caps height, all the whitespace would be below the text. To center it vertically, then, we want to move down further half
the amount of the whitespace, which, by formula, would be (bh-ch)/2, and, at line 41, you see ya=ch+((bh-ch)/"2"). "ya" contains the cursor move we need to center the text
vertically.
 
Finally, in line 48, the variable "h" contains the complete printer code to center our title in the box, both horizontally and vertically. The variable "h" is integrated into our print string
immediately before the text and we are done.
 
Backing up just a bit, I would like to demonstrate how you would use the width table to align columns on a decimal point. Assume that the appropriate width table is already in the
array "wid", the point size is in variable "ps", and that we would like to align real field 11 at dot 1819 on a report.
 
Then: pt="" { 11 { ""; ap="1819"; gosub getwid
...
...
getwid
Then: cn=""; aw="0"; cw="0"; pn="0"
loop
Then: pn=pn + "1"

 
if: mid(pt,pn,"1")="."
Then: goto dowid

 
if: mid(pt,pn,"1")=chr("0")
Then: goto loop

 
Then: cn=asc(mid(pt,pn,"1")); cw=wid(cn)*ps; aw=aw+cw

 
Then: goto loop
dowid
Then: pp=ap-aw; cp=chr("27"){"*p"{pp{"X"{11{""; return
 
 



The variable "cp" would appear on the output format rather than field 11. As we are aligning on the decimal point itself, it doesn't matter what precedes of follows the decimal. The
field will always be positioned correctly. You could put in a further test to check for the end of the string, just in case something slipped in without a decimal point. You could use
this routine to align numeric fields or even text in a format like "filename.ext". If, for some reason, you had the HMI set to something other that the default, you would want to return
it to the default before printing if there were any spaces embedded in the text, as the width table assumes the default HMI.
 
 

A More Ambitious Example
 
Next, we will look at creating an "invoice" form that is somewhat more complex than the label exercise. The theory isn't any more complex, but there is more of it. First, I would say
that, if you generate a lot of invoices in the course of business, it makes more sense to have your form preprinted, rather than using up your printer's CPU cycles and toner to
continually print the same thing. On the other hand, some companies may only generate a dozen or two invoices a month, and many people might find a form such as this very
useful as a purchase order or some other form that isn't counted in the hundreds each month. See Figure 9 for the printed output and Figure 10 for the output format layout.
 
While the output format doesn't appear terribly different from what we usually produce, there are well over 100 different printer codes hidden in the format, as well as a few that
appear on the format itself. I tried for a number of days to come up with a clever way to show the codes and their location on the format, and the best that I could do was a list of line
numbers with the character position and its associated printer code. See Figure 11.
 
With that said, there is still much to talk about. The very first line of the format has a number of codes to set up the primary and secondary fonts and their point sizes, etc. Lines 1-3
are blank, just for positioning on the form. The variable "hf" at line 4 is built in the processing table in lines 2-7 and contains the code to print the logo, company name, and the short
black rule. Variable "hi" at lines 8-10 in processing set up the street address and phone number, and "hj" prints the long black rule in the heading. It's all pretty straightforward, if
you've been paying attention so far. The trickiest part of the heading is positioning the cursor for the three independent variables that appear on different lines on the form. I should
point out here that I kept all of the component parts of these things to less than a screen width in define processing so the table would print nicely here, but in a real application, you
would find it easier to utilize all the space that filePro allows on a processing line. Note that, when "hf" is assembled at line 7, different join characters ("{&<") are used. This has to
do with spaces that may be trailing one of the variables, and note that it's not coincidental that the address and telephone number text exactly filled the line. More on that in a
moment.
 
 

 
 
 
 
 
10 20 30 40 50 60 70 80
....:....|....:....|....:....|....:....|....:....|....:....|....:....|....:....|
1 
2 
3 
4 *hf



5 
6  *hi
7 *hj
8 
9 
10  Invoice *p1373XInvoice No.: *5 &l8D
11 
12  *p1540XDate: *@dt
13 
14  Sold To: &l6D *p1270XCustomer P. O.: *6
15 
16 *1
17 *2
18 *3
19 *4 Attn: Accounts Payable
20 
21 
22 *bx
23 *p351x-34YQty*p916XDescription*p1610XUnit Price*p1887XExt. Price*p+34Y
24 *11 *21 *31 *41
25 *ia
26 *12 *22 *32 *42
27 
28 *13 *23 *33 *43
29 *ia
30 *14 *24 *34 *44
31 
32 *15 *25 *35 *45
33 *ia
34 *16 *26 *36 *46
35 
36 *17 *27 *37 *47
37 *ia
38 *18 *28 *38 *48
39 
40 *19 *29 *39 *49
41 *ia
42 *20 *30 *40 *50
43 
44 *bg
45  *p1383x-50YSub Total *p1823X*51
46 *ib
47  Terms: Net 30 Days *p1381XSales Tax *52
48 
49  *p1302XInvoice Total *p1823X*53
50 *ib
51 
52 *p+50Y
53 
54 
55 
56 
57 
58 
59 
60 
...............................E.N.D...O.F...F.O.R.M...........................
 
 

Figure 10
 
 
 
 
Line: Pos-Code, Pos-Code, ...

 
 
1) 1-100, 2-101, 3-116, 4-156

 
4) 1-206

 
6) 1-147, 2-171

 
10) 1-154, 2-173, 3-206, 10-134, 11-151, 43-98, 63-99,
70-98
12) 43-98, 50-100, 56-99

 
14) 1-100, 2-206, 11-98, 43-98, 66-99



 
16) 1-208

 
17) 1-208

 
18) 1-208

 
19) 1-208, 15-216

 
20) 1-136, 2-146, 3-171

 
22) 1-206

 
23) 1-98, 11-100, 14-98, 31-98, 48-98, 65-98, 71-151,
72-99, 73-195
24) 1-207, 6-167, 7-210, 58-195, 59-232, 68-237

 
26) 1-207, 6-167, 7-210, 58-195, 59-232, 68-237

 
28) 1-207, 6-167, 7-210, 58-195, 59-232, 68-237

 
30) 1-207, 6-167, 7-210, 58-195, 59-232, 68-237

 
32) 1-207, 6-167, 7-210, 58-195, 59-232, 68-237

 
34) 1-207, 6-167, 7-210, 58-195, 59-232, 68-237

 
36) 1-207, 6-167, 7-210, 58-195, 59-232, 68-237

 
38) 1-207, 6-167, 7-210, 58-195, 59-232, 68-237

 
40) 1-207, 6-167, 7-210, 58-195, 59-232, 68-237

 
42) 1-207, 6-167, 7-210, 58-195, 59-232, 68-237

 
45) 1-167, 4-98, 15-100, 25-99, 58-195, 61-98

 
47) 1-167, 2-173, 3-100, 4-206, 10-171, 12-99, 33-98,
40-100, 50-99, 67-195, 68-237
49) 1-167, 4-98, 11-100, 25-99, 58-195, 61-98

 
52) 1-98
 
 

Figure 11
 
 
The next thing of interest on the format begins at line 10, where you find "Invoice No.:", and similar entries on lines 12 and 14. These three lines have text that we want to align
vertically on the right. Similarly, down at lines 45, 47, and 49, we want "Sub Total", "Sales Tax", and "Invoice Total" to align on the right. Our friend the width table comes to the
rescue. Back to line 10. I decided that "Invoice No.:", "Date:", and "Customer P.O.:" should be aligned at dot 1675 on the line. So, to achieve this, we have to establish the exact
width of the text in dots, and position the cursor at "1675-textwidth" before we print the text. The grunt is really to get the text width and the rest is easy. In the input processing for
the "widths" filePro file, there is an "@keyw" routine that will prompt you for the "fontspec", the point size, and the text you want measured. Once you enter the text, you are given
its width in dots. The processing does check for a valid point size, i. e., a positive number in .25 increments. The left-arrow key is used to "back up" to the previous input prompt, or
to eventually exit the routine. For convenience, the code is also duplicated in the "ljet" input processing table.
 
In the case of the address/telno line in the heading, I had decided on the text and measured for an 8 pt width. I knew I wanted to fill 1569 dots, and at 8pt, I was a 150 dots or so
short. At 9 pt, the resulting width was within a dot or two. Bingo!! If, for some reason, 8 pt were required, then the space between the address and phone number section of the line
would have to be widened or the text lengthened a tiny bit. Remember, the fonts are capable of being scaled in .25 point increments, and that can be useful if you have to shoehorn
some text exactly into a given area. There is ALWAYS a way to cheat.
 
"Invoice No:" etc. are printed in Univers 13pt bold and work out to be 302 dots, 135 dots, and 405 dots respectively. Then, by subtracting those numbers from 1675, we know where
to position the cursor to get each of the "fields" to line up at dot 1675. You can do the math to reconcile the codes on the format. The "Sub Total" group are 242, 244, and 323 dots
respectively and are planned to align at dot 1625. You could calculate all of this in processing at runtime, but, as these are static things on the form, it is best to do the math only
once, beforehand.
 
Also, at the end of line 10, there is a printer code that changes the line spacing to 8 lpi. This is just to close up the next few "double spaced" lines. I went to double spaced 8 lpi as
the 13 pt text is too tall for single spaced 6 lpi. I bring this up to point out that the LaserJet does NOT count lines when deciding it's time for a new page. When you do the page
setup so it works out to 60 lines at 6 lpi, the printer establishes the page boundaries in dots, and a subsequent change in the lpi does not change these boundaries. Sixty lines at 6 lpi
translates to 3000 dots, and the printer will only do a page eject when a linefeed or half linefeed moves the cursor past dot 2999 (our 3000 dots are numbered 0-2999). At line 14, there
is another visible code that changes back to 6 lpi. Through the printing of the 4 lines at 8 lpi, we have lost 50 dots in the vertical cursor advance, which is made up at line 52 in the
format.
 
The variable "bx" at line 22 on the format draws the ruled box that contains the invoice line items and titles. This is built on the processing table in lines 12-17. Then, at line 23 on the



format, we put the line item titles into the box. You will see, to get the titles to appear in the center of the boxes vertically, the cursor had to be backed up 34 dots vertically, and the
34 dots were put back after they were printed. All of these titles were measured using the width table and then centered in their respective boxes. They did center perfectly the very
first time. Not a tribute to my expertise (ha!), but a demonstration of how a little bit of planning can save you a lot of time.
 
Next, take a look at the variable "ia", defined at line 18 on the processing table. It is simply a 15% shaded box that is 2 lines high at 6 lpi. As we need it to print above its physical
location on the format, there is a cursor positioning command included for that purpose. Also, note the use of the ^[&f0S ^[&f1S cursor push/pop commands to get the cursor back
in sync with filePro's lines. We could have used the push/pop mechanism with the line item titles previously, rather than using a final ^[*p+34Y sequence. Further, the shading is
printed transparently, so as not to erase the vertical lines in the box.
 
All of the numeric fields in the line item and total section of the invoice are aligned by cursor positioning and setting the HMI to 27 dots, which makes the space the same width as
the Times 13 point numeral. Finally, on the form we have "bg" that draws the box for the total part of the invoice, and "ib", that provides the shading.
 
This invoice is probably as complex a format as you'll ever get into. Reports, by their nature, have far less designing required, as most of the page is repetitive line items.
 
Look at the form initialization codes for these forms. Both "spine" forms use code 57 which selects a landscape format at 6 lpi, while the invoice uses code 55, which is for a portrait
orientation at 6 lpi. On the invoice, all of the font selections are done on the form itself, and none in initialization.
 
 

An Inexact Science
 
When using proportional fonts in a text field such as the "product description" field on this invoice, you can't really predict how much physical space may be required on the
printed page to accommodate the field's contents, even though the maximum number of characters is known. It is almost certain on the invoice that we could enter a text string into
the field that would print wider than the space allocated on the form.
 
If you considered each character position on average to be the same as a numeral, you'd probably never get into problems, but that may be too generous. A bit of experimentation
should yield some decent guidelines. Numeric field widths can be calculated quite accurately.
 
 

Fudging the Margin in Reports
 
As mentioned earlier, the printer only does a page eject when a linefeed or half linefeed put the cursor beyond the bottom margin. We can still print past the margin if the cursor
arrives there via a positioning command.
 
It is a rather trivial task on a report to put the page number at a fixed position at the bottom of the page. Essentially, we create a variable that will be placed in the heading area of the
report format, which contains "push cursor { goto address { page number { pop cursor".
 
Say we have a report format and the page is defined with a 1/2 inch top margin and 57 lines of text. At 6 lpi, this would leave a bottom margin of 1 inch. Now we introduce a new
cursor positioning command, whose unit of measure is lines or rows as opposed to dots, ^[&a###R , where ### is the row number down from the top margin. As the row numbering
scheme begins at 0, the 57 lines in our format are labelled 0-56, and we want to print the page number down in the margin at line 58, which allows for a blank line.
 
In processing we can do something like this:
 
Then: ec(1,*)=chr("27"); sc(5,*)=ec{"&f0S"; rc(5,*)=ec{"&f1S"
 
Then: pn(6,.0)=@pn + "1";
 
Then: pp(35,*)=sc{ec{"*p1125X"{ec{"&a58R"{"Page"<pn{rc
 
Then: end
 
The variable "pp" is placed anywhere on the format heading, but it will be printed below the bottom margin. For some reason, if you pick up "@pn" in processing and put it in a
variable on the heading, the number is off by "1", thus we set pn=@pn + "1".
 
Positioning the cursor vertically by "lines" rather than "dots" is preferable here, because then you don't have to calculate the exact dot position where line "58" is located. When the
cursor is on the first line of a report or form, the CAP is NOT at dot position "0" vertically, but rather on the baseline of the first line, which is defined as being down from the very
top 75% of the value of the current line spacing. So, the exact position of the CAP is dependent on the line spacing. Positioning by row number precludes us from having to
translate the row number into dots.
 
This is particularly handy if you are using preprinted forms. Keep in mind still, the printer isn't counting lines. When given a row positioning command, it calculates a dot position,
based on the current lpi setting, or, if you prefer, the "Vertical Motion Index" - VMI.
 
This technique could be used to put any kind of information at a fixed position at the bottom of the page. Page totals, maybe? If it is not possible to put the variable containing the
data in the heading and it has to go onto one of the data lines, then you will have to make some creative use of "@lc", etc., to load the variable with the data and positioning values
at the appropriate time. Play with this a bit, it shouldn't be difficult.
 
 

Print Code Table Review
 
Now, let's take a quick tour through the print code table. As stated before, the first 54 codes are functionally unchanged from the original hplaser.prt file supplied with filePro. A few
of these codes have been duplicated further down the table in the interest of getting all symbol set definitions, for example, for both primary and secondary fonts, together.
 
Code 55-75 are intended to be the area where any user initialization codes are to be inserted. Supplied, there are four, 55-58, that do basic page formatting, while 73-75 set the number
of copies. If you have a duplex printer (IIID, IIIsi), you will want to set up codes here for simplex/duplex operation and to select the bin the paper is to be drawn from. I know there
are a few. There isn't much space available for additional codes, so use it wisely.
 



You might want to make up a couple of codes that select fonts for both the primary and secondary if you are using the same combination repeatedly. Hopefully, you can build any
new code you need by nesting existing codes from the table, e.g., to create a code that made the primary font Courier 12 pitch and the secondary Times 10 pt, the new code would be
defined as "%89 %101". This new code might include the symbol set, as well. Any further mention of codes that involve font attributes implies a provision for codes for both the
primary and secondary fonts.
 
There is, though, a nasty bug in filePro that causes an error if you try to nest a print code with a value higher than 127, which precludes half the table from being nested. The
problems don't appear when you define the code, but rudely show up when you try to use the code. Small Computer knows of this, and I have been told that it "will be fixed." Soon,
I hope.
 
Continuing down the table now, 76-87 are reserved for symbol sets. Four of each are already defined but can be changed if you wish. Codes 88-97 select the fixed pitch fonts. Code
98 is simply the escape character, and you will use this one quite often if you are building your own codes directly on the output format. 99 and 100 activate the primary and
secondary fonts, respectively. These are mutually exclusive, i.e., if you call code 100 for the secondary font, the primary font is inactive, and it won't subsequently be active until
you issue code 99.
 
Selection of proportional fonts is in codes 101-128. For the LaserJet III, we only have two typefaces, so there is a bit of free space here, but for the LaserJet 4, it is pretty much full.
Any of these codes select the 10 pt medium upright version of the typeface. As these fonts are scalable, we have to make the point size selection with another code (129-158).
Originally, I tried to put in codes that gave you the same typeface in a variety of point sizes, but I gave up on that idea as it became apparent that there wouldn't be enough room on
the table if you added a few fonts. The LJ4 adds more than a few. As our point size codes (129-158) are > 127, we can't use them nested, which is a real drag.
 
Similar to the point size codes, 159-166 select the pitch for fixed pitch fonts. These aren't really needed for the LJ3 internal fonts, as we have all of the possibilities covered in font
selection. On the other hand, the IIIsi and the LJ4 both have scalable fixed pitch fonts, and this is the area in the table to predefine some.
 
This brings us to bold type, etc., at 167-175. When we use a line printer, we only think of turning bold "on or off". While this may be true with a line printer, laser fonts can have
weights other than bold or medium, so we aren't dealing with an on/off situation. The codes are here for medium, semi bold, bold, and extra bold. There are others, but as we are out
of room on the table, I didn't include them. These four variants will cover all the fonts on the LJ4.
 
The codes for font style at 176-183 show that there is more to the typeface style that italic or upright. Like the typeface weights, we have four different styles defined and these
aren't all of the possibilities. They are upright, italic, condensed, and condensed italic. The LJ3 only has upright and italic fonts, while both the IIIsi and LJ4 have condensed and
condensed italic fonts.
 
Codes 184-199 are a collection of HMI codes that relate to different numeral widths for the Times and Univers fonts at various point sizes.
 
Finally, the balance of the table is filled with our horizontal positioning codes. I wish we had room for more of them, but there you have it.
 
 

Omissions
 
One area that I have totally ignored is the "Printer Job Language" (PJL), which is used to select PCL or Postscript with the LJ4 or LJ3si printers with the Postscript SIMM installed. I
don't have Postscript on my LJ4 so, consequently, my PJL Reference Manual remains untouched. If this is of concern to you, you probably want to put PJL commands in both the
printer initialization and termination commands to specify PCL for use with the print code table.
 
There are still many, many PCL codes that are not on this table. In most cases, these require runtime values, e.g., drawing a box or other similar things that in all likelihood will be
defined in processing. On Unix systems, if your version of filePro does not give you the ability to map LF to CR-LF, then you will want to put the code "$1b &k3G" into your printer
initialization in code # 3. If you can see something vital that should be included, let me know.
 

LaserJet III
 
Although the printer code table printed here is complete for the LJ4, the tables for both the LJ3 and LJ4 are on the cookBook disk. If you just can't wait to get the disk, make the
following modifications to the hp4.prt table.
 
The only mandatory changes are in codes 88, 89, 93, and 94 where you want to change "4099" to "3". Those of you who have the IIIsi should NOT make this change, as your
Courier font is scalable.
 
The following codes are not needed: 80, 81, 86, 87, 90, 91, 95, 96, 103-111, 117-125. Leave those codes blank on your table.
 

LaserJet 4
 
From the standpoint of the print code table, the only thing with the LJ4 that should be brought up is font selection. First, the Courier and Letter Gothic fonts are scalable. The
Courier typeface on the LJ3 has a typeface number "3", while Courier on the LJ4 is "4099". The Clarendon Condensed font, codes 105 and 119, is only available in condensed bold. If
you have it selected and then issue any other stroke weight or style change, you will almost certainly get another typeface.
 
Be sure to set the printer to 600 dpi resolution at the control panel. It appears that some cahracters at certain point sizes scale to differenet widths at 300 dpi vs. 600 dpi, and the
width table expects 600 dpi.
 
There are no font select codes for the Wingdings and Symbol fonts on the LJ4 table. As each of these fonts has a unique symbol set, simply changing to the appropriate symbol set
(codes 80-81, 86-87) will get the font into action.
 

Width Table Bloat
 
While I thought it was prudent to generate the character width tables for all fonts and symbol sets, I think it is very unlikely that any one of us individually needs them all. You
could reclaim a substantial amount of disk space by deleting the tables for symbol sets that you will "never" use and then restructuring the file. Study the symbol sets carefully, and
then perform surgery at your own risk.
 
 

What Next
 



We really need a bigger print code table, one that supports maybe 1000 codes. Even doubling the number of codes to 512 would help a lot. Right now, a LaserJet 4 with an added
font cartridge is already out of space on the table. I asked Small Computer if it was a possibility and was told that there would be a couple of technical issues. Primarily, an extended
table would not be backward compatible with existing tables and formats, and further, memory limitations could be a concern on some systems. We can always hope.
 
If we are able to get a larger print code table that supports 500-1000 codes, at that time the table presented here would want to be rewritten to open up space within the table to
maintain its structure and grouping of codes.
 
For those of you who are still using filePro version 3.0 or earlier and want to play with this, the best advice that I could give is to upgrade to 4.1., otherwise, you have a very tedious
task in front of you to enter the hex codes into your print code table. You can make it work, but you may find yourself putting more codes into processing than you would with 4.1,
as the 3.0 and earlier versions have fewer codes and severely restrict their length, as well.
 
In conclusion, I would like to point out that there is nothing definitive in the way that I have approached utilizing the PCL codes in filePro. Given the flexibility of both filePro and the
HP printers, there may very well be better ways to get the job done. If you have any problems in making it work, send email or call me at work during business hours (9-5 Pacific
time).



Introduction
When installing filePro Plus on a multi-user *NIX systems such as AIX, LINUX and UNIX, it creates a termcap (terminal capabilities) file in the /appl/fp directory. This file includes "tables" of keys
available on the terminals you could be using. The filePro programs look for the applicable keys in the tables and uses them for screen prompts and to determine what sequences should be sent for
the keys that are pressed.
For example, since NCR 7901 terminal's cancel key is [Rub Out], the message at the bottom of the screen in filePro update mode appears as "Press Rub Out to Cancel".
 
However, since we cannot do the same in the manual, we use IBM's name for the keys such as [Ctrl][Break] instead of [ Del] . To translate, see the key tables in the next topics of this reference.
To display the keys used for your terminal press [Esc][?] . Use [ Alt ] [ F10 ] to display the "Key Table" on Windows systems.
 
Note: When pressing [ ESC ] [ ? ] while in Inquire/Update/Add (clerk), it will display your licensed User Count.
If your terminal isn't listed in the following topics, it may have been added afterwards and may still be listed in the /appl/fp/termcap file. If not in the termcap file, you must change /appl/fp/termcap to
include your termcap. See the instructions in "Adding New Terminal Types".



Terminal Features
Some terminals have more features than others. Refer to the following if you encounter problems when using your terminal.
 
Reverse Characters and Scrolling On some terminals, pressing the reverse-mode key in "Define Screens" at position 1,1 causes the screen to scroll up by a few lines making it impossible

to see the cursor and any reverse characters you may have typed. To correct the problem, re-display the screen by pressing the [redraw screen] key
for your terminal.
 

Graphics Some terminals do not have complete graphics capabilities. Although the graphics key turns on and off such terminals in "Define Screens", the
characters accessed are plus signs (1-9), a dash(0) and a vertical line (the period) instead of the graphic bars and corners.
 

End Markers End Markers on IBM terminals are small triangles. On other systems and terminals, the End Markers may be small boxes, periods or even question marks.
 

Lost Cursors Some terminals don't have separate on and off sequences but use a toggle instead. On these terminals, it is possible for the cursor to disappear or get
"lost". When this occurs, the [Restore Cursor] key turns the cursor back on.
 



Adding New Terminal Types
Before adding a new terminal type, check the /appl/fp/termcap file to find a similar terminal type or one that is reasonably close to your terminal type. You can then copy the similar terminal type to a
new name in the termcap file so that you don't have to start from scratch when adding a new terminal type. Check your terminal's manual to find the proper sequences for each code.
Note: Case is significant when writing or editing termcap files.
Refer to the " Termcap Function Codes" and " Termcap Graphic Codes " tables for codes to be set equal to the strings of keys that filePro sends to the terminal for each function. These first
sets of codes are standard entries and listed for your convenience.
The " filePro Plus Codes " and " Key Label Codes " tables list special codes related to filePro. The " Key Label Codes " table, starting with " LO ", directly correspond to the " P " series codes.
These codes tell filePro what to display in the screen prompts for each of the corresponding " P " series codes.
A typical termcap definition starts with comment lines and a title. Then the codes are added with the applicable sequences. The following is an example for a LINUX termcap definition.
 
# Termcap for LINUX created on 02/05/2000
#
linux|clinux|Linux Console:\
:al=\E[L:am:bs:cd=\E[J:ce=\E[K:cl=\E[2J\E[H:cm=\E[%i%d;%dH:co#80:\
:dc=\E[P:dl=\E[M:dn=\E[B:ei=:ho=\E[H:ic=\E[@:im=:li#25:\
:nd=\E[C:ms:pt:so=\E[7m:se=\E[m:us=\E[4m:ue=\E[m:up=\E[A:\
:kh=\E[H:kb=̂ h:ku=\E[A:kd=\E[B:kl=\E[D:kr=\E[C:eo:\
:GS=\E[12m:GE=\E[10m:\
:GV=\263:GH=\304:\
:G1=\277:G2=\332:G3=\300:G4=\331:GZ=\376:\
:GU=\301:GD=\302:GC=\305:GR=\303:GL=\264:RT=̂ J:\
:L0=F1:L1=F2:L2=F3:L3=F4:L4=ESC ESC:L5=F5:\
:L6=Pg Up:L7=Pg Dn:L8=ESC TAB:L9=TAB:LA=Ctrl-O:\
:LB=F6:LC=Ctrl-L:LD=F7:\
:LE=F8:LG=Ctrl-Z:LH=F9:LY=Ctrl-C:LZ=Enter:\
:P0=\E[[A:P1=\E[[B:P2=\E[[C:P3=\E[[D:\
:P4=\E\E:P5=\E[[E:P6=\E[5~:P7=\E[6~:P8=\Ê I:P9=̂ I:\
:PA=̂ O:PB=\E[17~:PC=̂ L:PD=\E[18~:PE=\E[19~:PG=̂ Z:PH=\E[20~:\
:PJ=\E[21~:LJ=F10:PV:
For more information, see the section in your operating system manual or a WebSite that describes preparing or revising termcap entries.



Termcap Function Codes
The following table reflects some common termcap function codes. This is by no means a complete list but includes many of the codes related to filePro operation. Refer to your terminal manual for a
complete list of codes.
 

Entry Function
ti initialize terminal for full-screen mode
tc entry of similar terminal (not
te restore terminal to line oriented mode
cd clear to end of display
al insert a blank line
dl delete a blank line
Ce clear to end of current line
Cl clear the entire display and home cursor
CF cursor off
CN cursor on
Cm cursor motion
ho home cursor (move to
up move cursor up one line
do move cursor down one line
bc move cursor left one column
nd move cursor right one column (non-destructive space)
co number of columns in a line (numeric; must be at least 80)
li number of lines on screen

so Begin reverse ("stand-out") mode
se end reverse ("stand-out") mode
sq number of extra characters needed by "so" or "se"; (numeric must be zero)
  



Termcap Graphic Codes
The following is a list of common graphic codes.
Example: The following graphics codes would be entered for a LINUX termcap definition.
 
:GS=\E[12m:GE=\E[10m:\
:GV=\263:GH=\304:\
:G1=\277:G2=\332:G3=\300:G4=\331:GZ=\376:\
:GU=\301:GD=\302:GC=\305:GR=\303:GL=\264:\
 

Graphic Code Function
GS start graphics mode
GE end graphics mode
GH horizontal line
GV vertical line
G1 upper right corner
G2 upper left corner
G3 lower left corner
G4 lower right corner
GU up-facing T
GD down-facing T
GL left-facing T
GR right-facing T
GC cross
GY F6 arrow
GZ end-of-field marker



filePro Plus Codes
This table identifies the codes and filePro function. Apply the key sequence to associate each of the filePro functions for your terminal in the termcap file.
Example: The following lines would be entered for a LINUX termcap definition.
 
:P0=\E[[A:P1=\E[[B:P2=\E[[C:P3=\E[[D:\
:P4=\E\E:P5=\E[[E:P6=\E[5~:P7=\E[6~:P8=\Ê I:P9=̂ I:\
:PA=̂ O:PB=\E[17~:PC=̂ L:PD=\E[18~:PE=\E[19~:PG=̂ Z:\
:PH=\E[20~:PJ=\E[21~:PV:
 
 

Code Function
P0 insert character label
P1 delete character label
P2 insert line label
P3 delete line
P4 save information
P5 duplicate information
P6 up-tab label
P7 down-tab label
P8 left-tab label
P9 right-tab label
PA clear-to-end-of-field
PB display fields
PC redraw screen
PD enter print code
PE display print codes
PF restore cursor
PG reverse-video-toggle
PH graphics-mode toggle
PI display-key-table for the current terminal (default is [ESC][?] if not specified)
PJ help
PN local printing on
PS local printing off
  



Key Label Codes
The entries below tell filePro Plus what to display in screen prompts. Enter the names of key labels to associate and control what is displayed on your terminal (maximum of eight characters each) in
your termcap definition.
Example: The following lines would be entered for a LINUX termcap definition.
 
:L0=F1:L1=F2:L2=F3:L3=F4:L4=ESC ESC:L5=F5:\
:L6=Pg Up:L7=Pg Dn:L8=ESC TAB:L9=TAB:LA=Ctrl-O:\
:LB=F6:LC=Ctrl-L:LD=F7: LE=F8:LG=Ctrl-Z:LH=F9:\
:LJ=F10:LY=Ctrl-C:LZ=Enter:\
 
 

Other Code Function
L0 Insert-character label
L1 delete-character label
L2 insert-line label
L3 delete-line label
L4 save-information label
L5 duplicate-information label
L6 up-tab label
L7 down-tab label
L8 left-tab label
L9 right-tab label
LA clear-to-end-of-field label
LB display-fields label
LC redraw-screen label
LD enter-print code label
LE display-print codes label
LF restore-cursor label
LG reverse-video toggle label
LH graphics-mode toggle label
LI display-key-table label
LJ help-key label
LY cancel-key label
LZ carriage-return-key label



ALTOS 3/5 Key Usage
Key Function

 
Key(s) to Use Key in Manual

All filePro Plus programs   
New field, line, carriage return [Return] [Return]
Cancel, break [Del] [Ctrl][Break]
Save, record [Esc][Esc] [Esc]
Home cursor [Home] [Home]
Insert, duplicate character [Ins char] [Fl]
Delete character [Del char] [F2]
Insert line [Ins line] [F3]
Delete line [Del line] [F4]
Cursor up [Up Arrow] [Up Arrow]
Cursor down [Down Arrow] [Down Arrow]
Cursor left [Left Arrow] [Left Arrow]
Cursor right [Right Arrow] [Right Arrow]
Up or previous tab [Ctrl][F] [Pgup]
Down or next tab [Ctrl][N] [PgDn]
Right tab [Tab] [Tab]
Left tab [Esc][Tab] [Shift]{Tab]
Clear to end of line, field [Ctrl][O] [Ctrl][End]
Restore cursor not applicable not applicable
Redraw screen [Ctrl][L] not applicable
Display key table [Esc][?] [Esc][?]
Help [Help] [F1O]
Toggle Insert Mode [Ctrl][Z] [Alt][F9]
   
Define Screens   
Resolve Fields [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
Toggle Reverse Video [Ctrl][Z] [Alt][F9]
   
Define Output   
Enter Print Codes [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]

   
Define Processing Tables   
Define Lookups [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Go to Line/String [Ctrl][G] [F9]
   
Inquire, Update, Add   
Duplicate [Ctrl][R] [F5]
Browse Lookup [Ctrl][F] [F6]
   



ANSI Console Key Usage
Key Function

 
Key(s) to Use Key in Manual (DOS/Windows)

All filePro Plus programs   
New field, line, carriage return [Return] [Return]
Cancel, break [Ctrl][Del] [Ctrl][Break]
Save, record [Esc][Esc] [Esc]
Home cursor [Home] [Home]
Insert, duplicate character [Fl] [Fl]
Delete character [F2] [F2]
Insert line [F3] [F3]
Delete line [F4] [F4]
Cursor up [Up Arrow] [Up Arrow]
Cursor down [Down Arrow] [Down Arrow]
Cursor left [Left Arrow] [Left Arrow]
Cursor right [Right Arrow] [Right Arrow]
Up or previous tab [PgUp] [PgUp]
Down or next tab [PgDn] [PgDn]
Right tab [Tab] [Tab]
Left tab [Shift][Tab] [Shift][Tab]
Clear to end of line, field [Ctrl][O] [Ctrl][End]
Restore cursor not applicable not applicable
Redraw screen [Ctrl][L] not applicable
Show key table [Esc][?] [Alt][F10]
Version No. (when at Menu) [Shift][Tab] [Shift][Tab]
Help [FI0] [F10]
Toggle Insert Mode [Ctrl][Z] [Alt][F9]
Define Screens   
Resolve Fields [F5] [F5]
Display Fields [F6] [F6]
Box Functions [F7] [F7]
Extended Functions [F8] [F8]
Toggle Graphics [F9] [F9]
Toggle Reverse Video [Ctrl][Z] [ALT][F9]
   
Define Output   
Enter Print Codes [F5] [F5]
Display Fields [F6] [F6]
Box Functions [F7] [F7]
Extended Functions [F8] [F8]
Toggle Graphics [F9] [F9]
   
Define Processing Tables   
Define Lookups [F5] [F5]
Display Fields [F6] [F6]
Go to Line/String [F9] [F9]
   
Inquire, Update, Add   
Duplicate [F5] [F5]
Browse Lookup [F6] [F6]

   



AT&T 4410/5410 Key Usage
Key Function

 
Key(s) to Use Key in Manual

All filePro Plus programs   
New field, line, carriage return [Return] [Return]
Cancel, break [Del] [Ctrl](Break]
Save, record [Esc][Esc] [Esc]
Home cursor [Ctrl][A] [Home]
Insert, duplicate character [Fl] [Fl]
Delete character [F2] [F2]
Insert line [F3] [F3]
Delete line [F4] [F4]
Cursor up [Up Arrow] [Up Arrow]
Cursor down [Down Arrow] [Down Arrow]
Cursor left [Left Arrow] [Left Arrow]
Cursor right [Right Arrow] [Right Arrow]
Up or previous tab [Ctrl][P] [PgUp]
Down or next tab [Ctrl][N] [PgDn]
Right tab [Tab] [Tab]
Left tab [Esc][Tab [Shift] [Tab]
Clear to end of line/field [Ctrl][O] [Ctrl][End]
Redraw screen [Ctrl][L] not applicable
Display key table [Esc][?] [Esc][?]
Help [F8] [F10]
Toggle Insert Mode [Ctrl][Z] [Alt][F9]
Define Screens   
Resolve Fields [Ctrl][R] [FS]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][Y] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [EP]
Toggle Reverse Video [Ctrl][X] [Alt][F9]
   
Define Output   
Enter Print Codes [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][V] [F7]
Extended Functions [Ctrl][T] [F8]
   
Define Processing Tables   
Display Fields [Ctrl][F] [F6]
Toggle Graphics [Ctrl][G] [F9]
Go to line/string [Ctrl][X] [Alt][F9]
   
Inquire, Update, Add   
Duplicate [Ctrl][R] [F5]
Browse Lookup [Ctrl][F] [F6]
   



DEC VT 100 Key Usage
Key Function

 
Key(s) to Use Key in Manual

All filePro Plus programs   
New field, line, carriage return [Return] [Return]
Cancel. break [Del] [Ctrl][Break]
Insert, duplicate character [Chr Ins] [F1]
Delete character [Chr Del] [F2]
Insert line [Line Ins] [F3]
Delete line [Line Del] [F4]
Cursor up [Up Arrow] [Up Arrow]
Cursor down [Down Arrow] [Down Arrow]
Cursor left [Left Arrow] [Left Arrow]
Cursor right [Right Arrow] [Right Arrow]
Up or previous tab [Ctrl][P] [PgUp]
Down or I next tab [Ctrl][N] [PgDn]
Right tab [Tab] [Tab]
Left tab [Backtab] [Shift][Tab]
Clear to end of line, field [Ln Erase] [Ctrl][End]
Restore cursor not applicable Not applicable
Redraw screen [Pg Erase] Not applicable
Display key table [Esc][?] [Esc][?]
Help [Ctrl][X] [F10]
Toggle Insert Mode [Ctrl][Z] [Alt][F9]
Define Screens   
Resolve Fields [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
Toggle Reverse Video [Ctrl][Z] [Alt][F9]
   
Define Output   
Enter Print Codes [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
   
Define Processing Tables   
Define Lookups [Ctrl][R] [F5]
Display Fields [Ctrl][E] [F6]
Go to Line/String [Ctrl][G] [F9]
   
Inquire, Update, Add   
Duplicate [Ctrl][R] [F5]
Browse Lookup [Ctrl][F] [F6]



IBM-3151 Key Usage
Key Function

 
Key(s) to Use Key in Manual

All filePro Plus programs   
New field, line, carriage return [Return] [Return]
Cancel, break [Ctrl][C] [Ctrl][Break]
Save, record [Esc][Esc] [Esc]
Home cursor [Home] [Home]
Insert, duplicate character [F1] [F1]
Delete character [F2] [F2]
Insert line [F3] [F3]
Delete line [F4] [F4]
Cursor up [Up Arrow] [Up Arrow]
Cursor down [Down Arrow] [Down Arrow]
Cursor left [Left Arrow] [Left Arrow]
Cursor right [Right Arrow] [Right Arrow]
Up or previous tab [Ctrl][P] [PgUp]
Down or next tab [Ctrl][N] [PgDn]
Right tab [Tab à ] [Tab]
Left tab [ ß Tab] [Shift][Tab]
Clear to end of line [Erase EOF] [Ctrl][end]
Redraw screen [Ctrl][L] not applicable
Display key table [Esc][?] [Esc][?]
Help [F12] [F1O]
Toggle Insert Mode [Ctrl][Z] [Alt][F9]
Define Screens   
Resolve Fields [F5] [F5]
Display Fields [F6] [F6]
Box Functions [F7] [F7]
Extended Functions [F8] [F8]
Toggle Graphics [F9] [F9]
Toggle Reverse Video [Ctrl][X] [Alt][F9]
   
Define Output   
Enter Print Codes [F5] [F5]
Display Fields [F6] [F6]
Box Functions [F7] [F7]
Extended Functions [F8] [F8]
Toggle Graphics [F9] [F9]
   
Define Processing Tables   
Define Lookups [F5] [F5]
Display Fields [F6] [F6]
Go to Line/String [F9] [F9]
   
Inquire, Update, Add   
Duplicate [F5] [F5]
Browse Lookup [F6] [F6]
   



IBM-3164 Key Usage
Key Function

 
Key(s) to Use Key in Manual

All filePro Plus programs   
New field, line, carriage return [Return] [Return]
Cancel, break [Del] [Ctrl][Break]
Save, record [Esc][Esc] [Esc]
Home cursor [Home] [Home]
Insert, duplicate character [Ctrl][A] [F1]
Delete character [Ctrl][B] [F2]
Insert line [Ctrl][D] [F3]
Delete line [Ctrl][U] [F4]
Cursor up [Up Arrow] [Up Arrow]
Cursor down [Down Arrow] [Down Arrow]
Cursor left [Left Arrow] [Left Arrow]
Cursor right [Right Arrow] [Right Arrow]
Up or previous tab [Ctrl][P] [PgUp]
Down or next tab [Ctrl][N] [PgDn]
Right tab [Tab] [Tab]
Left tab [Esc][Tab] [Shift][Tab]
Clear to end of line [Ctrl][O] [Ctrl][end]
Redraw screen [Ctrl][L] not applicable
Display key table [Esc][?] [Esc][?]
Help [Ctrl][Z] [F1O]
Toggle Insert Mode [Ctrl][Z] [Alt][F9]
Define Screens   
Resolve Fields [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][Y] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
Toggle Reverse Video [Ctrl][X] [Alt][F9]
   
Define Output   
Enter Print Codes [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][Y] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
   
Define Processing Tables   
Define Lookups [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Go to Line/String [Ctrl][G] [F9]
   
Inquire, Update, Add   
Duplicate [Ctrl][R] [F5]
Browse Lookup [Ctrl][F] [F6]



TANDY DT-1OO Key Usage
Key Function

 
Key(s) to Use Key in Manual

All filePro Plus programs   
New field, line, carriage return [Return] [Return]
Cancel, break [Delete] [Ctrl][Break]
Save, record [Esc][Esc] [Esc]
Home cursor [Home] [Home]
Insert, duplicate character [PF1] [F1]
Delete character [PF2] [F2]
Insert line [PF3] [F3]
Delete line [PF4] [F4]
Cursor up [Up Arrow] [Up Arrow]
Cursor down [Down Arrow] [Down Arrow]
Cursor left [Left Arrow] [Left Arrow]
Cursor right [Right Arrow] [Right Arrow]
Up or previous tab [Ctrl][P] [PgUp]
Down or next tab [Ctrl][N] [PgDn]
Right tab [Tab] [Tab]
Left tab [Esc][Tab] [Shift][Tab]
Clear to end of line [Ctrl][O] [Ctrl][end]
Redraw screen [Ctrl][L] not applicable
Display key table [Esc][?] [Esc][?]
Help [F15] [F1O]
Toggle Insert Mode [Ctrl][Z] [Alt][F9]
Define Screens   
Resolve Fields [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
Toggle Reverse Video [Ctrl][Z] [Alt][F9]
   
Define Output   
Enter Print Codes [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
   
Define Processing Tables   
Define Lookups [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Go to Line/String [Ctrl][G] [F9]
   
Inquire, Update, Add   
Duplicate [Ctrl][R] [F5]
Browse Lookup [Ctrl][F] [F6]



TANDY DT-11O Key Usage
Key Function

 
Key(s) to Use Key in Manual

All filePro Plus programs   
New field, line, carriage return [Enter] [Return]
Cancel, break [Del] [Ctrl][Break]
Save, record [Esc][Esc] [Esc]
Home cursor [Home] [Home]
Insert, duplicate character [Fl] [Fl]
Delete character [F2] [F2]
Insert line [F3] [F3]
Delete line [F4] [F4]
Cursor up [Up Arrow] [Up Arrow]
Cursor down [Down Arrow] [Down Arrow]
Cursor left [Left Arrow] [Left Arrow]
Cursor right [Right Arrow] [Right Arrow]
Up or previous tab [PgUp] [PgUp]
Down or next tab [PgDn] [PgDn]
Right tab [Tab] [Tab]
Left tab [Esc][Tab] [Shift][Tab]
Clear to end of line, field [Ctrl][O] [Ctrl][End]
Restore cursor not applicable not applicable
Redraw screen [Ctrl][L] not applicable
Display key table [Esc][?] [Esc][?]
Help [F10] [F10]
Toggle Insert Mode [Ctrl][Z] [Alt][F9]
Define Screens   
Resolve Fields [F5] [F5]
Display Fields [F6] [F6]
Box Functions [F7] [F7]
Extended Functions [F8] [F8]
Toggle Graphics [F9] [F9]
Toggle Reverse Video [Ctrl][Z] [Alt][F9]
   
Define Output   
Enter Print Codes [F5] [F5]
Display Fields [F6] [F6]
Box Functions [F7] [F7]
Extended Functions [F8] [F8]
Toggle Graphics [F9] [F9]
   
Define Processing Tables   
Define Lookups [F5] [F5]
Display Fields [F6] [F6]
Go to Line/String [F9] [F9]
   
Inquire, Update, Add   
Duplicate [F5] [F5]
Browse Lookup [F6] [F6]



UNISYS UVT-1220 Key Usage
Key Function

 
Key(s) to Use Key in Manual

All filePro Plus programs   
New field, line, carriage return [Return] [Return]
Cancel, break [Del] [Ctrl][Break]
Save, record [Esc][Esc] [Esc]
Home cursor [Ctrl][W] [Home]
Insert, duplicate character [PF1] [Fl]
Delete character [PF2] [F2]
Insert line [PF3] [F3]
Delete line [PF4] [F4]
Cursor up [Up Arrow] [Up Arrow]
Cursor down [Down Arrow] [Down Arrow]
Cursor left [Left Arrow] [Left Arrow]
Cursor right [Right Arrow] [Right Arrow]
Up or previous tab [Ctrl][P] [PgUp]
Down or next tab [Ctrl][N] [PgDn]
Right tab [Tab] [Tab]
Left tab [Esc][Tab] [Shift][Tab]
Clear to end of line, field [Ctrl][O] [Ctrl][End]
Restore cursor not applicable not applicable
Redraw screen [Ctrl][L] not applicable
Display key table [Esc][?] [F10]
Toggle Insert Mode [Ctrl][Z] [Alt][F9]
Define Screens   
Resolve Fields [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
Toggle Reverse Video [Ctrl][Z] [AIt][F9]
   
Define Output   
Enter Print Codes [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
   
Define Processing Tables   
Define Lookups [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Go to Line/String [Ctrl][G] [F9]
   
Inquire, Update, Add   
Duplicate [Ctrl][R] [F5]
Browse Lookup [Ctrl][F] [F6]



WYSE 50 Key Usage
Key Function

 
Key(s) to Use Key in Manual

All filePro Plus programs   
New field, line, carriage return [Return] [Return]
Cancel, break [Del] [Ctrl][Break]
Save, record [Esc][Esc] [Esc]
Home cursor [Home] [Home]
Insert, duplicate character [Ins Char] [Fl]
Delete character [Del Char] [F2]
Insert line [Ins Line] [F3]
Delete line [Del Line] [F4]
Cursor up [Up Arrow] [Up Arrow]
Cursor down [Down Arrow] [Down Arrow]
Cursor left [Left Arrow] [Left Arrow]
Cursor right [Right Arrow] [Right Arrow]
Up or previous tab [Prev Page] [PgUp]
Down or next tab [Next Page] [PgDn]
Right tab [Tab] [Tab]
Left tab [Shift][Tab] [Shift][Tab]
Clear to end of line, field [ClrLine] [Ctrl][End]
Redraw screen [ClrScrn] not applicable
Display key table [Esc][?] [Esc][?]
Help [FI5] [F10]
Toggle Insert Mode [Ctrl][Z] [Alt][F9]
Define Screens   
Resolve Fields [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
Toggle Reverse Video [Ctrl][Z] [Alt][F9]
   
Define Output   
Enter Print Codes [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
   
Define Processing Tables   
Define Lookups [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Go to line/string [Ctrl][G] [F9]
   
Inquire, Update, Add   
Duplicate [Ctrl][R] [F5]
Browse Lookup [Ctrl][F] [F6]



WYSE 60 Key Usage
 

Key Function ASCII Keyboard AT Keyboard Key in Manual
All filePro Plus programs    
New field, line, carriage return [Return] [Enter] [Return]
Cancel, break Break] [Del] [Ctrl][Break]
Save, record Esc][Esc] [Esc][Esc] [Esc]
Home cursor Home] [Home] [Home]
Insert, duplicate character [PF1] [F1] [F1]
Delete character [PF2] [F2] [F2]
Insert line [PF3] [F3] [F3]
Delete line [PF4] [F4] [F4]
Cursor up [Up Arrow] [Up Arrow] [Up Arrow]
Cursor down [Down Arrow] [Down Arrow] [Down Arrow]
Cursor left [Left Arrow] [Left Arrow] [Left Arrow]
Cursor right [Right Arrow] [Right Arrow] [Right Arrow]
Up or previous tab [Ctrl][P] [PgUp] [PgUp]
Down or next tab [Ctrl][N] [PgDn] [PgDn]
Right tab [Tab] [Tab] [Tab]
Left tab [Shift][Tab] [Shift][Tab] [Shift][Tab]
Clear to end of line, field [Ctrl][O] [Ctrl][O] [Ctrl][End]
Restore cursor not appl not appl N/A
Redraw screen [F1O] [Ctrl][W] N/A
Display key table [Esc][?] [Esc][?] [Esc][?]
Help [F15] [F1O] [F1O]
Toggle Insert Mode [Ctrl][Z] [Alt][F9] [Alt][F9]
    
Define Screens    
Resolve Fields [Ctrl][R] [F5] [F5]
Display Fields [Ctrl][F] [F6] [F6]
Box Functions [Ctrl][E] [F7] [F7]
Extended Functions [Ctrl][T] [F8] [F8]
Toggle Graphics [Ctrl][G] [E9] [F9]
Toggle Reverse Video [Ctrl][Z] [Ctrl][Z] [Alt][F9]
    
Define Output    
Enter Print Codes [Ctrl][R] [F5] [F5]
Display Fields [Ctrl][F] [F6] [F6]
Box Functions [Ctrl][E] [F7] [F7]
Extended Functions [Ctrl][T] [F8] [F8]
Toggle Graphics [Ctrl][G] [F9] [F9]
    
Define Processing Tables    
Define Lookups [Ctrl][R] [F5] [F5]
Display Fields [Ctrl][F] [F6] [F6]
Go to Line/String [Ctrl][G] [F9] [F9]
    
Inquire, Update, Add    
Duplicate [Ctrl][R] [F5] [F5]
Browse Lookup [Ctrl][F] [F6] [F6]



WYSE 75 Key Usage
Key Function

 
Key(s) to Use Key in Manual

All filePro Plus programs   
New field, line, carriage return [Return] [Return]
Cancel, break [Delete] [Ctrl][Break]
Save, record [Esc][Esc] [Esc]
Home cursor [Home] [Home]
Insert, duplicate character [PF1] [Fl]
Delete character [PF2] [F2]
Insert line [PF3] [F3]
Delete line [PF4] [F4]
Cursor up [Up Arrow] [Up Arrow]
Cursor down [Down Arrow] [Down Arrow]
Cursor left [Left Arrow] [Left Arrow]
Cursor right [Right Arrow] [Right Arrow]
Up or previous tab [Ctrl][P] [PgUp]
Down or next tab [Ctrl][N] [PgDn]
Right tab [Tab] [Tab]
Left tab [Esc][Tab] [Shift][Tab]
Clear to end of line, field [Ctrl][O] [Ctrl][End]
Redraw screen [Ctrl][L] not applicable
Display key table [Esc][?] [Esc][?]
Help [F15] [F10]
Toggle Insert Mode [Ctrl][Z] [Alt][F9]
Define Screens   
Resolve Fields [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
Toggle Reverse Video [Ctrl][Z] [Alt][F9]
   
Define Output   
Enter Print Codes [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
   
Define Processing Tables   
Define Lookups [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Go to Line/String [Ctrl][G] [F9]
   
Inquire, Update, Add   
Duplicate [Ctrl][R] [F5]
Browse Lookup [Ctrl][F] [F6]



WYSE 85 Key Usage
Key Function

 
Key(s) to Use Key in Manual

All filePro Plus programs   
New field, line, carriage return [Return] [Return]
Cancel, break [Del] [Ctrl][Break]
Save record [Esc][Esc] [Esc]
Home cursor [Home] [Home]
Insert duplicate character [PF1] [F1]
Delete character [PF2] [F2]
Insert line [PF3] [F3]
Delete line [PF4] [F4]
Cursor up [Up Arrow] [Up Arrow]
Cursor down [Down Arrow] [Down Arrow]
Cursor left [Left Arrow] [Left Arrow]
Cursor right [Right Arrow] [Right Arrow]
Up or previous tab [Ctrl][P] [PgUp]
Down or next tab [Ctrl][N] [PgDn]
Right tab [Tab] [Tab]
Left tab [Esc][Tab] [Shift][Tab]
Clear to end of line, field [Ctrl][O] [Ctrl][End]
Restore cursor not applicable not applicable
Redraw cursor [Ctrl][L] not applicable
Display key table [Esc][?] [Esc][?]
Help [Help] [F10]
Toggle Insert Mode [Ctrl][Z] [Alt][F9]
Define Screens   
Resolve Fields [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
Toggle Reverse Video [Ctrl][Z] [Alt][F10]
   
Define Output   
Enter Print Codes [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Box Functions [Ctrl][E] [F7]
Extended Functions [Ctrl][T] [F8]
Toggle Graphics [Ctrl][G] [F9]
   
Define Processing Tables   
Define Lookups [Ctrl][R] [F5]
Display Fields [Ctrl][F] [F6]
Go to Line/String [Ctrl][G] [F9]
   
Inquire, Update, Add   
Duplicate [Ctrl][R] [F5]
Browse Lookup [Ctrl][P] [F6]



YOUR TERMINAL Key Usage
Key Function

 
Key(s) to Use Key in Manual

All filePro Plus programs   
New field, line, carriage return ___________ [Return]
Cancel, break ___________ [Ctrl][Break]
Save record ___________ [Esc]
Home cursor ___________ [Home]
Insert, duplicate character ___________ [Fl]
Delete character ___________ [F2]
Insert line ___________ [F3]
Delete line ___________ [F4]
Cursor up ___________ [ h ]
Cursor down ___________ [ i ]
Cursor left ___________ [ f ]
Cursor right ___________ [ g ]
Up or previous tab ___________ [PgUp]
Down or next tab ___________ [PgDn]
Right tab ___________ [Tab]
Left tab ___________ [Shift][Tab]
Clear to end of line, field ___________ [Ctrl][End]
Restore cursor ___________ Not applicable
Redraw screen ___________ Not applicable
Display key table ___________ [Esc][?]
Help ___________ [F10]
Toggle Insert Mode ___________ [Alt][F9]
   
Define Screens   
Resolve Fields ___________ [F5]
Display Fields ___________ [F6]
Box Functions ___________ [F7]
Extended Functions ___________ [F8]
Toggle Graphics ___________ [F9]
Toggle Reverse Video ___________ [Alt][F9]
   
Define Output   
Enter Print Codes ___________ [F5]
Display Fields ___________ [F6]
Box Functions ___________ [F7]
Extended Functions ___________ [F8]
Toggle Graphics ___________ [F9]
   
Define Processing Tables   
Define Lookups ___________ [F5]
Display Fields ___________ [F6]
Go to Line/String ___________ [F9]
   
Inquire, Update, Add   
Duplicate ___________ [F5]
Browse Lookup ___________ [F6]



Add Qualifier

 Addqual allows you to easily add qualifiers to your files either
 interactively or through the command line.
  
 v6.1 ( 6.0.03 USP )

 Syntax:   addqual [ fPname|- ] [flags]

 6.1   -q               qualifier to create
 6.1   -x               qualifier to copy indexes from
 6.1   -s               silent, no graphics
 6.1   -h               syntax help
  

 



Autoshuf
Description:
"Autoshuf" synchronizes filePro key and data segments to match a revised map file. "Autoshuf" is a valuable tool for adjusting the filePro data to a revised map file that you have created on another
system. As a developer, you often have a need to change a file definition to extend a field length, add a new field, or apply another edit in the "TYPE" column. These same changes will invariably be
needed on several clients' systems. Prior to this utility, you would be forced to dial in to the clients system or go on-site to make the map change on each system and wait for files to be re-structured.
With autoshuf, you can copy the new map file to map.new, install on your customers' systems and run autoshuf to expand or shrink the key and data segments. The beauty of the program is that it
will run unattended in a batch or script file, so you can create upgrade routines and forward to customers on floppy (or other removable media) or e-mail your map changes.
Procedure:
Anytime a map change is made, copy the map from the applicable filePro directory on the source system to map.new in the same filePro directory on the target system.
Note: DO NOT COPY the map or map.tmp files from the source system into the target system, or your data on the target system will not be usable. Run autoshuf "filename" where "filename" is the
filePro directory that map.new has been copied into on the target system. When autoshuf finishes, your map and map.tmp on the target system will be identical to "map.new".
Syntax:

autoshuf filename
where filename is the filePro directory where you copied "map.new".

Troubleshooting:
Check Environment & Path - If autoshuf fails to run or does not restructure your data, you may not have set your environment and path properly. The same environment variables required to run
filePro are required for autoshuf to work properly.
Check for map.new - Make sure that you copied "map.new" to the correct filePro directory.



blobfix
IMPORTANT:  Make a backup copy of your data, key, and blob files before executing this command.
Blobfix is designed to correct the pointers from records to the blob file pointing to the blob contents for each record.

Syntax:   blobfix filename <-m qualifier>
-m qualifier is optional        without -m qualifier, blobfix will run on the non-qualified data source.
 



Configuration Editor
Description
The configuration editor allows you to easily update filePro configuration files to control your filePro environment settings such as screen colors, printers, etc.
Use the "filePro Utilities" menu option to display the filePro utilities menu.

 
Select option [2] "Configuration Editor" from the filePro Plus Utilities menu to display your configuration settings.

 
To update your configuration settings, Press [U] to update.

 
The [F10] help key will display a list of available variables and usage information similar to the following screen.

 
When pressing the [F9] - Search key, an index is displayed for the available filePro variables.



 
Note that the variables are identified in all uppercase letters while general help categories contain lowercase letters in the index. This is done only to separate items in the index to indicate that the
index item is a VARIABLE name rather than a general help category. Environment variables are not case sensitive when using the configuration editor so they can be entered in either upper or lower
case.

Classification
Environment variables are classified based on the utilization e.g. Debug, Screen, Output, etc. Note that these categories are abbreviated in the index as "Env_Var-Debug", "Env_Var-Screen",
"Env_Var-Output", etc. The following is an example of the help for environment variables for "Output".

 
Caution: Be careful when updating your configuration settings to ensure that filePro continues work properly.

Variables that should NOT be added using the filePro Configuration Editor.
Path Variables - Path variables such as PFPROG, PFDATA, PFDSK should not be entered with this editor. These types of variables should set using a "fppath" file or in the batch file used to start your
filePro sessions. Path variables are clearly identified in the help file and in the fPmanual.

 
Once you have finished updating your filePro configuration variables, Press [Esc] to record your changes and then exit the configuration editor.
Note: Refer to the topic "References" and sub-topic "Environment Variables " in this manual for more details on usage of environment variables.



dbCopy
Description:
DbCopy provides for copying dBase (xBase) files directory into a filePro data file. This utility is included in the filePro "Utilities Menu" as option "3".

 
When selecting option "3", you will see the following screen. Enter the path to the dbase(xBase) file and the filePro filename you want to copy to. In this case, we used c:\smmodems and the same
name for my filePro filename.

 
When the Xbase file has been converted, you will see a statistics box as follows;

 
Your dBase file has been converted. The dbCopy program creates the map file just as if you manually created it using the "Define files" option of the "filePro Plus Main Menu", and has imports the data
so that you can use it in filePro. Exit the dBase Conversion program and Utilities Menu and go to the "Define Files" Option "1" of the filePro Plus Main Menu. Select "SMMODEMS" and view the filePro
definition created by the dBase conversion program.

 
Press U to Update then Press ESC to trigger creation of a default screen and press "Y" to create screen 0.
Now we can review the "smmodem" file in IUA.
Go to "Inquire/Update/Add" Option "B" of the "filePro Plus Main Menu", and select "smmodems".
Select Screen 0 (default screen created by "Define Files") and view a record.



 
Although all the fields in the dBase file are not presented on the Screen 0, you can see that the data has been properly imported while scanning through the records. You can now enhance
"smmodems" by creating additional filePro screens, browse formats etc. to use the data in the filePro format.
The following is a tailored browse format for "smmodems" built on fields 44, 45 & 46 with the results of the browse definition. Save this format as the "Default browse" format.

 
This will create the default screen browse whenever you enter Inquire/Update/Add and use the "Browse" similar to the following screen.

 



dosetforms
this is a new program located in the fp directory that allows you to bulk select files in your filePro directory to process and set up the various .out files
 to appear or not to appear when pressing F for forms in a *clerk (UIA) session. The default selection for dosetforms is all filenames, and then .out files
 that are 1. process only, and 2. all reports. Only .out files that are labels and forms will show in clerk.



doresync  Version Ref. 5.8.01
 
doresync" acts like "autoshuf", except that it doesn't do any restructuring -- it just does the resync and marks the file as "mirroring on" again. You can also pass the filename on the command line, as
well as "-H heading".  And, unlike autoshuf, it doesn't mark the lockfile as being used by define files, thereby allowing others into the file while it is resyncing
 

/fp/doresync <filename> -h "Heading"
 

Within each filePro directory there is a new file called 'mirror.xml' which contains the mirror status.  The format is:
 

<fileProMirrorInfo>
<Mirror Status='STATUS'    When='2015-12-28T23:20:58'    User='USERNAME' />
<Reason>REASON FOR MESSAGE</Reason>
</fileProMirrorInfo>
 

Where STATUS is either 'off, 'paused', 'on', or 'resync'



Dual Write/Mirror Version 5.8.01
When setting up Dual Write, you need to make sure that you have PFDIR2 and PFDATA2 set in the configuration file.
An example would be:  

 PFDATA2=K:
 PFDIR2=\fpmirror
or
PFDATA2=\\w.x.y.z\sharename or \\server\sharename
PFDIR2=\fpmirror

On NIX platforms you could have this in your config file:
PFDATA2=
PFDIR2=/backup/mirror

Then you need to make sure that the path for those variables (including the filepro directory) is set up prior to activating a dual write.
In the first example it would be the path of K:\fpmirror\filepro or for NIX /backup/mirror/filepro  Note that filePro needs read and write permissions.
 
Then, in Define Files, select the filename that you wish to mirror.  Press O for Options.

 
Press ENTER to get to the last field:  Mirror data from this file:  Enter Y and then press SAVE to record.
When you SAVE to exit ddefine, it will copy all instances of data, key, index, and blob to the filename located in the mirror path.
This process edits the header of the map to include the trigger for filePro to know this is a dual write or mirrored file.
 
IMPORTANT NOTE:   If during normal operations within a mirrored file the path to the mirror becomes unavailable, filePro will detect the error and popup a message warning the user that the mirror
has been suspended.  Someone will at this point need to reestablish the mirror path and then resync the files that have been suspended.  Within each filePro directory there is a new file called
'mirror.xml' which contains the mirror status.  The format is:
 

<fileProMirrorInfo>
<Mirror Status='STATUS'    When='2015-12-28T23:20:58'    User='USERNAME' />
<Reason>REASON FOR MESSAGE</Reason>
</fileProMirrorInfo>
 

Where STATUS is either 'off, 'paused', 'on', or 'resync'  (See doresync)
 
DO NOT mirror an alien or ODBC file.
 
%LOCALAPPDATA%\fptech\fpmirrorwarn contains the flag for warning an end user that there is a problem.



Form filtering version 5.8.02
 
dosetforms – this is a new program located in the fp directory that allows you to bulk select files in your
filePro directory to process and set up the various .out files to appear or not to appear when pressing
F for forms in a *clerk (UIA) session. The default selection for dosetforms is all filenames, and then
.out files that are 1. process only, and 2. all reports. Only .out files that are labels and forms will show
in clerk.
 
dmoedef enhancement – from the F8 – Options in Define Output, you can select F – Hide or Show
Forms. This will allow you to manage the .out files that are hidden from clerk. A list of .out files will
appear when you press F. This list will display showing .out file hidden with an asterisk and those
not hidden unmarked. You can manually toggle the .out files or you can press F7 to reverse toggle
them all. Once you have the list the way you wish it to be, press SAVE to process the new settings
for this one directory.
 
dmoedef also allows you to switch just the .out file that you have selected by selecting F8 – Options.
The line “Hide forms from clerk: N” determines rather this form is hidden or not from clerk (IUA).
 



fPcopy
 
fPCopy command line flags (Ver 5.8.03.13)

In this update, fPCopy will now accept command line flags so the previous interface does not need to be used.
IMPORTANT: Note below that the flags used for command line use are different for ODBC files.  Use Caution when executing this from the command line.
NOTE: If any flags are missing from a command line execution of fPCopy, the interface will trigger for the questions needing answers.
The syntax is:

For regular filePro files:     fpcopy FPname newFPname -FC [1|2|3|4] -RP [1|2|3]
-FC flags are:

1 - Copy File Layout And Formats Only
2 - Copy File Layout, Formats, And Data
3 - Copy File Layout Only
4 - Rename The File

-RP flags are:
1 - Assign The Creation Password As The Runtime Password
2 - Prompt For The Runtime Password
3 - Remove All Runtime Passwords

 
For ODBC files:    fpcopy FPname newFPname -FC [1|2|3] -RP [1|2|3]

-FC flags are:
1 - Copy File Layout And Formats Only
2 - Copy File Layout Only
3 - Rename The File

-RP flags are:
1 - Assign The Creation Password As The Runtime Password
2 - Prompt For The Runtime Password
3 - Remove All Runtime Passwords

 
Description:
fpCopy provides for copying one filePro database to another. This utility is included in the filePro "Utilities Menu".
Select Option "F" from the filePro Plus Main Menu to enter the filePro Utilities Menu

 
Select Option "B"

 
 
Enter the Copy/Rename from filePro filename and New filename.



 
You will then be presented with various options for copying and renaming the file. Select the option that applies for your particular scenario.
Note: Option "2" will copy all layouts, formats, and data. You will probably want to use this option when creating archive files so that you have the screens, reports,
edit dictionary, and so forth if you will have a need to periodically retrieve data from the archive.

 
After selecting the parts of the filePro to copy or rename, you will see the following screen which provides various Runtime password options. Select the option of your
choice.

 
After fpCopy finishes, you will be returned from the filePro "Utilities Menu". You should be able to view the new or renamed filePro file definition, formats, etc. from the
"filePro Plus Main Menu".



Pack Files

 This program allows a developer to remove deleted records in a file
 to reclaim space. It can also be used to display statistics and 
 optionally rebuild index files after the packing operation.
  
 v6.1 ( 6.0.02 USP )

 Syntax:   fppack [ fPname|- ] [flags]

 6.1   -H "heading"     Custom title to display in box.
 6.1   -E               Don't actually pack the records, just
         give statistics.
 6.1   -R               Rebuild the automatic indexes even if
         no records were deleted.
 6.1   -EX              Skip statistics.
 6.1   -C               Skip continue and finished prompts      
 6.1   -X               Skip rebuilding the auto indexes.
 6.1   -M name          Qualifier file name to use.
 6.1   -MD              Ask for qualifier with default prompt.
 6.1   -MQ "mesg"       Ask for qualifier with "mesg" as the prompt.
 6.1   -MA              Use all qualified files & main file.

 \r Unix/Linux only: \r
 6.1   -BG              Work in the background.
 6.1   -BS              Suppress "completed in background" message.
  

 



fPtransfer
The fPtransfer utility is an add-on product and used for transferring data between operating systems. However, you can only transfer from the same or older (lower) version to the same or newer
(higher) version of filePro. It is highly recommended that you use the same version of fPtransfer for both operating systems. Also, although many versions allow direct transfer of the filePro files
using serial communications ports, this method can be problematic due to differences in standards being employed for new hardware. We recommend running fPtransfer from the command line using
the "-lf" flag to create and read binary files on the source and target systems respectively. The binary files can then be transferred between systems by any means available e.g. FTP (File Transfer
Protocol), tape, CD, etc.
Examples:
xfer -t -pn -lf file.dat file1 file2 file3 etc...

The above will create "file.dat" for filePro files identified as file1,
file2, file3, etc.

xfer -r -lf file.dat

The above will extract the file(s) to the location identified by the path
variables.
Note: Make sure to set the path variables e.g. pfdsk, pfdata, pfdir
prior to running fPtransfer and use
You will need to buy copies of fPtransfer for the source and target systems.
To upgrade and/or buy the DOS or UNIX fPtransfer, please contact our sales department at 1-800-847-4740 or email us at sales@fileproplus.com



Freechain
This utility is used to correct record chain problems that affect indexes. Although the freechain is normally maintained through index maintenance and when expanding a file, this utility is also
furnished as a separate utility program to repair the freechain pointer. This may be necessary when you receive an error message "Rebuild Freechain" or "Error in freechain".
 
Syntax:

For NIX
freechain filename [qualifier]
For Windows
freechn.exe filename [qualifier]
where filename is the filePro file name and [qualifier] is the optional qualified data set.



Licinfo
Provides details with regard to the filePro license. This utility is useful for diagnosing license problems and providing details on the licensed features, user counts, etc.



Menu Password Maintenance
You can assign passwords to each of your user menus with this option. Select the "Utilities" option from the filePro Plus Main menu to show the filePro Utilities menu.

 
Select a menu name from the available menus.

  
Select the file that you want to protect with a password and enter your passwords.

 
You can enter, change and delete a menu password with this option but must know the password to change a previously "password protected" menu. Menu passwords cannot be removed by
simply copying the menu from a system prompt.
Note: The "Define User Menus" option on the filePro Plus main menu can also be used to change menu passwords.



Set filePro's Colors Utility
Under DOS, select F for the filePro Utility Menu, then choose 1 for the filePro Color Utility. This program lets you quickly set the colors for all filePro programs globally. You adjust the normal color and
the inverse color and filePro does the rest.

 



Site Password
Description:
The site password option is intended to prevent theft of your applications. It prevents copies of your source code from being modified on another system. Keep in mind that if you apply a site
password to your own system and copy the processing tables and formats to another system, you will not be able to access these files unless you have the same site password on the other
system. This can present problems if you develop or modify systems at various locations.
In the event that you end up with undesired password protection, the passwords can be removed by fP Technologies for a nominal fee. Contact our sales office for details and procedures for
removal of the passwords.



SpellEditor
 
Description:
Allows you to edit personal spell check dictionaries maintained in %pfprog%/fp/spell or as specified by PFSPELLUSERLIST. The utility allows you to add, change & delete words in your personal
dictionary.



Swapcpu
This program switches the file formats between little and big endian.  (Endian is determined by hardware architecture)
Swapcpu converts a *nix filePro file between little- and big-endian format, without the need to go through xfer.  For example, between Intel (little-endian) and AIX (big-endian).

Note that HP-UX comes in two flavors -- Intel (little-endian) and RISC (big-endian).
 
Usage
swapcpu [flags] [filename filename filename ...]
 
Available flags:
-S = skip key/data/files.
-Q = quiet mode (no "already in destination order" messages)
-CN = convert to native format
-CF = convert to foreign format



UID Mapping

 Added UID mapping to filePro, ddir/dprodir option F5.
 This allows for UIDs (User IDs) to be aliased to specific 
 usernames. In the event that a login account is removed from 
 your system, this can be used to maintain the link between the 
 removed login's UID and those stored in filePro, effectively 
 allowing system variables such as @CB and @UB to be mainained.

 Windows Only:
  This also has the added benefit of allowing @CB and @UB to 
  function on Windows by linking a "pseudo" UID to a given 
  username. These UIDs are automatically generated but can 
  also be manually added. When a user opens filePro and their
  username does not exist in the UID map file, a UID will 
  be generated for that user. filePro will find the next 
  available UID in the list, starting from 2000, and assign 
  it to that username.

  On all platforms, UIDs stored in this program must be unique 
  and in the range 0-65535. Usernames can be duplicated on Unix 
  and Linux platforms, but must be unique on Windows.

  Usernames are case-sensitive on Unix and Linux platforms and 
  are case-insensitive on Windows platforms.

  Environmental Variables:
  PFUIDMAP = /path
  Alternate filePro UID map file. (Use full path)
   Note: Must be set in the environment.

  PFUSEUIDMAP = ON 
  Allows filePro to do UID mapping. Also expands the maximum 
  username length returned by @CB, @UB, and @ID to 32.
  Default: ON
  

 



UNPAD
Earlier versions of filePro under HP-UX stored the data on disk in a format that is not compatible with other versions of filePro. There were some additional padding bytes in the binary headers, due to
the different CPU architecture. The HP version of filePro has been changed to use a format that is compatible with the other systems that filePro runs on. If you have data from the earlier version of
filePro, you need to "unpad" the data to remove the extraneous padding bytes to convert to the compatible format.


	Introduction
	Welcome
	Acknowledgements
	BUG Reporting
	Using Help
	filePro Plus Capacities
	Disclaimer
	Disclaimer - Encryption
	System Requirements

	fPSQL
	fPSQL

	How Do I
	Get Started
	Things you should know.
	The filePro Plus Main Menu
	Index Selection
	Defining Browse Formats
	Scanning For Records
	IUA Hints

	Begin Designing
	Creating A File
	Defining a User Edit
	Defining a Screen
	Defining an Index
	Setting the File Name
	Defining an Output Format
	Defining A Processing Table
	Using IUA To Test File Design
	Requesting an Output Format
	Defining a User Menu
	Running a User Menu

	Continue Designing
	Obtaining a Unique Number
	Tracking Receipts By Customer Account#
	Calculating Sales Tax and Totals
	Simple Browse Lookup
	The @key Trigger

	Finish Design
	Add New Customers While In The Receipts File
	Posting
	Adding A Catalog File
	The Sort/Select Processing Table (-v processing)
	A Virtual Work File - A Place To Stand
	New Features In An Old Application

	Advanced Concepts
	Arrays
	AutoIndexSelection
	Clone Files
	Debugger
	DROP ALL
	HELP Screens
	Integrating Concepts
	LISTBOX Command
	Logtext
	Lookup Dash
	MENU Command
	Negative number in "Number of Forms" field
	O/S FILE I/O FUNCTIONS()
	PDF printing
	SORT/SELECT Processing
	Lockfiles

	Processing Tables
	Alternate Automatic Processing
	Another Trigger - @key
	Automatic Processing  - Compiling
	Browse Lookup Example
	COMMAND GROUPS
	Dummy Fields in Processing
	How A Processing Table Works
	Keyboard Input
	The LOOKUP Command
	MSGBOX/ERRORBOX
	Output Processing
	Processing Table Backups
	Processing Table Ingredients
	Screen Messages With SHOW
	Simple Operations on Processing Tables
	Steps to Define a Key-field Lookup
	Triggers
	Types of Processing


	FilePro Menu Items
	Creation Operations
	Define Files
	Define Screens
	Define Output
	Define Edits
	Define Processing
	Defining User Menus
	Printer Maintenance
	Runtime Operations
	FilePro Directory
	Expand Files
	Inquire, Update & Add
	Index Maintenance
	Request Output
	Set/Change File Name
	Running User Menus

	fileProGI/GIserver
	GIserver
	fileProGI - Installation
	fileProGI - Starting

	fileProODBC
	Introduction To fileProODBC
	System Requirements - fileProODBC
	Foreword
	Disclaimer
	Installation
	What Method Should I Use?
	Using Define Files for ODBC (High Level method)
	filePro's ODBC objects (Low Level method)
	ODBC High Level Demo
	ODBC Low Level Application Demo
	Restrictions
	SQL Data Type & filePro Edits
	Technical Notes
	Environmental Variables
	Appendix A - SQL Statements

	fileProXLSX
	XLSX Markup Language
	XL_OPEN()
	XL_SAVE()
	XL_ADDSHEET()
	XL_ADDCELL()
	XL_ADDCELL2()
	XL_FORMAT()
	XL_COLWIDTH()
	XL_FONT()
	XL_BORDER()
	XL_FILL()
	XL_ADD_DT()
	XL_ADD_DT2()
	XL_CHART()
	XL_CHART2()
	XL_CHARTSHEET()
	XL_SERIES()
	XL_SERIES2()
	XL_PROTECTSHEET()
	XL_PROTECTCHARTSHEET()
	XL_ERROR()
	XL_SETPOS()
	XL_SETPOS2()
	XL_NEXTROW()
	XL_NEXTCOL()
	XL_STYLE()
	XL_IMAGE()
	XL_IMAGE2()
	XL_LASTCMD()
	XL_MARGINS()
	XL_LANDSCAPE()
	XL_PORTRAIT()
	XL_GRIDLINES()
	XL_FITPAGES()
	XL_FREEZEPANE()
	XL_FREEZEPANE2()
	XL_PAPERTYPE()
	XL_CENTERH()
	XL_CENTERV()
	XL_PRINTACROSS()
	XL_SETHEADER()
	XL_SETFOOTER()
	XL_SETBACKGROUND()
	XL_SPLITPANE()
	XL_HIDEZEROS()
	XL_SHOWROWCOL()

	Glossary
	Standard Computer Terms
	filePro Terms

	References
	Commands
	A_AVG()
	A_MAX()
	A_MIN()
	A_TOT()
	ABS()
	ACCESS()
	ACOS()
	ACOSH
	ADDMONTH()
	ARCHIVE
	ASC()
	ASIN()
	ASINH()
	ATAN()
	ATANH()
	AVG()
	BACKGROUND
	BASE()
	BEEP
	BLOB
	BOM()
	BOQ()
	BOY()
	BREAK
	BUSYBOX
	CALL
	CEIL()
	CHAIN
	CHDIR
	CHR()
	CLEAR
	CLEARB
	CLEARP
	CLOSE
	CLOSE()
	CLOSEDIR()
	CLS
	COMPARE()
	COPY/COPYIN
	COPY()
	COS()
	COSH()
	CREATE()
	CRYPTERROR()
	CURSOR
	CURSOR PATH
	DACOS()
	DASIN()
	DATAN()
	DCOS()
	DEBUG
	DECLARE
	DECRYPT()
	DECODE
	DELETE
	DIM
	DISPLAY
	DLEN()
	DOEDIT()
	DOKEY
	DOM()
	DOQ()
	DOW()
	DOY()
	DROP
	DSIN()
	DTAN()
	DTOR()
	EDIT()
	ENCRYPT()
	ENCODE
	END
	EOM()
	EOQ()
	EOY()
	ERRNAME()
	ERRORBOX
	ESCAPE
	EXISTS()
	EXIT
	EXP()
	EXP10()
	EXPORT
	FIELDEDIT()
	FIELDLEN()
	FIELDNAME()
	FIELDVAL()
	FILENAME()
	FILESIZE()
	FLOOR()
	FLUSHKEY
	FOR
	FORM
	FORMERROR()
	FORMM
	FPSTAT()
	FRAC()
	FREESPACE()
	FTP_OPEN()
	GET16() GET32() PUT16() PUT32()
	GETCWD()
	GETENV()
	GETLOCKS()
	GETNEXT
	GETNONCE
	GETPID()
	GETPREV
	GETQUAL()
	GOSUB
	GOSUB OF / GOTO OF
	GOTO
	GROUP()
	GUI
	HARDCOPY
	HASH
	HELP
	HTML
	HTMLERRNO()
	IMPORT
	INDEXOF()
	INKEY
	INPUT
	INPUT POPUP
	INPUTPW
	INPUTPW POPUP
	INSTR()
	INT()
	ISDIR()
	ISFILE()
	ISLINK()
	ISLEAP()
	IXCOMMENT()
	IXSORT()
	JSFILE
	IXSEL()
	LEN()
	LISTBOX()
	Lite/filePro Lite
	LOCKED()
	LOG()
	LOG10()
	LOGTEXT
	LOOKUP
	MAX()
	LOOP
	LOOP_WHILE
	LOOP_UNTIL
	MDAY()
	MEMO
	MENU
	MERGEVAL()
	MESSAGE
	MID()
	MIN()
	MOD()
	MODE()
	MOUSE PATH
	MSGBOX
	NEXTDIR()
	NOT HTML
	NUMFIELD()
	NUMRECS()
	OPEN()
	OPENDIR()
	OUTS
	PAGE
	PDF_CLOSE()
	PDF_FIELDTYPE()
	PDF_FIELDTYPE2()
	PDF_GETFIELDNAME()
	PDF_GETNUMFIELDS()
	PDF_GETVALUE()
	PDF_GETVALUE2()
	PDF_OPEN()
	PI()
	POPFIELD
	POPUP
	POPUP UPDATE
	PRINT
	PRINTCODE()
	PRINTER Commands
	PUSHKEY
	PUTENV
	QRCODE()
	RAND()
	READ()
	READLINE()
	READMAP()
	READOUTPUT()
	READSCREEN()
	REPLACE()
	RECLEN()
	REMOVE()
	REPEAT()
	RESET
	RESTART
	RETURN
	RTOD()
	SAVE
	SCREEN
	SEEK()
	SELECT
	SELECTBOX()
	SET
	SHOW
	SHOW POPUP
	SHOW RAW
	SHOWCTR
	SHOWTOCOL
	SIGN()
	SIN()
	SINH()
	SKIP
	SLEEP
	SORT
	SORTARRAY()
	SORTINFO()
	SOUNDEX()
	SPELLCHECK
	SPLIT
	SQRT()
	STACKTRACE()
	STATUS()
	STRING_FUNCTIONS
	STRTOK()
	SWITCHTO
	SYNC
	SYSTEM
	TAN()
	TANH()
	TELL()
	TOHTML()
	TOT()
	TVM_xx
	UPDATE
	USER
	User Defined Functions
	VIDEO
	WAITKEY
	WOM()
	WOQ()
	WOY()
	WHILE
	WORDWRAP
	WRITE
	WRITE()
	WRITELINE()
	XLATE()

	Advanced Options for Define files
	Ddefine Options

	Edits
	Edits
	Edits Syntax
	System and Global Edits List

	Encryption
	ENCRYPT / DECRYPT
	Encryption Methods
	Encryption Mode
	Encrypt / Decrypt Example
	Encrypting Fields - Caution
	Credits Encryption

	Environment Variables
	Color-Values
	Configuration Editor
	Environment Variables
	Environment Variables - Debugging
	Environment Variables - Index (building, lookups, Browse)
	Environment Variables - Miscellaneous
	Environment Variables - Operating System Specific
	Environment Variables - Other
	Environment Variables - Output
	Environment Variables - Path
	Environment Variables - Screen Display
	Setting Environment Variables

	Error Messages
	Background Processing Problems
	Error Initializing a Port
	Unlocking Files
	filePro Error Messages
	Other System Errors
	System Errors
	Windows Error Messages

	Flags
	Flags - Define Processing (rcabe, dcabe)
	Flags - Directory (ddir & dprodir)
	Flags - Expand Files (dexpand)
	Flags - Index Maintenance (dxmaint)
	Flags - IUA (rclerk, dclerk)
	Flags - Request Output (rreport, dreport)

	HTML
	HTML Functions
	HTML(Address)
	HTML(Anchor)
	HTML(Area)
	HTML(BASE)
	HTML(Blockquote)
	HTML(Body)
	HTML(Caption, Frameset)
	HTML(Center)
	HTML(Comments)
	HTML(Create)
	HTML(Definition Term, Definition Data)
	HTML(Divisions)
	HTML(Font)
	HTML(Form)
	HTML(Frame)
	HTML(Header)
	HTML(Heading Text)
	HTML(Horizontal Rule)
	HTML(Image)
	HTML(Input)
	HTML(ISINDEX)
	HTML(Link)
	HTML(Map)
	HTML(Meta)
	HTML(Option)
	HTML(Ordered List, Unordered List, Definition List)
	HTML(PRE)
	HTML(Script)
	HTML(Selection)
	HTML(Span)
	HTML(Table, Data)
	HTML(Table, Table Row)
	HTML(Text)
	HTML(Text area)
	HTML(:ZZ)

	JSON
	JSON Functions

	XML
	XML Functions

	Math
	Simple Math
	Exponents
	Math,Financial
	Log Functions
	Trig Functions
	Hyperbolic

	Objects
	Objects
	PDF Objects

	Operating Systems
	Differences between DOS and Unix
	DOS and Network Versions
	Environment
	LINUX
	Microsoft Windows XP and higher
	PATH
	UNIX
	UNIXWARE
	XENIX

	Operators
	Alias Field Assignment
	Alias Filename Assignment
	Assignment
	Bitwise Operators
	Expressions
	Logic Operators
	Math Operators
	Punctuation and Operators
	String/Expression Manipulation Operators

	References Other
	Print Precedence Directives
	Special Key Labels
	SHOWCODES

	Sockets
	TCP/IP Functions
	SOCKETS Sample Applications
	Licensing

	SpellCheck
	Spell Check - Memo Fields
	Spell Check - Using Processing

	System Maintained Fields
	System Maintained Fields
	@AF
	@B4
	@BD
	@BK
	@BR
	@BT
	@C4
	@CB
	@CD
	@CO
	@CP
	@CT
	@DT
	@FD
	@FI
	@FN
	@ID
	@LC
	@LI
	@OS
	@PC
	@PD
	@PM
	@PN
	@PR
	@PT
	@PW
	@PX
	@PY
	@PZ
	@QU
	@RN
	@RP
	@RS
	@SF
	@SH
	@SK
	@RO
	@SN
	@T4
	@TD
	@TM
	@TN
	@TS
	@U4
	@UB
	@UD
	@UT
	@VR
	@GUI
	@VF
	@WORDWRAP
	@SYSINFO
	System Arrays

	Triggers
	Trigger Processing
	Triggers Used Only On INPUT Processing Table
	Triggers Used Only On Output Processing Tables
	@DONE
	@ONCE
	@entsel
	@key
	@menu
	@update
	@wbl
	@wbrk
	@wef
	@wgt
	@whp
	@wlf
	@wuk
	@exit

	Version Reference
	Commands
	Environment Variables
	System Maintained Fields
	System Arrays
	Trigger Fields


	Revision History
	6.1.XX New Items
	6.1.XX Release Notes
	6.0.XX Release Notes
	5.8.XX Release Notes
	5.7.XX Release Notes
	5.6.11 Release Notes
	5.6.10 Release Notes
	5.6.09 Release Notes
	5.6.08 Release Notes
	5.6.07 Release Notes
	5.6.06 Release Notes
	5.6.05 Release Notes
	5.6.04 Release Notes
	5.6.03 Release Notes
	5.6.02 Release Notes
	5.6.01 Release Notes
	5.6.00 Release Notes
	5.0.15 Release Notes
	5.0.14 Release Notes
	5.0.13 Release Notes
	5.0.12 Release Notes
	5.0.11Release Notes
	5.0.10 Release Notes
	5.0.09 Release Notes
	5.0.08 Release Notes
	5.0.07 Release Notes
	5.0.06 Release Notes
	5.0.05 Release Notes
	5.0.04 Release Notes
	5.0.03 Release Notes
	5.0.02 Release Notes
	5.0.01 Release Notes
	5.0.00K5 Release Notes
	5.0.00K4 Release Notes
	5.0.00K3 Never Released
	5.0.00K2 Release Notes
	5.0.00K1 Release Notes
	5.0.00 Release Notes
	4.8.12 Release Notes
	4.8.11 Release Notes
	4.8.10  Release Notes
	4.8.09K Release Notes
	4.8.09 Release Notes
	4.8.07 Release Notes
	4.8.06 Release Notes
	4.8.05K Release Notes
	4.8.05 Release Notes
	4.8.04 Release Notes
	4.8.03 Release Notes
	4.8.02 Release Notes
	4.8.00 Release Notes
	4.5.08K6 Release Notes
	4.5.08 Release Notes
	4.5.07 Release Notes
	4.5.06 Release Notes
	4.5.05 Release Notes
	4.5.03 Release Notes
	4.5.02  Release Notes

	Technical Notes
	Automatic Processing Tables
	Blinking Text
	Browse and Creation Password
	Button Problem
	DOS4GW
	Emulation Problems on LINUX
	fppath
	Hide Indexes
	Index Speed
	pfdsk
	License Manager
	License Problems
	Connecting Workstations
	Syntax
	hplaser
	FilePro and Laserjet Printing


	Terminal Guide
	Introduction
	Terminal Features
	Adding New Terminal Types
	Termcap Function Codes
	Termcap Graphic Codes
	filePro Plus Codes
	Key Label Codes
	ALTOS 3/5 Key Usage
	ANSI Console Key Usage
	AT&T 4410/5410 Key Usage
	DEC VT 100 Key Usage
	IBM-3151 Key Usage
	IBM-3164 Key Usage
	TANDY DT-1OO Key Usage
	TANDY DT-11O Key Usage
	UNISYS UVT-1220 Key Usage
	WYSE 50 Key Usage
	WYSE 60 Key Usage
	WYSE 75 Key Usage
	WYSE 85 Key Usage
	YOUR TERMINAL Key Usage

	Utilities
	Addqual
	Autoshuf
	Blobfix
	Configuration Editor
	dbCopy
	dosetforms
	doresync
	Dual Write Mirror
	Form Filtering
	fPcopy
	fPPack
	fPtransfer
	Freechain
	Licinfo
	Menu Password Maintenance
	Set filePro's Colors Utility
	Site Password
	SpellEditor
	Swapcpu
	UID Map
	UNPAD


