
filePro Structured Query Language

fPSQL
For Single and Multi-user Computer Systems

Reference Guide

fP Technologies, Inc. of Ohio
432 W. Gypsy Lane Road
Bowling Green, OH 43402

800-847-4740

Program Version Number: 5.8

Manual Version: June 2016

All rights reserved.

Reproduction or use, without express written permission from fP Technologies of Ohio, Inc. of any part of this
manual is prohibited. While reasonable efforts have been made in the preparation of this manual to assure its accuracy,

fP Technologies of Ohio, Inc. assumes no liability resulting from any errors or omissions, or from the use of the
information contained herein. Please refer to the filePro warranty and software license for use and reproduction of this
software package. filePro and filePro Plus are registered trademarks of fP Technologies of Ohio, Inc. Profile, UNIX,

XENIX and Windows are registered trademarks of their respective owners

www.fptech.com

http://www.fptech.com/

TABLE OF CONTENTS

Chapter Page

1. Getting Started .. 1-1

· Make sure you have everything 1-2
· Installing FPSQL .. 1-3
· Starting the FPSQL program 1-3
· FPSQL works with file Pro 16/16+, Profile 16 1-3
· How to use this manual .. 1-3
· Organization of this manual 1-3
· Style conventions used in this manual 1-4

2. What is fPSQL? ... 2-1

· What is SQL? .. 2-2
· What is fPSQL? .. 2-2
· A sample query .. 2-2
· The general form of a query 2-3
· Reserved words .. 2-4

3. Using fPSQL .. 3-1

· The main screen and commands 3-2
· Typing in a query ... 3-3
· Including comments in a query 3-4
· Editing a query.. 3-5
· Executing a query.. 3-7
· Passwords ... 3-8
· Viewing query output .. 3-9
· Redirecting query output to printer or file 3-10
· Controlling printed output formatting 3-11
· Saving a query .. 3-11
· Loading a saved Query ... 3-12
· Viewing the query file directory 3-13
· Viewing field headings, lengths, and edits 3-15
· Using online Help ... 3-18

TABLE OF CONTENTS
(cont)

Chapter Page

4. The FPSQL Demo Files ... 4-1

· The FPSQL demo files .. 4-2
· “sproduct” demo file .. 4-3
· “sclient” demo file ... 4-3
· “sinvoice” demo file .. 4-4
· “ssalesmn” demo file .. 4-4

5. “Select” and “From” Clauses 5-1

· The “select” clause .. 5-2
· Typing in field names .. 5-2
· The “from” clause ... 5-2
· Typing in file names .. 5-2
· Field names - what can be a field 5-3
· How fields are displayed in output 5-9
· How field names are justified in output 5-9
· File names - what can be a file 5-9
· Quiz query #1 ... 5-9

6. The “Where” Clause.. 6-1

· The “where” clause .. 6-2
· Condition – general form 6-3
· Comparison – general form 6-4
· Literals .. 6-4
· Comparison operators .. 6-5
· Grouping comparisons .. 6-6
· Examples using comparison operators 6-8
· Expressions ... 6-9
· The “exists” subclause .. 6-10
· Quiz query #2 ... 6-11

7. Aggregate Functions and tile “Group by’“ Clause 7-1

· Aggregate functions ... 7-2
· “Group by” clause ... 7-5
· Quiz query #3 ... 7-6

TABLE OF CONTENTS
(cont)

Chapter Page

8. “Having” Clause .. 8-1

· The “having” clause ... 8-2
· When used with the “where” clause 8-3
· Quiz query #4 ... 8-3

9. Subqueries and Variable Queries 9-1

· Multiple levels of nesting 9-3
· Subqueries .. 9-2
· Variable queries .. 9-5
· Quiz query #5 ... 9-6

10. Order by” Clause ... 10-1

· The “order by” clause .. 10-2
· The sorting sequence ... 10-2
· Quiz query #6 .. 10-4

11. Joining Files .. 11-1

· Joining files .. 11-2
· Quiz query #7 .. 11-4

12. “Set” Clause ... 12-1

· The “set” clause ... 12-2
· Redirecting query output 12-2
· Controlling printed output formatting 12-3
· Querying qualified files 12-5
· Multiple “set” clauses 12-5
· Quiz query #8 .. 12-5

Appendixes

A. Error Messages .. A-1

B. Reserved words ...B-1

C. FPSQL Syntax Diagrams ..C-1

D. FPSQL versus ANSI Standard SQL D-1

E. Answers to Quiz Queries ..E-1

Index ...I-1

1-1 Getting Started – Chapter 1

CHAPTER 1:

GETTING STARTED

In this chapter:

· Make sure you have everything
· Installing FPSQL
· Starting the FPSQL program
· How FPSQL works with filePro files
· How to use this manual
· Organization of this manual
· Style conventions used in this manual

1-2 Getting Started – Chapter 1

Make sure you have everything

Your FPSQL package should contain the following:

· Installation instructions
· User manual (see notes)
· Quick reference guide (see notes)
· Software license agreement

Check to see that the installation instructions refer to your computer
and/or operating system.

The user manual is a complete reference for FPSQL (filePro SQL). It is also
organized for easy learning.

The quick reference guide puts all the commands and capabilities of FPSQL
at your fingertips.

Notes: A printable “.pdf” file is furnished on the Installation Download.

1-3 Getting Started – Chapter 1

Installing FPSQL

See the installation instructions in the package (it should refer to your
computer and/or operating system). For most systems, installation involves
little more than purchasing the fP SQL license as fP SQL is included with
the filePro Development Installation Download. Certain demo files, which
will enable you to duplicate the sample queries used in the manual, are
also installed.

Starting the FPSQL program

Once installed, FPSQL can be started from the filePro main menu. It will be
in the “Runtime Programs” column, menu selection “S”. You may also start
FPSQL from your operating system “fp” subdirectory: simply enter “fpsql”.

How FPSQL works with filePro and filePro Plus

FPSQL will work with all filePro files and non filePro files that you have
defined to filePro.

How to use this manual

For learning FPSQL, you should read the chapters in order and do the
exercises (“quiz queries”) at the ends of the chapters: the answers are in
Appendix E. A good idea is to have FPSQL up and running on your computer so
that you can gain hands-on experience duplicating the sample queries in the
manual and experimenting with your own variations of them. You might also
try to compose the example queries before you look at the query output in
the manual. Once you are familiar with the program, use the manual as a
reference.

Organization of this manual

Chapter 2 explains what FPSQL is and what it can do.

Chapter 3 gives you the mechanics of using FPSQL: entering, executing,
saving, loading your queries; viewing files, etc.

Chapter 4 documents the files used in all the example queries in the
manual.

1-4 Getting Started – Chapter 1

Chapters 5 through 10 introduce:

· “clauses” the building blocks used to construct queries
· query statement syntax
· comparative, aggregate, and mathematical operations you can use in
queries
· “subqueries” and “variable” queries, for finding the answers to more
complex questions.

Chapter 11 shows you how a query can use data from more than one file at a
time.

Chapter 12 covers the “set” clause which enables you to redirect and
control the output of your queries.

Appendix A documents some common on-screen error messages and their causes.

Appendix B is a list of “reserved words” in FPSQL.

Appendix C contains diagrams of FPSQL syntax.

Appendix D documents the differences between FPSQL and the American
National Standards Institute (ANSI) standard for SQL.

Appendix E contains answers to the “quiz queries”.

Style conventions used in this manual

Keys and commands described in the text

References to keys and commands will give the Windows version followed by
the UNIX/LINUX version.

Example: press [F5] or [Ctrl][R]

Note that keyboard buttons to be pressed are shown inside square brackets.
If more than one key is to be pressed sequentially, they are separated by
commas:

press [Esc] or [Esc],[Esc]

If they are to be pressed simultaneously, there is no comma:

press [Ctrl][Break] or [Break]

Keys and commands shown on the screen

The screens reproduced in this manual show the Windows version of FPSQL.
Your version of FPSQL will show, on your screen, the keys and commands
appropriate for your computer’s operating system.

Text to be entered

In a sentence, text to be entered will have quotes (“”) around it:

Example: Then type “FPSQL” and press [Enter].

Or, as when used in an example, text may be indented and on a separate
line:

FPSQL [Enter]

Prompts and messages

These will be marked with a [Enter] key and reproduced as they appear on
the screen:

[Enter] Aggregate functions not permitted here

CHAPTER 2:

WHAT IS FPSQL?

In this chapter:

· What is SQL?
· What is FPSQL?
· A sample query
· The general form of a query
· Reserved words

What is SQL ?

SQL (usually pronounced “sequel”) means Structured Query Language. It is a
relational inquiry and data manipulation language using English reserved
words. SQL enables you to quickly manipulate your data and view the
results. It’s easy enough for non-programmers to learn and use, yet
powerful enough to satisfy data processing professionals.

What is FPSQL?

filePro’s implementation of SQL enables you to query the data but not
manipulate it. FPSQL is especially easy and powerful. It has a simple-to-
use screen editor, detailed online Help, easy file-handling, and flexible
control over query output, making FPSQL the state-of-the-art in SQL
implementations. With FPSQL, you can look at your data in relationships
limited only by your imagination.

A Sample query

To get an idea of what FPSQL is like, let’s look at a sample query. Using
FPSQL’s demo file, “sproduct” (see Chapter 4), the following is how you
would ask FPSQL for a list of products whose prices are higher than $99.
The list should include the product number, description, and prices with
the lowest price first. You would type in the query as follows:

select product_number, description, price
from sproduct
where price > 99
order by price

NOTE:
When typing in queries you’re not restricted to any set format of lines,
spacing, or upper and lower case (except for file names in UNIX/LINUX). As
long as the elements are in the right order and the syntax is correct, the
query will be executed. This query, when executed, would produce the
following result:

Product_number Description Price
--

67-8901 Humidity Meter 9.50
78-9012 Barometer Kit 199.60
23-4567 Metal Tracker 219.00

The general form of a query

Queries are constructed of clauses containing “reserved” words (words which
have a special meaning to FPSQL). The following table shows the clauses,
what type of information they contain, and the order in which they are used
in a query statement. A query must have the “select” and “from” clauses;
the others are optional:

CLAUSE FUNCTION
------------------------------- --

“set...” options redirects output to printer, file,
screen; controls printer and print
formatting

“select...” data (fields) tells FPSQL what to display

“from...” files tells FPSQL where to get the data
(fields)

“where...” conditions tells FPSQL what conditions
apply in selecting the data (fields)

“group by...” data (fields) tells FPSQL on what data
(field) to subdivide the records. Generates
subtotals

“having...” conditions tells FPSQL what conditions
apply in selecting which groups to display

“order by...” data (fields) tells FPSQL what data

Reserved words

These are words which have specific meaning to FPSQL and, therefore,
whenever possible, should not be used in naming files or fields in queries.
The clauses we just looked at contain the reserved words: “set”, “select”,
“from”, “where”, “group by”, “having”, “order by”.

Here is a complete list:

and group not select

asc having null separator

avg help off set

between in on spooler

by insert or start

count into order sum

desc is output title

edit like printer unique

end lines query unlock

exists max records where

fields mid restart width

from min screen with

CHAPTER 3:

USING FPSQL

In this chapter:

· The main screen and commands
· Typing in a query
· Including comments in a query
· Editing a query
· Executing a query
· Passwords
· Viewing query output
· Redirecting query output to printer or file
· Controlling printed output formatting
· Saving a query
· Loading a saved query
· Viewing the query file directory
· Viewing field headings, lengths, and edits
· Using online Help

The main screen and commands
Below is the FPSQL main screen, shown with a sample query typed in.

FPSQL main screen with sample query

Main screen command keys

Press In Order To:
------ ---
[U] update the current query
[N] clear the current query, type in new query
[S] save query to query file
[L] load query from query file
[H] send text of query statement to default printer
[Enter] execute query
[P] execute query, send output to default printer
[X] exit FPSQL

Typing in a query
Query statements are typed in the query statement area (the area between
the horizontal rules) on the FPSQL main screen (see above). When FPSQL
starts, you will see the main screen; the query statement area will be
blank. The cursor will be in the “Enter Selection” field. Press [N] for
“New” and the cursor will move to the first space of the first line. The
main screen command options will be replaced by:

F10 - Help, F6 - Display Fields, ESC - Record, BREAK – Cancel

These command options are covered later in this chapter.

Insert and typeover modes
There are two typing modes: “insert” and “typeover”. You can toggle from
one to the other with the [F5] or [Ctrl][R] keys. When you type in insert
mode, existing characters to the right of the cursor are moved to the right
to make room for the new characters. Also, the word “Insert” appears in the
upper left corner of the screen. When you type in “typeover” mode, the new
characters replace the existing characters; there is no word displayed in
the upper left corner.

Rules for typing
There are almost no rules for the way your query statement is entered in
the query statement area. As long as everything in your query statement is
in the correct order, the query will be executed. You may type in upper or
lower case (except for file names in UNIX/LINUX). You may break lines
wherever you wish, use extra line returns and extra spaces between words.
You can type as many as 79 characters on one line but, at the end of each
line, you must press [Return} or [Enter] to move the cursor to the next
line.

Editing
You may use the arrow keys to move the cursor left/right one character, or
up/down one line. You may use the [Del] and [Back Space] keys to remove
characters. Text editing is similar to filePro.

Long Queries - more than one screen
If your query statement is longer than one screen, you can scroll up and
down a line at a time using the up and down arrow keys: [�], [�]; or a
screen at a time using the [PgUp], [PgDn] keys or [Ctrl][P] (up), [Ctrl][N]
(down).

NOTE: A complete list of editing keys and functions is in the “Editing a
query” section, which follows the next two sections.

Recording the query

When you are finished and ready to execute or save your query to a query
file, you must first “record” it. Simply press [Esc] or [Esc][Esc]. You
will go back to the main screen, which will display your query, and the
cursor will be in the “Enter Selection” field.

Including comments in a query

It may be helpful at times to add explanatory notes or comments to a query
to make it easier for others to understand or for your own future
reference. You may insert comments before, within, or after a query
statement by preceding the comment with the “#” sign. FPSQL will regard
everything from the “#” to the end of the line as a comment and not to be
executed. If your comments require an additional line, start the additional
line with the “#” again, as in the following example:

select name, sales, commission, salary*9 #total of
#monthly salary Jan. through Sept., 1987
from ssalesmn
order by salary

Editing a query

The editing keys are the same ones you use in filePro depending on your
computer system:

FPSQL Editing Keys

The query editor uses the usual filePro editing keys:

Windows/Linux UNIX
Press: Press: In Order To:
-------------- ---------------- ---------------------------
[ESC] [ESC] [ESC] Record current query
[Fl] [Fl] Insert a character space
[F2] [F2] Delete a character
[F3] [Ctrl] [D] Insert a blank line
[F4] [Ctrl] [U] Delete a line
[F7] [Ctrl] [E] Move to end of line
[PgUp] [Ctrl] [P] Move cursor up a screen
[PgDn] [Ctrl] [N] Move cursor down a screen
[Home] [Home] Move cursor to top of screen, to top

of query
[Tab] [Tab] Move cursor right 8 characters
[Shift Tab] [Esc Tab] Move cursor left 8 characters
[Back Space] [Back Space] Delete character to left of cursor
[Ctrl] [End] [Ctrl] [O] Delete rest of line

Plus four additional keys:

[F5] [Ctrl] [R] Toggle Insert/type over modes
[F6] [Ctrl][F] Display filePro files
[F8] [Ctrl][Z] Copy/Paste a line
[F10] [Ctrl][X] Help

The copy/paste key works as follows:

1. Position the cursor on the line you wish to copy.

2. Press [F8] or [Ctrl][Z]. The word “copy” will appear in the
upper left corner of the screen.

3. Position the cursor on the line were you want the copied line to appear.

4. Press [F8] or [Ctrl][Z] again. The copied line will appear. The word
“copy” will disappear. Any characters present on the line where you insert
the copied line will move down to the next line.

To edit a query that has already been recorded (using [Esc] or {Esc][Esc]),
you must first press [U] for “Update”. The cursor will move to the first
space of the first line in the query statement area and the main screen
command options will be replaced with:

F10 - Help, F6 - Display Fields, ESC - Record, BREAK – Cancel

Now you can edit the query.

Editing exercise

You might like to try the following to get used to editing query
statements:

Type in the following query exactly as shown below:

#lists products with prices above $99
select product_number, description, price
from sproduct where price > 99 order by price

Then, use the editing keys to make it look like this:

select
product_number, description, price

from
sproduct

where
price > 99

order by
price

#lists products with prices above S99

Hint: use the copy/paste key ([F8] or [Ctrl][Z]) to move the comment line.
Provided there are no typos, either version of this query will work.
However, note how much easier it is to scan and comprehend the second
version. This flexibility in typing queries, and the ability to include
comments, makes it easier for you to compose queries, and for others to
read and understand them.

Executing a query

(Refer to the FPSQL main screen at the beginning of this chapter.) After
you have typed in the query and pressed [Esc] or [Esc][Esc] to save it,
press [Return] to execute it. If you have not used the “set” clause (see
Chapter 12) to redirect the output to a printer or file, you will see the
output on your screen.

Screen Display

While FPSQL is executing the query, you may see briefly on your screen:

Sorting Keys . . .
Records Read: n
Selected: n

The number of records read will be updated as the query execution continues

This screen is followed by,

Writing Index . . .
Records Written: n
Selected: n

The number of records written is updated as the query execution continues.
The next screen will contain the results of the query.

Direct Execution
You may also execute a query directly from your operating system “fp” sub-
directory by entering at the command line:

fpsql queryfilename

FPSQL will run the query and exit when finished. Queries are normally saved
to and loaded from the “fp\sql” directory, unless it has been given a file
name including a “\”’. In that case, FPSQL will use the path specified. You
can use the FPSQL environmental variable to override the default directory.

No Output

When there is nothing in the data that meets your query’s specifications,
the following message is displayed:

No Output for this Query
Output for this Query
Press Enter

Passwords:

FPSQL uses creation passwords for file security. In order to query a
password-protected file you must know the creation password for the file.
When you execute the query, either from FPSQL or your operating system
command line, you will see the following:

Enter Password for filename

FPSQL will allow you three tries to enter the password correctly.

Once you have entered it correctly, and as long as you remain in the FPSQL
program, you will not be asked for it again when you query that file.
However, each time you execute FPSQL and want to query the file, you will
have to enter the password again (one time).

Viewing query output
The output from a query may be as little as one field or as many fields as
will fit into 32000 columns across and an unlimited number of screens deep.
Ultimately, it is the capacity of your computer system that sets limits on
the FPSQL’s output.

Output of more than one screen
If the output is more than one screen (23 lines) deep, you will see the
following prompt at the bottom of the screen:

Press any key to continue >

Press any key for the next screen.

(You can return to the main screen at any time when viewing output by
pressing [Ctrl][Break] or [Break].)

At the bottom of the last screen you will see:

Press any key to continue > End of Query

Pressing ANY KEY will take you back to the main screen, which will still
have your query on it.

If, while viewing output of more than one screen, you want to go back to a
screen already passed, you must execute the query again.

Output wider than one screen - horizontal scrolling

When your query output is wider than 80 columns and you are not using a
“wide screen” terminal (see next section), or, if you are using a “wide-
screen” terminal and the output is wider than 132 columns, you can scroll
horizontally to view the output. The command options at the bottom of the
screen will look like this:

PGUP PGDN <-- --> - Scroll, [Enter] – Continue

The [PgDn] key will move you one screen to the right.
The [PgUp] key will move you one screen to the left.
The [Left-Arrow] key will display the next field to the left.
The [Right-Arrow] key will display the next field to the right.

“Wide-screen” terminals

If your terminal has a “wide-screen” capability, FPSQL will switch into
132-column display mode to display output that is more than 80 columns
wide. When you are finished with the query, FPSQL will automatically return
to 80-column mode. If the output is wider than 132 columns, FPSQL will
allow you to scroll horizontally (see previous section).

Note: Two new termcap entries have been defined to permit use of wide-
screen terminals:

PW Set terminal to wide (132-column) mode
PX Set terminal to normal (80-column) mode

Redirecting query output to printer or file

You can send the results of your query directly to a printer or file by
using the “set” clause. The “set” clause is optional; without it, query
output will go to your screen when you execute it using [Return]. If you
press [P] instead, the output will go to the default printer (a “set”
clause, if present, will override the “P” command.) In a query statement
the “set” clause must always precede the “select” clause. More than one
“set” clause can be used at a time.

To send query output to the printer, type:

set output printer

To send query output to a file, type:

set output ‘filename’

See Chapter 12 for all the “set” clause commands and syntax.

Controlling printed output formatting

With the “set” clause you can also control the formatting of your printed
query output. For example, you can specify page lengths and bottom margins.
You can include or delete headings and titles. See Chapter 12 for all the
“set” clause commands and syntax.

Saving a query

(Refer to the FPSQL main screen at the beginning of this chapter.) One of
the options displayed at the bottom of the main screen is “S -Save”. To
save your query, press [S]. You will then see the following prompt:

Save...
Enter Query Name:
Or press F10 for a list existing queries

Queries are normally saved to the “fp\sql” directory. However, you may save
queries to another directory by giving the full path name when prompted for
the query file name. Type in the name you wish to give the query. Use the
file naming conventions that apply to your computer’s operating system.
Then press [Return]. FPSQL will save the file and immediately take you back
to the main screen which will still have your query on it.

If you had loaded a query (loading queries is covered in the next section)
at some time prior to your “save” operation - let’s say the query file name
was “sales.09”, when you go to save the query you will see an additional
prompt:

Save...
Enter File Name:
Or Press [Enter] For ‘sales.09’ F10 for a list of
existing queries

This convenient feature allows you to use the last file name loaded for
saving a query on the assumption, as may, often be the case, you loaded a
query, modified it, and wish to save it again.

Loading a saved query

Another option displayed at the bottom of the FPSQL main screen is “L -
Load”. Press [L] to load a query from a query file into the query statement
area. The main screen command options will be replaced by the prompt:

Load...
Enter File Name: Or press F10 for a list existing
queries

At this time you may type in the query name or look at the query file
directory. After you type in the query name press [Return]. You will then
see the query in the query statement area and the main screen command
options will have been restored.

Queries are normally loaded from the “fp\sql” directory. However, you may
load queries from another directory by giving the full path name at the
prompt.

If, when you try to load a query, the query statement area already contains
a query – a newly composed one, or one that had been previously loaded and
modified, the following message will appear:

WARNING Query has been modified.
Do you want to save it first?
Press Y or N

If you press [N], the main screen command options will be replaced by the
prompt:

Load...
Enter File Name: Or press F10 for a list existing
queries

At this time you may type in another query name or look at the query file
directory. After you type in the query name press [Return]. The query in
the query statement area will be replaced by the new one.

If you press [Y], and the query, on the screen is brand new, the main
screen command
options will be replaced by the prompt:

Save...
Enter File Name:
Or press F10 for a list existing queries

At this time you may save the query with a new name or look at the query
file directory. After you type in the query name press [Return]. The query
will be saved and the prompt will change to “Load...”. Now you can load
another query.

If you press [Y] and the query on the screen is one that had been loaded
and modified, the main screen command options will be replaced by the
prompt:

Save...
Enter File Name:
Or Press [Enter] For ‘filename’ F10 for a list of
existing queries

At this time you may save the query under a new name, or by its original
name (just press [Return]), or look at the query file directory. After
typing in the query name press [Return]. The query will be saved and the
prompt will change to “Load...” Now you can load another query.

Viewing the query file directory

There will be times when you will want to see the query file directory. All
you have to do is press [S] (“Save”) or [L] (“Load”), and, as you have
learned in the last section, when you see the “Save...” or “Load...”
prompt, press [F10]. Whatever is in the query statement area will be
temporarily replaced by a wide format listing of all your query files, with
the current query file name highlighted in reverse video, as in the sample
screen on the next page.

You may select a file by any of three methods:

· type in the full file name and press [Return]

· type in a partial file name until the highlight moves to the desired
file name and then press [Return]

· move the highlight to the desired file name with the directional
arrow keys and then press [Return]

As soon as you press [Return], you will return to the main screen where the
query selected will be displayed.

Viewing field headings, lengths, and edits

To compose query statements you need to know your file names, field
headings, and the nature of the data in the fields (field length and field
edit type). You can quickly and easily check them while in FPSQL. Follow
the procedure below.

From the main screen select “Update” or “New” mode (press [U] or [N]). The
main
screen command options will be replaced by:

F10 – Help, F6 – Display Fields,
ESC – Record, BREAK – Cancel

At this point press [F6] and you will see the following prompt:

Enter File Name:
Press F10 for a list of filePro files

Type in the file name. If the name uses the maximum file name length
allowed by your computer system, a “Return” will automatically be entered
when you type the last character of the file name (same as in filePro). If
the file name is shorter than the maximum, you will have to press [Return].

The next screen you see will contain a list of that file’s field numbers
and headings. If, at the prompt, you had typed in “sproduct”, one of the
filePro demo files (see Chapter 4), you would see the following screen:

Commands

[F5] toggles between displaying field headings and
displaying field lengths and edits to

[F6] view a different file (asks for file name)

[PgDn] [PgUp] to scroll down/up list of fields to print

[H] headings, lengths, and edits on the default printer

If you want to see the field lengths and edits, press [F5], and you would
see the following:

FPSQL screen (with Windows command keys) displaying field lengths and edits
for file, “sproduct”

Pressing [F5] again toggles you back to the field headings.

If you want to see a different file, press [F6}. You will then see the
prompt:

Enter File Name:
Press F10 for a list of filePro files

Enter the name of the file you want to see.

The hardcopy command, “H”, will produce a printout from your printer which
includes headings, lengths, and edits in one list, as shown on the next
page:

Sep 3, 1987 14:10 File Name: sproduct
Page 1

Number -------------Field Heading------- Len --Type--
key segment:

1 Product Number 8 *
2 Description 25 LOWUP
3 Price 8 .2
4 Quantity on Hand 5 .0
5 Reorder Point 5 .0
6 Total Sales 10 .2
7 Total Quantity 6 .0

Key segment record length: 87
There is no data segment.

FPSQL printout of filePro file headings, lengths, and edits

To return to the FPSQL main screen, press [Return].

Using online Help

FPSQL provides you with a full complement of online Help screens. All major
topics are covered. All you have to do to access online Help is to go into
the “Update” or “New” modes (press [U] or [N] while at the main screen). A
new set of command options will be displayed:

F10 – Help, F6 - Display Fields,
ESC - Record BREAK – Cancel

Press [F10] to see a list of Help subjects, as shown on the next page

FPSQL Help subject screen

You can select a topic by any of three methods:

· Type in the complete subject name
· Type in the first few characters of the subject name until the
highlight moves to the subject you want, then press [Return]
· Move the highlight to the subject you want with the arrow keys,
then press [Return]

To get back to the FPSQL main screen from here, press [Ctrl][Break] or
[Break].

Having selected a topic, for example: “SET”, you will then see the first
Help screen for the subject, as shown below:

FPSQL Help screen for “Condition”

Pressing [X] will take you back to the Help subject screen (with the list
of subjects). If there are multiple screens of information on the subject,
press [] to see the next screen, and [�] to see a previous screen. At the
bottom of the last Help screen the prompts are:

Last Page. Press RETURN To Continue

[Return] takes you back to the Help subject screen where you can press
[Ctrl][Break] or [Break] to take you back to the FPSQL main screen.

CHAPTER 4

THE FPSQL DEMO FILES

In this chapter:

The FPSQL demo files

· “sproduct” demo file
· “sclient” demo file
· “sinvoice” demo file
· “ssalesmn” demo file

The FPSQL demo files

All the queries shown in this manual use filePro demonstration files which
are automatically installed in your “\filepro” directory when you install
the FPSQL program. The presence of these files in your own system gives you
the ability to try out the queries presented in the manual. You can try
them as is, or experiment with modifications. Either way, they should make
your learning FPSQL easier and more enjoyable.

The essential ingredients in composing a query, besides the clauses and
reserved words, of course, are the file and field names. It also helps to
know the type of data that a field contains (specified by the field edit)
and the length of the field.

To help you understand the queries composed for the demo files, the field
parameters from each file are presented here. This is the same information
you could print out yourself from within FPSQL (see “viewing field
headings, lengths, and edits” in the previous chapter).

“sproduct” demo file

Number -------------Field Heading------ Len --Type—
key segment:
1 Product Number 8 *
2 Description 25 LOWUP
3 Price 8 .2
4 Quantity on Hand 5 .0
5 Reorder Point 5 .0
6 Total Sales 10 .2
7 Total Quantity 6 .0

“sclient” demo file
Number -------------Field Heading------ Len --Type—
key segment:
1 Client Number 6 *
2 Name 25 UPLOW
3 Address 25 LOWUP
4 City 16 UPLOW
5 State 2 *
6 Zip 5 *
7 Phone Number 14 *
8 Tax Rate 4 .2
9 Company Name 20 LOWUP
10 Total Sales 10 .2
11 Balance Due 10 .2

“sproduct” demo file

Number -------------Field Heading------ Len --Type—
key segment:
1 Product Number 8 *
2 Description 25 LOWUP
3 Price 8 .2
4 Quantity on Hand 5 .0
5 Reorder Point 5 .0
6 Total Sales 10 .2
7 Total Quantity 6 .0

“sclient” demo file

Number -------------Field Heading------ Len --Type—
key segment:
1 Client Number 6 *
2 Name 25 UPLOW
3 Address 25 LOWUP
4 City 16 UPLOW
5 State 2 *
6 Zip 5 *
7 Phone Number 14 *
8 Tax Rate 4 .2
9 Company Name 20 LOWUP
10 Total Sales 10 .2
11 Balance Due 10 .2

CHAPTER 5

“SELECT” AND “FROM” CLAUSES

In this chapter:

· The “select” clause
· Typing in field names
· The “from” clause
· Typing in file names
· Field names - what can be a field
· File names - what can be a file
· Quiz query #1

SET (options)
SELECT (fields)
FROM (files)
WHERE (conditions)
GROUP BY (fields)
HAVING (conditions)
ORDER BY (fields)

The “select” clause

The “select” clause is required in every query statement. It tells FPSQL
what data is to be displayed. The data can be real fields or the results of
arithmetic operations on fields. For example, you can tell FPSQL to add the
“commission” fields to the “salary” fields to create, in the query output,
brand new fields containing the sum. In fact, as you will learn
further on, you can even tell FPSQL apply the heading, “earnings”, to this
new field when it displays the query output. Please Note: FPSQL does not
support 5.0 Blob or Memo Fields

Typing in field names

When typing in field names, put them after the word “select” and separate
them with commas (,). Put them in the order in which you want them to be
displayed in the query output. The number of fields you may use is
virtually unlimited.

Example: SELECT field, field, field,

The “from” clause

The “from” clause is also required in every query statement. It tells FPSQL
which files are to be accessed for the query. The fields named in the
“select” clause must be in the file(s) named in the “from” clause.

Typing in file names

When typing in the file names, put them after the word “from” and separate
them with commas (,). Their order in the query statement is not important.
The number of files you may use is virtually unlimited.

Example: FROM file, file, file,

As you will see in the next section, a field used in the “select” clause,
as well as in other clauses in FPSQL, can be much more than just the name
of a real field in a filePro file.

Field names - what can be a field

A real field

A field used in the “select” clause can be a real field.

Example:
select product_number, description, price
from sproduct

product_number description price

01-2345 Soldering Iron 14.00
90-1234 Car Antenna 26.45
89-0123 Lite Dimmer 9.35

*** QUERY OUTPUT TRUNCATED ***

NOTE: In several cases in this manual, the output of example queries has
been truncated. This was done in the interests of brevity, and only when
the complete output is not needed to illustrate the point.

Multiple-word field names

To select a field name that has more than one word, you substitute an
underscore (_) for the space between words, as in “product_number”.
Above.

Field name order

As mentioned before, you can put the field names in any order you wish to
see them displayed in the output, as in the following example.

Example: select price, description, product_number
from sproduct

Price description Product_Number
--
14.00 Soldering Iron 01-2345
26.45 Car Antenna 90-1234
 9.35 Lite Dimmer 89-0123

*** QUERY OUTPUT TRUNCATED ***

Partial Name of real fields

You don’t have to type in all the words in a multi-word field name. You can
use the first word of the field name, truncating it in the same place you
would use the underscore, as described previously. In this example you
would use “product” instead of “product_number”, and get the same results.

Example:
select product, description, price
from sproduct

product_number description price

01-2345 Soldering Iron 14.00
90-1234 Car Antenna 26.45
89-0123 Lite Dimmer 9.35

*** QUERY OUTPUT TRUNCATED ***

NOTE: Make sure there are no other fields with the same first words in
their names as the one you use. When executing the query, FPSQL grabs the
first field name it finds that matches.

Substituting your own column headings

If you want the resultant field in the query output to have a heading which
more concisely describes its content, such as “earnings” instead of
“commission+salary*9. for example, you can tell FPSQL to use the alias,
“earnings” as the column heading in the output.

Example: select name, commission+salary*9 ‘earnings’
from ssalesmn

name earnings

Macmillan 18055.38
Winston 10927.03
Mifflin 16200.00

*** QUERY OUTPUT TRUNCATED ***

A real field referenced by its number

Example:
select @1, @2, @3
from sproduct

product_number description price

01-2345 Soldering Iron 14.00
90-1234 Car Antenna 26.45
89-0123 Lite Dimmer 9.35

A system-maintained field

Example: select @RN, @CD, @TD
An associated field group

Example:
select @Al, @A2, @A3
from sinvoice

Al) Items A2) Quantities A3) Line Item Totals

01-2345 10 140.00
90-1234 5 132.25
89-0123 3 28.05

*** QUERY OUTPUT TRUNCATED ***

Associated Fields
Associated fields are fields which are grouped together in a record because
they contain the same kind of information. Associated fields enable you to
make multiple entries in the same field in a record.

The demo file, “sinvoice” (see Chapter 4) contains three associated field
groups:

@Al “Items”, @A2 “Quantities”, and @A3 “Line Item Totals”.

Each associated field group in the sinvoice file consists of four
“subfields”, allowing each record to contain four “Items”, four
“Quantities”, and four “Line Item Totals”. You can have as many as 10
associated field groups with 16 subfields in each. (see your filePro
Reference manual for more about associated fields.)

When you use an associated field in a query, FPSQL uses all the subfields
in computing the answer.

Fields preceded by a file name, as in “filename.field”.

Example:

select sclient.address, invoice_number
from sclient, sinvoice

Use this form when you are querying two or more files, such as “sclient”
and “sinvoice”, which contain the identical field name, “address”. The
name, “sclient.address” tells FPSQL precisely which file and field to
access. (See Chapter 11, “Joining Files”.)

An asterisk, meaning “all fields”

Example:

select * from ssalesmn

Name Territory Manager Sales Commission Comm Rate Salary Hired Date

Macmillan NYC Knopf 692.30 5538.40 8.00 2000.00 01/15/80
Winston NYC Knopf 2822.79 12702.56 4.50 1200.00 06/01/87
Mifflin NYC Knopf 7.20 1800.00 02/10/82
Hall PA Jovanovich 3746.83 26227.81 7.00 1700.00 11/20/83

*** QUERY OUTPUT TRUNCATED ***

NOTE: When you use “*” to select all fields, they are displayed in the
order in which they were defined in the file.

An aggregate function applied to a field

(Aggregate functions, MIN, MAX, AVG, SUM, and COUNT are described in
Chapter 7)

Example: select max(price), count(*)

The “mid” function

(The “mid” function in FPSQL is similar to the “mid” function in filePro
processing. In FPSQL it gives you the ability to create, for purposes of
querying data, a field within a field, such as the month in an MDY field.
The “mid” function requires the use of real fields only. It can be used in
the “select’’ and “order by” clauses. (See Chapter 10, “Order by Clause”.)
“Mid” specifies a character position and a character range in the field’s
character string.

Example: select mid(invoice_date,l,2)

In the example above, the “1” means the first character in the string. The
“2” means two characters, starting with the first. In an 8-character MDY/
field, the specified characters, “1,2” would be the first two, i.e., the
month. To select the year in an MDY/ field, specify the seventh character
and a range of two characters:

Example: List just the years of the dates-of-hire for the salesmen.

select mid(hired_date,7,2)
from ssalesmn

mid(hired_date,7,2,)

80
87
82
*** QUERY OUTPUT TRUNCATED ***

Example: List the first initials of the names of the salesmen.

select mid(name,1,1)
from ssalesmn

mid(name, 1, 1)

M
W
M
*** QUERY OUTPUT TRUNCATED ***

A text literal

Example: select ‘text’

A numeric literal

Example: select 19.95

NOTE: Text literals are enclosed in single quotes(‘’). Numeric literals are
not. Literals are primarily useful in the “where” clause. However, both
numeric and text literals can be used in the “select” clause. If they are,
they will appear in the output as column headings, and they will take up
column space.

Example:

select name, sales, ‘ (write comments here) ‘
from ssalesmn

Name Sales (write comments here)
--
Macmillan 692.30
Winston 2822.79
*** QUERY OUTPUT TRUNCATED ***

An expression using fields

(Expressions are covered in Chapter 6)

Example: Display the salesmen’s names, their commissions plus the total
(monthly) salary for the first nine months of the year.

select name, commission+salary*9
from ssalesmn

name commission+salary*9

Macmillan 18055.38
Winston 10927.03
Mifflin 16200.00
Hall 15562.28
*** QUERY OUTPUT TRUNCATED ***

“commission+salary*9” is the expression. The plus sign(+) is for addition,
the asterisk (*) is for multiplication. These and other “arithmetic
operators” are covered in Chapter 6.

How fields are displayed in output

The width of a field as displayed in query’ output is determined by one of
the following:

1. The length of the field name or alias used in the “select” clause
2. The length of the field itself, if it is longer than the field name

Also, FPSQL inserts a single blank space between output fields.

You can place literals full of blanks between field names in your “select”
clause to spread the output fields apart. You can use aliases in place of
long field names in your “select” clause to narrow the output fields.

How field names are justified in output

Names of fields with numerical values are right-justified when displayed in
output. All other field names are left-justified.

File names - what can be a file

Files are the object of the “from” clause, and they can be used in two
ways.

A filePro file

Example: from ssalesmn

A filePro file with an “alias”

As you will see later in this manual (Chapter 11, “Joining Files”), some
queries require that you access the same file more than once in the query.
To do this you use an “alias” as follows:

Examples: from ssalesmn territory, ssalesmn manager

 from ssalesmn x, ssalesmn y

The file is “ssalesmn”, the aliases are “territory” and “manager”, or “x”
and “y” You can use any name for an alias. What’s important is that you use
it consistently throughout the query statement whenever you refer to the
file name.

A filePro qualified file

To execute a query on a qualified file, you must first use the “set” clause
(see Chapter 12) to give FPSQL the qualifier name.

Quiz query #1 (answer in Appendix E)

See if you can compose a query statement to accomplish the following:
Produce a list of salesmen showing their dates of hire, commissions, and
salaries, in that order.

(refer to Chapter 4 if you need to see demo files and field headings, or
use the online file directories; their use is covered in Chapter 3)

CHAPTER 6

THE “WHERE” CLAUSE

In this chapter:

· The “where” clause
· Condition - general form
· Comparison - general form
· Literals
· Comparison operators
· Grouping comparisons
· Examples using comparison operators
· Expressions
· Quiz query #2

SET (options)
SELECT (fields)
FROM (files)
WHERE (conditions)
GROUP BY (fields)
HAVING (conditions)
ORDER BY (fields)

The “Where” Clause

As we know, the “select” clause specifies the fields we want to display. However,
“select” (and “from”) used without any other clauses retrieves the specified fields from
ALL the records. To really unleash the analytical power of FPSQL, you need to be able to
extract the fields from just the records you want. This is what the “where” clause does. It
tells FPSQL exactly which fields, out of all of them, to display by specifying the
conditions the fields must meet in order to be selected.

The following query retrieves the fields specified from all the records.

Example:

select product_number, description, price
from sproduct

product_number description price

01-2345 Soldering Iron 14.00
90-1234 Car Antenna 26.45
89-0123 Lite Dimmer 9.35
78-9012 Barometer Kit 199.60
67-8901 Humidity Meter 99.50
56-7890 Thermo Reader 12.00
45-6789 DigiClock 12.00
34-5678 Battery Pak 15.10
23-4567 Metal Tracker 219.00
12-3456 Touch Button Phone 29.99

Let’s say you’re interested in items with high prices - greater than $99,
for example. You would then type in the query with a “where” clause
specifying that the condition to be met is that the price field contain a
number greater than 99. FPSQL then retrieves the specified fields from all
the records whose price field contains a number greater than 99.

Example:

select product_number, description, price
from sproduct where price > 99

product_number description price
--
78-9012 Barometer Kit 199.60
67-8901 Humidity Meter 99.50
23-4567 Metal Tracker 219.00

Note the use of the “greater than” symbol (>). This and other “comparison
operators” are covered later on in this chapter.

Condition - general form

The general form of a condition is:

comparison op comparison op comparison...

A “comparison” is two things compared. In the previous example, “price” is
compared with “99”. They would make a comparison. “Op” is a boolean
operator, either “and”, or “or”. You can use as many comparisons as you
wish.

Example:

where hired > ‘01/01/80’ and salary < 1800 and territory = ‘nys’

Comparison - general form

The general form of a comparison is:

field rel field...

“Field” can be any of the kinds of fields used in the “select” clause (see
the previous chapter), except the aggregate functions, which are not
allowed in the “where” clause.

(Aggregate functions are covered in the next chapter.)

“Field” may also be a “subquery” (see Chapter 9).

“Field” may also be a “literal” (see next section).

“Rel” is the relation: < <= = >= > <> (see “comparison operators”
following “literals”, on the next page).

Literals

In comparisons, you may want to compare a field name to a character string
or a number.

Examples: where name = ‘Holt’
 where price > 99

A character string used in a comparison is a “text literal”. A number may
be a “text literal” or a “numeric literal”. If the number is used to
identify rather than quantify, e.g., zip codes, catalog numbers, invoice
numbers, it is a text literal. If the number is used as a numerical value,
e.g., price, quantity, sales, commission rate, it is a numeric literal.

Example of text literals: where territory = ‘nys’
and product = ‘89-0123’

Note the use of single quotes to enclose the text literals.

Example of numeric literals: where price = 29.99
and quantity on hand = -12

As shown in the example, above, FPSQL allows you to use negative numbers as
numeric literals.

Comparison operators

These define the relation between fields in a comparison:

 Operator Relation
--------------- ---

< field is less than field

<= field is less than or equal to field

= field is equal to field

>= field is greater than or equal to field

> field is greater than field

<> field is not equal to field

Note: When using the above operators with dates, “greater than” means
“later than”. “Less than” means “earlier than”.

Note: When comparing a field name to the text contents of a field, a “text
literal”, you must determine if there are any empty spaces in the field
preceding the text string. The empty spaces must be added to the literal
between the first single quote and the first character of the literal:

Example: where product_number = ‘ 89-0123’

Note: FPSQL does not require the complete text literal to make a
comparison. However, the more characters you include in literal, the closer
the match.

Example: select name from ssalesmn
 where name = ‘H’

name

Hall
Haughton
Holt

Example: select name from ssalesmn
 where name = ‘Ha’
name

Hall
Haughton

Example: select name from ssalesmn
 where name = ‘Hau’

name

Haughton

IS BETWEEN field A is between field B and field C

Note: same as field A >= field B and field A <= field C

Example: where zip is between 10036 and 10500

IS NOT BETWEEN field A is not between field B and field C

IS IN field A is in (field B, field C, field D, . . .)

Note: same as field A = field B or field A = field C or field A =
field D Sets of fields used with “is in” require inclusion within
parentheses, “()”.

Example: where territory is in (‘nj’, ‘pa’, ‘oh’)

IS NOT IN field A is not in (field B, field C, field D, . . .)

IS LIKE field is like ‘text literal’

IS NOT LIKE field is not like ‘text literal’

Note: The “is like” comparison operator allows “wild card” matching of
individual characters and strings: Use the underscore (_) to represent any
single character.

Example: where territory is like ‘ny_’

Use the percent sign (%) to represent any string of zero or more
characters.

Example: where company name is like ‘first%’

“is like ‘%text%’“ is the same as filePro’s Contains (CO) relation.

IS NULL field = ““

IS NOT NULL field <> “”

NOTE: You cannot use the identical system-maintained fields from different
files, as in the following.

Example: where customer.@rn = cust2.@rn

Accessing different files in the same query is covered in Chapter 11.

Grouping comparisons

Comparisons can be grouped by placing them within square brackets:

[comparison op comparison] op [comparison op comparison]

Example: where [salary < 1800 or comm_rate < 7.5] and
 not [territory = ‘ny_‘ or hired < ‘01/01/83’]

Examples using comparison operators

Example: Let’s say you want the name and telephone numbers of customer
contacts from companies in New York State that owe you more than $1,000.

select balance_due, name, state, phone_number
from sclient
where state = ‘ny’ and balance_due >= 1000

balance_due name state phone_number

2655.32 Bill Smith NY (212) 555-1223
1111.34 G Can NY (914) 555-4040

Example: Let’s say someone left you a poorly written phone message and you
can’t make out all the letters of the name of the person who called, or all
the numbers in the phone number. You can make out that it’s a customer
contact from one of your clients. The letters of what you can make out
are “e gel a”. You want to know the person’s name and phone number.

select name, phone_number
from sclient
where name is like ‘%e_gel_a%’ and
phone_number is like ‘%555-3_1_’

name phone_number
--
Ellen Eigelvar (613) 555-3218

Example: You want to see a list of companies and their balances due if the
balances due are between $300 and $1,000. Included are contact names and
phone numbers.

select company, balance, name, phone
from sclient
where balance is between 300 and 1000

company balance name phone
--
Pooh Enterprises 915.41 Zeb Wellman (212) 555-4456
Bingo Enterprises 648.32 John Bingo (201) 555-9876
Canary Card Co 400.00 Carl Bird (212) 555-6565
First National Corp. 598.92 Ellen Eigelvar (613) 555-3216
Boomer Instruments 335.49 John Boomer (412) 555-0971
Mallard Industries 371.69 Ed Murphy (514) 323-3233

Example: You want to see a list of companies (with cities, states, and
phone numbers) located in Pennsylvania, Ohio, and New Jersey only.

select company_name, city, state, phone_number
from sclient
where state is in (‘PA’, ‘OH’, ‘NJ’)

Company_Name City State Phone_Number
--
Bingo Enterprises Bingolo Blvd NJ (201) 555-9876
First National Corp. Cincinnati OH (613) 555-3218
Boomer Instruments Pittsburgh PA (412) 555-0971

Expressions

Unlike comparisons, expressions do not compare fields. They combine fields
(containing numeric values), arithmetic operators, and numbers to derive
and express a resultant value.

Example: where payment < (subtotal+tax_amount)*.25

In the example, “(subtotal+tax_amount)*.25” is the expression. It
represents the number derived by adding together the values in the
“subtotal” and “tax amount” fields and then multiplying the sum by .25.

Arithmetic operators

Operator Function
---------- ------------
 + Add
 - Subtract
 * Multiply
 / Divide

Expressions can only use fields containing numeric values, and dates, if
appropriate.

Example: where @TD >= invoice_date+60

When calculating expressions, FPSQL performs multiplication and division
before addition and subtraction. Use parentheses to group the elements of
the expression so that the calculations are performed as desired.

Example:

select name. sales-commission*9
from ssalesmn

name sales-commission*9

Macmillan 193.88
Winston 1679.52
*** QUERY OUTPUT TRUNCATED ***

Example:

select name, (sales-commission)*9
from ssalesmn

name (sales-commission)*9

Macmillan 5732.28
Winston 24261.84
*** QUERY OUTPUT TRUNCATED ***

The “Exists” Subclause
The “exists” subclause tests whether a condition exists or doesn’t exist
(is true or not true). “Exists” is always used in the “where” clause, and
the condition it tests is expressed in a subquery (see Chapter 9.
“Subqueries and Variable Queries”). If the subquery generates output (the
condition is true), the outer query will be executed. If the subquery
generates no output (the condition is not true), the outer query will not
be executed.

Example:

select * #this is the “outer” query
from ssalesmn
where exists
select name #this is the “subquery”
from salesmn
where sales >2800

Name Territory Manager Sales Commission Comm_Rate Salary Hired_Date

Macmillan NYC Knopf 692.30 5538.40 8.00 2000.00 01/15/80
Winston NYC Knopf 2822.79 12702.56 4.50 1200.00 08/01/87
Mifflin NYC Knopf 7.20 1800.00 02/10/82
Hall PA Jovanovich 3746.83 26227.81 7.00 1700.O0 11/20/83
Wiley OH Jovanovich 794.78 5166.07 6.50 1500.00 08/12/85
McGraw NYC Knopf 7.50 1850.00 03/13/81
Reinhart NYS Knopf 6.70 1600.00 10/17/84
Holt NJ Jovanovich 311.05 1866.30 6.00 1400.00 03/14/86
Haughton NYS Knopf 5.00 1300.00 11/11/86

NOTE: When you use “*” to select all fields, they are displayed in the
order in which they were defined in the file.

This query displays the entire contents of the salesmn file because the
condition in the subquery is true; at least one of the salesmen has sales
greater than $2800 (the subquery generates output). If no salesman had
sales greater than $2800 (the subquery generated no output), there would be
no output for this query.

Quiz query #2 (answer in Appendix E)

From the invoice file, you want to see a list of companies (with the sum of
their subtotals and tax amounts, their payments, invoice numbers) whose
payments are greater than 25% of the amounts owed.

CHAPTER 7

AGGREGATE FUNCTIONS
AND THE “GROUP BY” CLAUSE

In this chapter:

· Aggregate functions
· “Group by” clause
· Quiz query #3

SET (options)
SELECT (fields)
FROM (files)
WHERE (conditions)
GROUP BY (fields)
HAVING (conditions)
ORDER BY (fields)

Aggregate functions

The aggregate functions are:

“min” minimum
“max” maximum
“avg” average
“sum” sum
“count” count (number of records)
“Avg” and “sum” can only be applied to fields with numeric values.

Example:

select sum(salary)
from ssalesman

sum(salary)

14350.00

“Min” and “max” can be applied to any type of field. With dates, “min” is
earliest, “max” is latest.

Example:

select min(hired)
from ssalesman

min(hired)

01/15/80

“Count” counts the number of records in the query output.

Example:

select count(*)
from sproduct

count (*)

10

The query output shows that there are 10 records in sproduct.

Example:

select manager, count(*)
from ssalesmn
where manager = ‘knopf’

manager count (*)

knopf 6

Manager Knopf has six salesmen reporting to him.

Example:

select count(*), avg(sales), avg(commission),
avg(sales)-avg(commission), avg(salary)*9
from ssalesmn

Queries using aggregate functions, except “count”, should be composed to
include only fields that share some common characteristic. It makes no
sense to include salesmen’s name with average salary, sales, and commission
because each record has a different salesman’s name.

Example:

select name, avg(sales), avg(commission),
avg(sales)-avg(commission) avg(salary)*9
from ssalesmn

name avg(sales) avg(commission) avg(sales)-avg(commission) avg(salary)*9
--
Haughton 929.7500 57.2233 872.5267 14350.0000

The values in the output above, are the averages for all the salesmen in
the file, not for salesman Haughton. Finding these same kinds of averages
for a manager is meaningful because there are more than one record which
have the same manager.

Example:

select manager, avg(sales), avg(commission),
avg(sales)-avg(commission), avg(salary)*9
from ssalesmn where manager = ‘knopf’

manager avg(sales) avg(commission) avg(sales)-avg(commission) avg(salary)*9
--
Knopf 585.8483 30.4017 555.4467 14625.0000

As you will see later in this chapter, you can find the averages for both
managers in one query by using the “group by” clause. Without the “group
by” clause aggregate functions apply to the entire set of selected records.

Aggregate functions are used in the “select” and “having” clauses (see
Chapter 8, “Having Clause”), and commonly used with the “group by” clause,
but not used in the “where” clause. However, you can usually achieve the
same effect in the “where” clause by using a “subquery” (see Chapter 9,
“Subqueries and Variable Queries”.)

“Group by” clause

The “group by” clause enables you to perform aggregate functions on groups
of records. The effect of the “group by” clause is to first group the
records by some shared characteristic and then perform the aggregate
functions for each group.

In the following example the records are grouped by manager, creating two
groups (one for each manager). In each group the records all have the same
manager (the “shared characteristic”). The aggregate functions are then
performed for each group.

Example: For each manager, find the average sales, average commission,
average sales minus average commission and average salary through September
(9 months)

select manager, avg(sales), avg(commission),
avg(sales)-avg(commission), avg(salary)*9
from ssalesmn
group by manager

manager avg(sales) avg(commlssion) avg(sales)-avg(commission) avg(salary)*9
--
Jovanovich 167.5533 110.8867 1506.6867 13800.0000
Knopf 585.8483 30.4017 555.4467 14625.0000

You may use more than one field in the “group by” clause. The records
grouped by the first field named will be subdivided and grouped by the
second field named, and so on.

The aggregate functions are performed for each of the subdivisions.

Example:

select manager, territory, avg(salary)
from ssalesmn
group by manager, territory

manager territory avg(salary)

Jovanovich NJ 1400.0000
Jovanovich OH 1500.0000
Jovanovich PA 1700.0000
Knopf NYC 1712.5000
Knopf NYS 1450.0000

Quiz query #3 (answer in Appendix E)

You want to find out, for each manager, the average salary, number of
salesmen, and the earliest date of hire - from the “ssalesmn” file.

CHAPTER 8

“HAVING” CLAUSE

In this chapter:

· The “having” clause
· When used with the “where” clause
· Quiz query #4

SET (options)
SELECT (fields)
FROM (files)
WHERE (conditions)
GROUP BY (fields)
HAVING (conditions)
ORDER BY (fields)

The “having” clause

The “having” clause applies to groups formed with the “group by” clause. It
can only be used with the “group by” clause. It enables you to specify the
conditions to be met in selecting the groups to output.

The conditions you can specify with the “having” clause are the same as for
the “where” clause (see Chapter 6) except that you have the added
capability of using the aggregate functions (see Chapter 7).

Example: Show the territories, and their managers, whose salesmen’s average
salary is between 1000 and 1600.

select territory, avg(salary), manager
from ssalesmn
group by territory
having avg(salary) between 1000 and 1600

territory avg(salary) manager

NJ 1400.0000 Jovanovich
NYS 1450.0000 Knopf
OH 1500.0000 Jovanovich

NOTE: In the “ssalesmn” file all the salesmen in a given territory have the
same manager, otherwise, this query wouldn’t work.

When used with the “where” clause

When the “having” clause is used with the “where” clause the query is
evaluated as follows:

1. “Where” clause is applied to select records.
2. Groups specified by the “group by” clause are formed.
3. “Having” clause is applied to further select the groups.

Example: Find the territories (with their managers), in the NY/NJ area, in
which the salesmen’s average salary is between $l,000 and $1,600.

select territory, avg(salary) , manager
from ssalesmn
where territory is like ‘N%’
group by territory
having avg(salary) between 1000 and 1600

territory avg(salary) manager

NJ 1400.0000 Jovanovich
NYS 1450.0000 Knopf

Quiz query #4 (answer in Appendix E)

From the ssalesmn file, show the territories, with salesmen’s average
salaries, that have exactly two salesmen in them.

CHAPTER 9

SUBQUERIES AND VARIABLE QUERIES

In this chapter:

· Subqueries
· Multiple levels of nesting
· Variable queries
· Quiz query #5

Subqueries

A subquery is a query within a query. It enables you to use the results of
the “inner” query (subquery) as input to the “outer” query - all in the
same query statement. Suppose, for example, you wanted to find the name of
the salesman with the highest earnings through September (the 9th month).
Using what you have learned so far, you might try:

select name, max(commission+salary*9)
from ssalesmn

name max(commission+salary*9)

Haughton 18055.38

FPSQL supplies a name. and the maximum of the sums of commissions plus
salaries multiplied by 9, just as you requested. However, this query
doesn’t give FPSQL a way to connect a name with the amount, so it displays
any name from the name field. Actually, the name of the salesman who makes
the maximum amount is Macmillan, not Haughton. You might try using two
distinct queries to find the answer. First, you would find the maximum
amount:

select max(commission+salary*9)
from ssalesmn

max(commission+salary*9)

18055.38

Once you had this amount, you would then compose and execute another query
to find the name that goes with the amount:

select name
from ssalesmn
where commission+salary*9 = 18055.38

name

Macmillan

By nesting a sub-query within a query you can accomplish the above in one
query statement:

select name, commission+salary*9
from ssalesmn
where commission+salary*9 =
select max(commission+salary*9)
from ssalesmn

name commission+salary*9

Macmillan 18055.38

This query works by first evaluating the “inner” query, (“select
max(commission+salary*9)...”) to get a value for “commission+salary*9”. The
value is then used as a condition in the “where” clause of the “outer”
query (“where commission+salary*9 = ...’) to select the name of the
salesman earning that value.

Multiple levels of nesting

Queries can be nested to any number of levels.

Example: Who is the salesperson in the NY/NJ area who has the second
highest sales?

select name, territory, sales
from ssalesmn
where sales =
select max(sales)
from ssalesmn
where [territory is like ‘NY%’
or
territory is like ‘NJ%’]
and
[sales <>
select max(sales)
from ssalesmn
where [territory is like ‘NY%’
or
territory is like ‘NJ%’]
]

name territory sales

Macmillan NYC 692.30

Working outward, the innermost query finds the highest sales in the NY/NJ
territories. The next query outward does the same except that it compares
its result to the result of the innermost query in a “not equal to”
comparison (“sales <> select max(sales)...”). Since the result of the outer
query is not allowed to be equal to the maximum sales (already selected by
the inner query), it represents the next highest sales.

Note the use of square brackets to enclose the grouped comparisons. If
there are any more elements of a query following a subquery, a semicolon
(;) is used to mark the end of the subquery. This enables FPSQL to
differentiate between the end of a subquery and the rest of the query
statement.

Example: List the product number, description, quantity-on hand for each
product whose quantity-on-hand is less than the average quantity-on-hand.
List the smaller quantities first.

select product, description, price, quantity
from sproduct
where quantity <
select avg(quantity)
from sproduct;
order by quantity

product description price quantity

67-8901 Humidity Meter 99.50 24
34-5678 Battery Pak 15.10 26
12-3456 Touch Tone Phone 29.99 27
78-9012 Barometer Kit 199.60 58
56-7890 Thermo Reader 12.00 74
23-4567 Metal Tracker 219.00 76
90-1234 Car Antenna 26.45 82

NOTE: Without the semicolon, the “order by” clause would be applied to the
inner query, and the outer query would not be sorted as in the following
example:

Example:

select product, description, price, quantity
from sproduct
where quantity <
select avg(quantity)
from sproduct
order by quantity

product description price quantity
--
90-1234 Car Antenna 26.45 82
78-9012 Barometer Kit 199.60 58
67-8901 Humidity Meter 99.50 24
56-7890 Thermo Reader 12.00 74
34-5678 Battery Pak 15.10 26
23-4567 Metal Tracker 219.00 76
12-3456 Touch Tone Phone 29.99 27

Example: (See Chapter 10 for more information on the “order by” clause.)

Variable queries

Variable queries contain subqueries which are computed multiple times with
different records, giving variable results which affect the outer query.
Suppose, for example, you were doing a comparative study of salary and
commission levels and you wanted to know which salesmen made more than 25%
of the total paid to everyone else with the same manager.

Example: Find the managers who have at least 3 salesmen and then list the
name.

salary+commission, for each salesman in the group whose
salary+commission is more than 25% of the total of the remaining
salesmen’s salary+commission.

select name, salary+commission , manager
from ssalesmn x
where manager is in

select manager
from ssalesmn
group by manager
having count(*) >= 3;

and salary+commission >
select sum(salary+commission) * .25
from ssalesmn
where ssalesmn.manager = x.manager and
ssalesmn.name <> x.name
group by manager

name salary+commission manager
--
Macmillan 2055.38 Knopf
Hall 1962.28 Jovanovich
Wiley 1551.66 Jovanovich
Holt 1418.66 Jovanovich

This query works as follows:

1. It finds the managers who have at least three salesmen. (“where manager
is in . . .”)

2. For EACH salesman working for one of these managers it computes:

a. the total of salary plus commission for everyone else with the same
manager, leaving out the salary plus commission of the current
salesman being computed. (“where ssalesmn.manager = x.manager and
ssalesmn.name <> x.name”)

b. whether or not the current salesman earns more than 25% of this
total. (“salary+commission > select sum(salary+commission)*.25 from
ssalesmn... “). If he does, he is selected (by the outer query).

Quiz query #5 (answer in Appendix E)

List the territories, their salesmen's average salaries and managers, where
the territories’ average salary is greater than the average salary for all
the salesmen.

CHAPTER 10

“ORDER BY” CLAUSE

In this chapter:

· The “order by” clause
· The sorting sequence
· Quiz query #6

SET (options)
SELECT (fields)
FROM (files)
WHERE (conditions)
GROUP BY (fields)
HAVING (conditions)
ORDER BY (fields)

The “order by” clause

The “order by” clause tells FPSQL which fields to sort the records by.

Example:
order by name
order by product_number
order by invoice_date

The fields you may use are the same as in the “select” clause (see Chapter
5), including aggregate functions (see Chapter 7).

If you don’t use an “order by” clause, FPSQL sorts the records by the
fields specified in the “group by” clause, if any. If neither clause is
used, the records are displayed in no specific order.

You cannot use the “order by” and “group by” clauses together in a query.

The sorting sequence

The default sorting sequence in the “order by” clause is “ascending”:

for text: A to Z
for numbers: 0 to 9
for alphanumeric: 0 to 9, then A to Z (ASCII order)
for dates: earlier to later

You can specify a “descending” sequence by adding the word, “desc” after
the field for which you want the descending order.

Example: order by salary desc

Example: List the product descriptions, numbers, and prices with the
highest prices first.

select description, product_number, price
from sproduct
order by price desc

description product_number price
--
Metal Tracker 23-4567 219.00
Barometer Kit 78-9012 199.60
Humidity Meter 67-8901 99.50
*** QUERY OUTPUT TRUNCATED ***

You can sort by more than one field and have a different sorting sequence,
ascending or descending, for each field.

Example: list the managers, their territories, salesmen’s names, and
salaries. Order by descending manager, ascending territory and descending
name.

select manager, territory, name, salary
from ssalesmn
order by manager desc, territory, name desc

manager territory name salary
--
Knopf NYC Winston 1200.00
Knopf NYC Mifflin 1800.00
Knopf NYC McGraw 1850.00
Knopf NYC Macmillan 2000.00
Knopf NYS Reinhart 1600.00
Knopf NYS Haughton 1300.00
Jovanovich NJ Holt 1400.00
Jovanovich OH Wiley 1500.00
Jovanovich PA Hall 1700.00

When you compose a query with more than one field in the “order by” clause,
list the major sorting key first, followed by the minor keys, with the
innermost key last. The order in which you put them in your query statement
is the order in which FPSQL will sort them, as well as display them.

Quiz query #6 (answer in Appendix E)

Display the managers, territories, names, and dates of hire for all the
salesmen. Order by manager, territory, and names.

CHAPTER 11

JOINING FILES

In this chapter:

· Joining files
· Quiz query #7

Joining files

So far, all the queries we have looked at access a single file for the
data. However, a query statement may specify fields from a virtually
unlimited number of files. All you have to do is list them, in any order,
in the “from” clause. FPSQL determines the most efficient method by which
to perform the selection and qualification of the fields.

NOTE: Be sure that all the fields specified in the “select” clause are
contained by the files specified in the “from” clause.

Example: from ssalesmn, sinvoice, sclient

When two or more files use the same field name such as the “name” field in
the “ssalesmn” and “sclient” files, you have to differentiate them by
prefixing the file name with the field name, in the “select” clause.

Example: For each salesman find the customer_number and client name.
Order by salesman’s name, customer_number.

select ssalesmn.name, customer_number, sclient.name
from sclient, ssalesmn, sinvoice
order by ssalesmn.name, customer_number

If we execute this query we get the following results.

ssalesmn.name customer_number sclient.name
--
Hall 1 Zeb Wellman
Hall I Bill Smith
Hall 1 John Bingo
Hall 1 Carl Bird
Hall 1 G Can
Hall 1 Ellen Eigelvar
Hall 1 John Boomer
Hall 1 John Jones
Hall 1 Ed Murphy
Hall 2 Zeb Wellman
Hall 2 Bill Smith
Hall 2 John Bingo
*** QUERY OUTPUT TRUNCATED ***

The complete output contains every possible combination of salesman’s name,
customer_number, and client name. This voluminous output is of little use.
The real power of FPSQL in joining files is in the ability to qualify the
results so that you can list the customer numbers and client names for each
salesman. This is done by adding a “where” clause that selects, from all
these possible combinations, only those that meet the conditions specified.

Example:

select ssalesmn.name, customer_number, sclient.name
from sclient, ssalesmn, sinvoice
where ssalesmn.name = sinvoice.salesman
and customer_number = client_number
order by ssalesmn.name, customer_number

ssalesmn.name customer_number sclient.name
--
Hall 4 Ellen Eigelvar
Hall 7 Zeb Wellman
Hall 8 John Bingo
Hall 9 G Can
Holt 3 John Boomer
Macmillan 6 Bill Smith
Wiley 2 John Jones
Wiley 5 Carl Bird
Wiley 8 John Bingo
Winston 1 Ed Murphy
Winston 6 Bill Smith

By specifying that the name field in ssalesmn be the same as the “salesman”
(name) field in “sinvoice” and that the sinvoice file’s “customer_number”
be the same as the sclient file’s “client number”, we are eliminating all
the “possible” relations between these files by specifying the ones that
really do exist. Each invoice has a salesman’s name on it and each invoice
has a customer number that is the same as a client number in the sclient
file.

The following example contains multiple files and subqueries:

Example: For each sales manager show the total sales of the product with
the maximum sales.

select manager, @Al, sum(@A3)
from ssalesmn, sinvoice
where

salesman = name
and
@al =

select product
from sproduct
where total_sales =

select max(total_sales)
from sproduct;

;
group by manager
order by sum(@a3) desc

manager @Al) Items sum(@a3)

Knopf 78-9012 1796.40
Jovanovich 78-9012 998.00

Note the use of the semicolons (;) to mark the ends of both subqueries.

Quiz query #7 (answer in Appendix E)

List the products, their descriptions, product numbers, quantities, prices,
total sales (quantities*prices) in each territory. Include salesmen’s
names. Sort by territory, salesperson and product number. Hint: you will
need to use all the FPSQL demo files for this one.

CHAPTER 12

“SET” CLAUSE

In this chapter:

· The “set” clause
· Redirecting query output
· Controlling printed output formatting
· Multiple “set” commands
· Quiz query #8

SET (options)
SELECT (fields)
FROM (files)
WHERE (conditions)
GROUP BY (fields)
HAVING (conditions)
ORDER BY (fields)

The “set” clause

The “set” clause must precede the “select” clause. The “set” clause enables
you to redirect query output to printer, file, or screen, to control
printed output formatting, and to enable querying qualified files. If a
“set” clause in a query conflicts with the main screen command option “P”
(to printer), the “set” clause overrides command “P”.

Redirecting query output

set output screen

Query output is sent to the screen when no other set clause is used. Even
when the main screen command, “P”, is used to print out the query results,
the results will still be displayed on your screen.

set output printer

set output spooler

You can send output to the default printer.

set output printer ‘operating system command’

set output spooler ‘operating system command’

Example: set output printer ‘lp -copies 2’

Example: set output spooler ‘lp -copies 2’

set output ‘filename’

You can send query output to a file in the current directory by specifying
the file name. If you want to send it to another directory, use the path
name. Use single quotes around the name in either case.

Example: set output ‘\wp\sales.jan’

set output…with query

You can include the text of your query statement in the output by adding
“with query” to the “set” clause This works with files as well as printers.

Example:
set output printer with query
set output ‘\wpksales.jan’ with query
Controlling printed output formatting
set lines nn (page length)

You can set the output for the length of the paper in your printer by
specifying the number of lines that will fit on a page. At the standard 6
lines per inch an 11” page will accommodate 66 lines from the top edge of
the paper to the bottom edge. Without any additional numbers specifying the
number of lines to actually print on a page (see next section) FPSQL will
print on every line of the page.

Example:
set lines 66
set lines mm,nn (bottom margin)

If, as in the previous example, the number of lines on a page is set at 66,
you can create a 6-line bottom margin by setting the number lines to be
printed on a page at 60. (You can “split” the margin between top and bottom
of the page by positioning the top edge of the paper three lines above the
print head before you start to print.)

When typing the “set” clause, precede the number of lines on a page with
the number of lines to be printed on a page; separate the numbers with a
comma.

Example: set lines 60,66

These settings can be used when sending output to a file, as well.

set lines 0 (zero) (to delete default heading)

Normally, the top of each page contains the field headings and a horizontal
divider. You can delete this default heading from the output. This is
especially useful if the output will be input for another program, such as
a word processor.

Simply set lines to zero.

set title
set title on (to include default title)

You can include a default title with the output. The default title is the
date, time, and page number on the first line printed.

Example:

set title on

Sep 30, 1987 13:48 Page : 1

set title ‘text’ (your own title)

You can add your own title to the output. FPSQL inserts it between the
date/time and page number..

Example:
set title ‘Sales for January’

Sep 30, 1987 13:48 Sales for January Page : 1

set title off (delete title)

No title will be printed (this is the default)

Default lines values

Output to the screen conforms to the height of the screen.
Output to the printer defaults to 60,66.
Output to a file defaults to 60,66.

Set delimiter ','
Used with set output 'filename' to create delimited output.
(* New Feature with fP SQL 5.8)

Querying qualified files

set qualifier qualifier name

Only one qualified file can be used in a query.

Multiple “set” clauses

You can combine a single “set output...” with a single “set lines...” with
a single “set title…” in any order, separated by a space or line return.

Example: set output printer set lines 72,84 set title

You cannot, however, use more than one “set output…” or more than one “set
lines…” or more than one “set title…” together. You cannot, for instance,
set output to both printer and file in the same query.

Quiz query #8 (answer in Appendix E)

Use the “set” clause to send your query output to a file named “contract”.
Later, the contents of “contract” will be printed on legal size paper (14
inches long). Create a one inch bottom margin (lines per inch = 6). Give
the output a title of “Assets Sorted By Location”.

APPENDIX A

ERROR MESSAGES

The error messages in this appendix are listed in alphabetical order. This
is not a complete list; many of the error messages are so specific as to
need no elaboration. Listed with each error message are the likely causes
to look for.

Error messages appear in the middle of the query statement area in a small
window:

‘Select’ clause missing.
Press [Enter]

The query will not be executed until the problem is corrected. To clear the
error message from the screen, press [Return}. In many cases the cursor
will be positioned in the query statement at the source of the problem.

Bad comparison.

Incorrect boolean operator symbols.

Error in aggregate function.

Open parenthesis, “(“ missing.
Comma missing before, after “from”
“COUNT” used with something other than (*).

‘From’ clause missing.

A problem with text preceding the “from” clause.
Comma missing between fields.
Extra comma between fields and/or, after last field.

Mismatched brackets.

Close bracket, “]”, missing, or extra bracket: “[“ or “]”

Mismatched parentheses.

Close parenthesis, “)”, missing, or extra parenthesis: “(“ or “)”

No or invalid map: ‘path/filename’.

File name misspelled.

Number of lines per page has already been set.

“Set lines...” used more than once.

Output has already been redirected.

“Set output...” used more than once.

‘Select’ clause missing.

“Select” spelled wrong.
A problem with text preceding “select”.
“#” missing from commentary text.

Syntax error.

Incorrect order of reserved words, clauses.
Misspelling of reserved word.
Commas missing or extra commas present.
Quotes around text missing or extra quotes present.
Underscore missing from multiple-word field name.

Title has already been set.

“Set title…” used more than once.

Unknown field ‘field name’.

Incorrect spelling of field name.
File name missing from “from” clause.

Unknown field ‘filename.fieldname’.

Comma missing before or after file name in “from” clause.
Period missing in prefix.

APPENDIX B

Reserved words

These are words which have specific meaning to FPSQL and, therefore,
whenever possible, should not be used in naming files or fields in queries.
The clauses we just looked at contain the reserved words: “set”, “select”,
“from”, “where”, “group by”, “having”, “order by”.

Here is a complete list:

and group not select

asc having null separator

avg help off set

between in on spooler

by insert or start

count into order sum

desc is output title

edit like printer unique

end lines query unlock

exists max records where

fields mid restart width

from min screen with

APPENDIX C

FPSQL SYNTAX DIAGRAMS

The following diagrams are also in the “FPSQL Quick Reference Guide”
included in the FPSQL software package. The diagrams represent the syntax
of all the clauses, except, “set”, in a query statement.

Key to diagrams:

Large brackets {} enclose a list of allowable entities:
fields, files, numbers, expressions,
aggregate functions, etc., for use in the
clause.

Comma (,) means that the following entity is optional.

Ellipsis (. . .) means that preceding may be repeated any
 number of times.

APPENDIX D

FPSQL VERSUS ANSI STANDARD SQL

The following is a list of differences between FPSQL, version 5.0, and the
American National Standards Institute (ANSI) X3.135-1986 SQL standard.

In FPSQL:

· The “select distinct” clause is not implemented.

· Password security is based on the creation password.

· There is no case sensitivity in sorts and comparisons
 (just like the rest of filePro).

· A “set” clause has been added.

· filePro’s system-maintained fields can be used.

Example: @RN, @CD, @TD

· filePro’s additional field types can be used.

Example: MDY, HMS, $

· Associated fields can be used.

Example: @A0, @Al, @A2

· Fields can be referenced by number.

Example: @1, @2, @3

· The “mid” function has been incorporated.

Example: mid(field,1,2)

APPENDIX E

ANSWERS TO QUIZ QUERIES

Answer to #1:

select name, hired, commission, salary
from ssalesmn

name hired commission salary

Macmillan 01/15/80 55.38 2000.00
Winston 06/01/87 127.03 1200.00
Mifflin 02/10/82 1800.00
*** QUERY OUTPUT TRUNCATED ***

Answer to #2:

select customer, subtotal+tax_amount, payment, invoice_date, invoice_number
from sinvoice
where payment > (subtotal+tax_amount)*.25

customer subtotal+tax payment invoice_date invoice_number
--
7 1405.41 500.00 08/20/87 9
8 255.85 100.00 02/19/87 11
4 788.92 200.00 05/05/87 14
2 209.68 150.00 07/30/87 16
1 1156.69 800.00 09/20/87 17

Answer to #3:

select manager, avg(salary), count(*), min(hired)
from ssalesmn
group by manager

manager avg(salary) count(*) min(hired)

Jovanovich 1533.3333 3 11/20/84
Knopf 1625.0000 6 01/15/80

Answer to #4:

select territory, avg(salary)
from ssalesmn
group by territory
having count(*) = 2

territory avg(salary)

NYS 1450.0000

Answer to #5:

select territory, avg(salary), manager
from ssalesmn
group by territory
having avg(salary) >
select avg(salary)
from ssalesmn

territory avg(salary) manager

NYC 1712.5000 Knopf
PA 1700.0000 Jovanovich

Note, in the example, above, that the “having” clause can compare the
results of two aggregate functions by using a subquery.

Subqueries in the “having” clause are evaluated in the same manner as they
are in the “where” clause. In FPSQL subqueries can be used in both the
“where” and “having” clauses at the same time.

Answer to #6:

select manager, territory, hired, name
from ssalesmn
order by manager, territory, hired

manager territory hired name

Jovanovich NJ 03/14/86 Holt
Jovanovich OH 08/12/85 Wiley
Jovanovich PA 11/20/83 Hall
Knopf NYC 01/15/80 Macmillan
Knopf NYC 03/13/81 McGraw
Knopf NYC 02/10/82 Mifflin
Knopf NYC 06/01/27 Winston
Knopf NYS 10/17/84 Reinhart
Knopf NYS 11/11/86 Haughton

Answer to #7:

select territory,
ssalesmn.name ‘Sales Rep’,
sinvoice.@A1 ‘Product’,
sinvoice.@A2 ‘Quan.’,
description ‘Description’,
sproduct.price * sinvoice.@A2‘Total Sales’

from sinvoice, scllent, sproduct, ssalesmn
where

sinvoice.@l = sclient.@l
and
sinvoice.@A1 = sproduct.product
and
sinvoice.salesman = ssalesmn.name

order by territory, ssalesmn.name, sinvoice.@A1

Territory Sales Rep Product Quan. Description Total Sales
--
NJ Holt O1-2345 2 Soldering Iron 28.00
NJ Holt 23-4567 1 Metal Tracker 219.00
NJ Holt 56-7890 3 Thermo Reader 36.00
NJ Holt 89-0123 3 Lite Dimmer 28.05
NYC Macmillan 78-9012 3 Barometer Kit 598.80
NYC Macmillan 89-0123 10 Lite Dimmer 93.50
NYC Winston 12-3456 1 Touch Tone Phone 29.99
NYC Winston 45-6789 4 DigiClock 48.00
NYC Winston 58-7890 3 Thermo Reader 36.00
NYC Winston 67-8901 15 Humidity Meter 1492.50
NYC Winston 78-9012 5 Barometer Kit 998.00
NYC Winston 78-9012 1 Barometer Kit 199.60
NYC Winston 89-0123 2 Lite Dimmer 18.70
OH Wiley 01-2345 2 Soldering Iron 28.00
OH Wiley 12-3456 2 Touch Tone Phone 59.98
OH Wiley 23-4567 1 Metal Tracker 219.00
*** QUERY OUTPUT TRUNCATED ***

Answer to #8:

set output ‘contract’ set lines 72,84 set title ‘Assets Sorted by Location’

INDEX
A
Aggregate Functions, applied to a real field, 5-7
descriptions, 7-2
Alias, file name, 5-10
ANSI Standard SQL, FPSQL versus. D-1
Answers to Quiz Queries, E-1
Arithmetic Operators, 6-9
Associated Fields, description, 5-6
Avg (Aggregate Function), 7-2

B
Command Keys, main screen, 3-2
Comparisons, general form of, 6-4
examples, 6-8
grouping, 6-7
operators, 6-5
Conditions, general form of, 6-3
Count (Aggregate Function), 7-3

D
Demo Files purpose, 4-2
“sclient”, 4-3
“sinvoice”, 4-4
“sproduct”, 4-3
“ssaleman”, 4-4

E
Editing a Query, 3-5
Error Messages, list of, A-1
Executing a Query, 3-7
Exists Subclause, description, 6-10
syntax diagram, C-2
Expressions arithmetic operators, 6-9
description, 6-9

F
Fields displayed in output, 5-9
field headings, lengths, edits, 3-15
justified in output, 5-9
names, 5-8
aggregate function applied to, 5-7
associated field group, 5-5
associated fields, 5-6
asterisk, 5-6
expressions, 5-8
literals text, 5-8
numeric, 5-8
multiple-word name, 5-3
name order, 5-3
numeric literal, 5-8

partial names, 5-4
preceded by filename, 5-6
referencing by number, 5-5
substituting headings, 5-4
system-maintained fields, 5-5
typing in field names, 5-2
viewing headings, lengths, edits, 3-15
Files names filePro files, 5-10
filePro qualified files, 5-10
filePro file with alias, 5-10
typing in filenames, 5-2
filePro and filePro Plus, 1-3
joining, 1 1-2
Non-filePro, 1-3
Profile 16, 1-3
Formatting Printed Query Output, 12-3
FPSQL. description, 2-2
“From” Clause function, 5-2syntax diagram, C-1

G
“Group by” Clause description, 7-5
syntax diagram, C-2

H
“Having” Clause description, 8-2
syntax diagram, C-2
when used with “where” clause, 8-3
Help, how to use online, 3-18

I
Installing FPSQL, 1-3

J
Joining Files, 1 1-2

L
Literals,
text and numeric, 5-8
description, 6-4
Loading a Query, 3-12

M
Manual
how to use, 1-3
organization of, 1-3
Max (Aggregate Function), 7-2
Mid (Aggregate Function),
description, 5-7
example, 7-2
Min (Aggregate Function), 7-2

N
Nesting Subqueries, 9-3

O
Operators
arithmetic, 6-9
comparison, 6-5
“Order by” Clause description, 10-2
sorting sequence, 10-2
syntax diagram, C-2

P
Passwords, 3-8

Q
Qualified Files. querying, 12-5
Query a sample, 2-2
editing a, 3-5
executing a direct execution of, 3-8
no output from. 3-8
screen display, 3-7
including comments in. 3-4
loading a, 3-12
output controlling print formatting, 3-11, 12-3
redirecting to printer or file, 3-10, 12-2
viewing extra-wide screens, 3-9
multiple screens, 3-9
wide-screen terminals, 3-10
query file directory, 3-13
saving a, 3-1 1typing in
editing, 3-4
insert mode, 3-3
long queries, 3-4
recording, 3-4
rules for, 3-3
type over mode, 3-3
Quiz Query Answers
answer to #1 E-1
answer to #2 E-1
answer to #3 E-1
answer to #4 E-2
answer to #5 E-2
answer to #6 E-3
answer to #7 E-4
answer to #8 E-4

R
Reserved Words, list of, 2-4, B-1

S
Saving a Query, 3-11
Screens, main screen, command keys, 3-2
wide screen terminals, 3-10
Scrolling, horizontal, 3-9

“Select” Clause function, 5-2
syntax diagram, C-1
“Set” Clause description, 12-2
formatting printed output adding default title, 12-4
adding your own title, 12-4
bottom margin, 12-3
default lines values, 12-4
delete default heading, 12-4
deleting the title, 12-4
delimiters, 12-4
page length, 12-3
multiple “set” clauses, 12-5
querying qualified files, 12-5
redirecting output, 12-2
to file, 12-3
to printer, spooler, 12-2
to screen, 12-2
with query statement, 12-3
Sorting Sequence, “order by” clause, 10-2
SQL, description, 2-2
Starting FPSQL, 1-3
Style Conventions keys and commands described in text 1-4
shown on screen 1-5
prompts and messages, 1-5
text to be entered, 1-5
Subqueries description, 9-2
multiple levels of nesting, 9-3
Sum (Aggregate Function), 7-2
Syntax Diagrams, C-1
“sclient” Demo File, 4-3
“sinvoice” Demo File, 4-4
“sproduct” Demo File, 4-3
“ssatesman” Demo File, 4-4

T
Termcap, for wide-screen terminals, 3-10
Terminals, wide screen, 3-10
Typing in a Query, 3-3

V
Variable Queries, description, examples, 9-5
Viewing
field headings, lengths, edits, 3-15
query file directory, 3-13
query output, 3-9

W
“Where” Clause
description, 6-2
syntax diagram, C-2
Wide-Screen Terminals, 3-10

