
432 W. Gypsy Lane Road
Bowling Green, OH 43402
Tel. (800) 847-4740
Fax (877) 606-6853
sales@fptech.com

Version 6.1.02 USP New Features

Enhanced DIM
 IMPORT and EXPORT commands can now be mapped to an array.

 Example:
 Then: IMPORT WORD ifile=(fname)
 Then: DIM data(10):ifile(1) ' data can now be used in place of ifile
 Then: ct(4,.0)="1"
 loop If: ct le "10"
 Then: msgbox data(ct); ct=ct+"1"; goto loop
 Then: close ifile

Enhanced COPY, COPY TO, and COPYIN
 Each command now allows for any combination of lookups and arrays to copy
 data, including mapped/aliased arrays.

 Syntax:
 COPY lookup ' Copy the current record to a lookup file
 COPY array ' Copy the current record to an array
 COPYIN lookup ' Copy a lookup file record to the current record
 COPYIN array ' Copy an array to the current record
 COPY lookup TO lookup ' Copy a lookup record to a lookup record
 COPY array TO lookup ' Copy an array to a lookup record
 COPY lookup TO array ' Copy a lookup record to an array
 COPY array TO array ' Copy an array to an array

 Examples:
 (Copy the current record to an array)
 Then: DIM array(10)
 Then: COPY array

 (Copy an IMPORT to the current record)
 Then: IMPORT WORD ifile=(fname)
 Then: DIM data(10):ifile(1) ' data can now be used in place of ifile
 Then: COPYIN data ' Copy the import to the current record
 Then: close ifile

 (Copy a lookup record to an EXPORT)
 Then: EXPORT WORD ofile=(fname)
 Then: DIM data(10):ofile(1) ' data can now be used in place of ofile
 Then: lookup inv=invoices r=(rec) -nx
 Then: COPY inv TO data
 Then: close ofile
 Then: close inv

COPY() Command
 n = COPY(array1, array2 [,src [,dest [,len]]])
 Function to copy data between arrays. Returns the number of elements copied
 from array1 to array2.

 Parameters:
 array1: Array to copy from.
 array2: Array to copy to.
 src: The array index to start copying from array1.
 dest: The array index to start copying to in array2.
 len: The number of elements to copy from array1 to array2.

 If no optional parameters are provided COPY() will copy as many items from
 array1 that will fit into array 2. Parameters src and dest default to the
 first index of each array. Parameter len defaults to the entire array
 length.

 Example:
 Then: DIM fruit(3)
 Then: DIM food(3)
 Then: fruit["1"]="Apple"; fruit["2"]="Orange"; fruit["3"]="Pear"
 Then: x=COPY(fruit,food,"1","1","2")
 (The food array will contain "Apple", "Orange", and "")

XML import and export
 filePro now has the ability to import and export XML files.

 Export:
 XML [id] :CR fname - Creates an XML file. The id is optional and
 defaults to "0" if only one file is open at
 a time. If two or more are open, the id
 must be supplied ("0"-"99")
 XML [id] :CR-|:CL - Closes an open XML file.
 XML [id] :EL name - Starts an element in an XML file.
 XML [id] :EL- - Closes an element.
 XML [id] :AT name value - Adds an attribute to an XML element.
 XML [id] :TX text - Adds a text element to an XML document.

 Example:
 Then: XML :CR "/tmp/myfile.xml"
 Then: XML :EL "EmployeeData"
 Then: XML :EL "employee"
 Then: XML :AT "id" "21"
 Then: XML :EL "firstName"
 Then: XML :TX "Tom"
 Then: XML :EL-
 Then: XML :EL "lastName"
 Then: XML :TX "Anderson"
 Then: XML :EL-
 Then: XML :EL-
 Then: XML :EL-
 Then: ML :CL

 Output:
 <?xml version="1.0"?>
 <EmployeeData>
 <employee id="21">
 <firstName>Tom</firstName>
 <lastName>Anderson</lastName>
 </employee>
 </EmployeeData>

 Import:
 XML [id] :RO fname - Opens an XML file for reading. The id is
 optional and defaults to "0" if only one
 file is open at a time. If two or more are
 open, the id must be supplied ("0"-"99")
 v = XML [id] :GV key [attr] - Get a value from an XML file using a path
 to a key. An attribute name can optionally
 be provided to return an attribute value
 rather than the text element value.

 Keys are a way to reference part of an XML document using dot syntax. An
 example of dot syntax would be a key, such as "name.first" or "age".
 There are reserved symbols used in key syntax that can be used to
 retrieve certain values from the XML:

 '#' is used to get the number of child elements inside of an element.
 '@' is used to specify a literal, or if at the end of the path, get the
 name of the current object.

 Index positions can also be used to reference specific elements by numeric
 position inside of an XML document. Indexes in Key Syntax start at position
 1.

 x = XML :GV "food.10" will attempt to find the tenth (10) item inside
 a food element.

 x = XML :GV "food.@10" will attempt to find a key named "10" inside a
 food element and return its value.

 x = XML :GV "food.fruit[10]" will attempt to find the tenth (10) fruit
 element inside of the food element and return its value.

 x = XML :GV "food.fruit[#]" will return the number of fruit elements inside
 of the food element.

 Example:
 Given the following XML, here are example commands and what they return.
 <?xml version="1.0"?>
 <EmployeeData>
 <employee id="21">
 <firstName>Tom</firstName>
 <lastName>Anderson</lastName>
 </employee>
 <employee id="99">
 <firstName>Tiffany</firstName>
 <lastName>Anderson</lastName>
 </employee>
 </EmployeeData>

 Then: XML :RO "/tmp/myfile.xml" ' open the XML file for reading
 Then: x=XML :GV "EmployeeData.employee.firstName" ' x contains "Tom"
 Then: x=XML :GV "EmployeeData.employee[1]" "id" ' x contains "21"
 Then: x=XML :GV "EmployeeData.employee.1.@" ' x contains "firstName"
 Then: x=XML :GV "EmployeeData.#" ' x contains "2"
 Then: x=XML :GV "EmployeeData.2.firstName" ' x contains "Tiffany"
 Then: x=XML :GV "EmployeeData.2" "id" ' x contains "99"
 Then: XML :CL ' close the XML file

LOOP commands
 filePro now has support for basic loops.

 FOR loop
 A loop that runs from a value to a value. Built in edits are supported.
 If a STEP value is not supplied, filePro will determine a STEP value
 based on the FROM and TO expression values. A FROM value that is less
 than a TO value will result in a positive STEP ("1"). If FROM is greater
 than TO the STEP value will be negative ("-1").

 Each iteration of the loop will update the value of "f", incrementing by
 STEP, and goto the label specified by DO.

 Syntax:
 FOR f[(len,edit)] FROM exp TO exp [STEP exp] DO label

 Example:
 Then: FOR f(10,.0) FROM "1" TO "10" STEP "1" DO lp1; goto en1
 lp1 If:
 Then: msgbox f ' print the value of "f" from 1 to 10
 Then: end
 en1 If:
 Then: FOR d(10,mdyy/) FROM "12/01/2024" TO "12/31/2024" DO lp2; goto en2
 lp2 If:
 Then: msgbox d ' print the value of "d" from 12/01/2024 to 12/31/2024
 Then: end
 en2 If:
 Then: end

 Note: The FROM, TO, and STEP expressions are evaluated once when the
 loop is first executed. Changing these values once the loop starts
 executing will not change how the loop runs.

 WHILE loop
 A loop that runs while the condition is true. Each iteration checks the
 condition (cnd) and while the value is true goes to the label specified by
 DO. A condition can be an IF expression or label.

 Syntax:
 WHILE cnd DO label

 Example:
 Then: declare total(10,.0)
 Then: total="0"
 Then: lookup inv=invoice r=(rec) -nx
 Then: WHILE inv DO lp1; goto en1
 lp1 If:
 Then: total=total+inv(1)
 Then: getnext inv
 Then: end
 en1 If:
 Then: close inv; end

 LOOP ... WHILE|UNTIL
 A loop that runs while the condition is true (WHILE) or until the condition
 is true (UNTIL). Each iteration starts by going to the label specified by
 DO, then the condition is checked and the loop either continues or
 terminates based on the value of the condition. A condition can be an IF
 expression or label.

 Syntax:
 LOOP label WHILE cnd
 LOOP label UNTIL cnd

 Example:
 Then: i(10,.0)="10"
 Then: LOOP lp1 WHILE i gt "0"; goto en1
 lp1 If:
 Then: i=i-"1";
 Then: end
 en1 If:
 Then: end

 BREAK command
 BREAK can be used inside of a loop to terminate its execution early.

 Example:
 Then: i(10,.0)="10"
 Then: LOOP lp1 WHILE i gt "0"; goto en1
 lp1 If: i eq "5"
 Then: BREAK ' Terminate the loop early when i equals 5
 Then: i=i-"1";
 Then: end
 en1 If:
 Then: end

New XLSX Functions
 e = XL_FREEZEPANE([row [, col [, sheet]]])

 Parameters:
 row: Row to split the cell (0 indexed)
 col: Column to split the cell (0 indexed)
 sheet: Handle to sheet to freeze the cell on. Leave blank, "0", or "-1" to
 use the default sheet.

 Notes:
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to
 return the last error.

 The split is specified at the top or left of a cell and uses zero based
 indexing. Therefore to freeze the first row of a worksheet it is
 necessary to specify the split at row 2.

 You can set one of the row and col parameters as zero if you do not want
 either a vertical or horizontal split.

 e = XL_FREEZEPANE2([cell [, sheet]])

 Parameters:
 cell: The Excel style cell to freeze the cell. e.g. "A1" "D6" "F6".
 sheet: Handle to sheet to freeze the cell on. Leave blank, "0", or "-1"
 to use the default sheet.

 Notes:
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to
 return the last error.

 Split is specified at the top or left of a cell and uses zero based
 indexing. Therefore to freeze the first row of a worksheet it is
 necessary to specify the split at row 2.

 You can set one of the row and col parameters as zero if you do not want
 either a vertical or horizontal split.

 e = XL_SPLITPANE([vertical [, horizontal [, sheet]]])

 Parameters:
 vertical: The position for the vertical split. e.g. "1", "12.5", "15"
 horizontal: The position for the horizontal split. e.g. "1", "12.5",
 "15"
 sheet: Handle to sheet to freeze the cell on. Leave blank, "0", or
 "-1" to use the default sheet.

 Notes:
 Returns "1" on success and "-1" on error. XL_ERROR() can be called to
 return the last error.

 This function divides a worksheet into horizontal or vertical regions
 known as panes. This function is different from the XL_FREEZEPANE
 function in that the splits between the panes will be visible to the
 user and each pane will have its own scroll bars.

 The parameters vertical and horizontal are used to specify the vertical
 and horizontal position of the split. The units for vertical and
 horizontal are the same as those used by Excel to specify row height and
 column width. However, the vertical and horizontal units are different
 from each other. Therefore you must specify the vertical and horizontal
 parameters in terms of the row heights and column widths that you have
 set or the default values which are 15 for a row and 8.43 for a column.

 Environmental variable PFXLASCII
 Default OFF. If enabled, any non-printable ASCII characters will be
 automatically stripped from data wheninserted into an XLSX document.

LOOKUP Enhancement
 Added preliminary support for variable index selection in lookups. You can
 now use an expression to select which index to use for a lookup at runtime.

 Example:
 Then: declare index(1,*); index="A"
 Then: lookup myfile = test k=aa i=(index) -nx

 Note: The lookup wizard has not been updated at this time. Support will be
 added in a future version.

Fill-In-The-Blank PDFs
 Added support for read-only PDF fields when generating a fill-in-the-blank PDF
 document. Each field type now contains an option to flag the field as
 read-only.

New CLI Option for Clerk, Report, and Index Maintenance
 Added -MN command line option to hide [NONE] qualifier from the qualifier
 list in dclerk, rclerk, dreport, rreport, and dxmaint. Same as PFNOQUAL=OFF.

READSCREEN() Enhancement
 Added an option "7" to READSCREEN() to get cursor path.

 Dynamically sized, returns a list of fields separated by colons,
 e.g. " 1: 2:TAB:aa :".

ENCODE() and DECODE() Enhancement
 Added new option to ENCODE() and DECODE(), "URL", to handle URL percent
 encoding.

 Failure to decode will return an empty string.

 Example:
 Then: ' x contains "Hello%2C%20World%21"
 Then: x=ENCODE("URL","Hello, World!")
 Then: ' x contains "Hello, World!"
 Then: x=DECODE("URL","Hello%2C%20World%21")

READMAP() Command
 s = READMAP(file)

 Takes the name of a filePro file and returns information from the first line
 of the map file. On error or if the file is an invalid filePro file, the
 function will return blank.

 Parameters:
 file: The name of a filePro file.

 Example return value:
 Each section is 5 characters long by default.
 "type:kreclen:dreclen:keyflds:"
 Where:
 type is the filePro map type; map, map2, odbc, alien.
 kreclen is the key record length for a record in the file.
 dreclen is the data record length for a record in the file.
 keyflds is the number of key fields for a record in the file.
 e.g. "map : 100: 0: 10:"

PRINTCODE() Command
 x = PRINTCODE(code [,flag])

 Returns either the expanded print code for the current printer or its
 description.

 Parameters:
 code: The print code number to evaluate.
 flag: 0 - Return the "raw" expanded print code.
 1 - Return the comment for the print code.

 Example:
 Given a print code table containing the following entries:

 Number Sequence Description
 1 %2 %3 Initialize printer
 2 <page> New Page
 3 Set Font

 If: ' x will contain '<page> '
 Then: x = PRINTCODE("1")
 If: ' x will contain '<page> '
 Then: x = PRINTCODE("1","0")
 If: ' x will contain 'New Page'
 Then: x = PRINTCODE("2","1")

GETLOCKS() Command
 n = GETLOCKS(array,lookup)

 Returns the number of elements populated in the array. Fills the array with
 locked record information for a given lookup. Use '-' for current file. If
 passing a multi-dimensional, the array must point to the final sub array OR
 the second to last. This allows us to return the PID and Username/UID for
 the given lock. Returns "0" on Windows.

 Restrictions:
 Linux|Unix|FreeBSD Only.

 Parameters:
 array: An array to place the locked record information in.
 lookup: The lookup to use to check a filePro file for locked records.

 Examples:
 Then: ' Fill array with the record number of locked records in the file
 Then: dim array(10)(10,.0)
 Then: ' x will contain the number of locks on the
 Then: x = GETLOCKS(array,-) ' file that will fit into array

 Then: ' Fill array with locked records including PID and Username/UID
 Then: dim array(10,3)
 Then: ' x will contain the number of locks on the
 Then: x = GETLOCKS(array,-) ' file that will fit into array

 In the second example each "row" of the array will contain the locked
 record number, the PID of the locking process, and the user holding the
 lock. e.g.

 Then: x = array["1","1"] ' x holds the record number
 Then: x = array["1","2"] ' x holds the PID
 Then: x = array["1","3"] ' x holds the username OR UID

ISDIR Command
 n = ISDIR(fname)
 Test if a given path is a directory. Returns "1" if the file exists and is a
 directory. Returns "0" if it is not. Returns a negated system error on
 failure.

 Parameters:
 fname: A path to an on-disk resource.

 Note: Shares the same @FSTAT array used by EXISTS() in filePro.

ISFILE Command
 n = ISFILE(fname)
 Test if a given path is a file. Returns "1" if the file exists and is a
 file. Returns "0" if it is not. Returns a negated system error on failure.

 Parameters:
 fname: A path to an on-disk resource.

 Note: Shares the same @FSTAT array used by EXISTS() in filePro.

ISLINK Command
 n = ISLINK(fname)
 Test if a given path is a link. Returns "1" if the file exists and is a
 link. Returns "0" if it is not. Returns a negated system error on failure.

 Parameters:
 fname: A path to an on-disk resource.

 Note: Shares the same @FSTAT array used by EXISTS() in filePro.
 ISLINK() always returns "0" on Windows.

Define Processing
 Enhanced find and replace with an optional match whole word function.
 This makes it much easier to find places where variables like "aa" and "zz"
 are used.

 Enhanced F9 search in dcabe/rcabe to allow for whole word searching by using
 a single quote before the search term, e.g. 'WORD. This makes it much easier
 to find places where variables like "aa" and "zz" are used.

FPSTAT Command
 x = FPSTAT(lookup)
 Function to return map information and basic access attributes for a given
 filePro lookup.

 Parameters:
 lookup: A lookup to a filePro file to retrive basic attributes from.
 Can be "-" for the current file.

 Returns:
 kfilesize;dfilesize;mdate;mtime;
 Blank on error.

 Where:
 kfilesize is the total sum of the size of all key segments in bytes.
 dfilesize is the total sum of the size of all data segments in bytes.
 mdate is the last date a key/data file was modified, e.g. 03/24/2025
 mtime is the last time a key/data file was modified, e.g. 02:19:59

 Note: The returned values are ONLY for the active qualifier on the lookup.

GETQUAL Command
 s = GETQUAL(fname)
 Returns a colon delimited list of all qualifiers for the file given by
 "fname"

 Parameters:
 fname: A filePro file name.

 Example:
 (File invoices has 3 qualifiers 2022, 2023, and 2024)
 Then: s=GETQUAL("invoices") ' s will contain "2022 :2023 :2024 :"

 n = GETQUAL(array, fname)
 Returns the number of qualifiers for the file given by "fname" while filling
 "array" with the list of qualifier names.

 Parameters:
 array: An array to fill with a list of qualifier names.
 fname: A filePro file name.

 Example:
 (File invoices has 3 qualifiers 2022, 2023, and 2024)
 Then: DIM quals(10)
 Then: n = GETQUAL(quals, "invoices") ' n will contain "3"
 Then: q = quals["1"] ' q will contain 2022
 Then: q = quals["2"] ' q will contain 2023
 Then: q = quals["3"] ' q will contain 2024

Debugging
 Updated how 'C' continue works in the debugger.

 The debugger should now correctly maintain the "step" mode when switching
 between processing and entering and leaving calls. Previously, using
 continue while inside a call would take you out of single-step mode when
 returning from said call. Now, if you were in single-step mode before a
 call, continuing inside of the call will place you back into single step
 mode upon returning or entering a new processing table.

Define Menus
 Added new F8 options to dmakemenu. You can now move, copy, delete, save, and
 load menu items inside of dmakemenu.

 Expanded menu version from 8 characters to 16 in dmakemenu and runmenu.
 Using a longer title and running the menu in an older version of filePro
 will only display the first 8 characters.

 Added new environmental variable PFMENUVER=0, Default 0. This globally
 changes how filePro menus display their version strings.
 0 - Show menu version as-is.
 1 - Show filePro version if menu version is blank.
 2 - Show menu file name if menu version is blank.
 3 - Always show filePro version.
 4 - Always show menu file name.

 Added pseudo environmental variable @MN that can be used in the version
 string or menu title to show the menu file name in its place. To use, place
 $@MN in the menu title or menu version section when designing a menu.

Version 6.1.01 USP New Features

JSON Import and Export
 filePro now has the ability to import and export JSON files.

 Export:
 JSON [id] :CR fname - Creates a JSON file. The id is optional and
 defaults to "0" if only one file is open at
 a time. If two or more are open, the id
 must be supplied ("0"-"99")
 JSON [id] :CR-|:CL - Closes an open JSON file.
 JSON [id] :OB [name] - Starts an object in a JSON file.
 JSON [id] :OB- - Closes an object.
 JSON [id] :AR [name] - Starts an array in a JSON file.
 JSON [id] :AR- - Closes an array in a JSON file.
 JSON [id] :IT name [value] - Adds an item to a JSON file, if a value is
 not supplied, the resulting value will be
 null.
 JSON [id] :NO name [value] - Adds a number to a JSON file, if a value is
 not supplied, the resulting value will be
 null.
 JSON [id] :BL name [value] - Adds a boolean value to a JSON file, if a
 value is not supplied, the resulting value
 will be null.

 Note: Names will be ignored when adding an item, number, or boolean directly
 to an array.

 Example:
 JSON :CR "/tmp/myfile.json"
 JSON :OB
 JSON :OB "name"
 JSON :IT "first" "Tom"
 JSON :IT "last" "Anderson"
 JSON :OB-
 JSON :NO "age" "37"
 JSON :AR "children"
 JSON :IT "" "Sara"
 JSON :IT "" "Alex"
 JSON :IT "" "Jack"
 JSON :AR-
 JSON :IT "fav.movie" "Deer Hunter"
 JSON :OB-
 JSON :CL

 Output:
 {
 "name": {
 "first": "Tom",
 "last": "Anderson"
 },
 "age": 37,
 "children": ["Sara", "Alex", "Jack"],
 "fav.movie": "Deer Hunter"
 }

 Import:
 JSON [id] :RO fname - Opens a JSON file for reading. The id is
 optional and defaults to "0" if only one
 file is open at a time. If two or more are
 open, the id must be supplied ("0"-"99")
 value = JSON [id] :GV key - Get a value from a JSON file using a path
 to a key.

 Keys are a way to reference part of a JSON document using dot syntax. An
 example of dot syntax would be a key, such as "name.first" or "age".
 There are reserved symbols used in key syntax that can be used to
 retrieve certain values from the JSON:

 '#' is used to get the number of elements inside of an object or array.
 '@' is used to specify a literal, or if at the end of the path, get the
 name of the current object.

 Index positions can also be used to reference specific elements by
 numeric position inside of an object or an array. Indexes in Key Syntax
 start at position 1.

 x = JSON :GV "fruits.10" will attempt to find the tenth (10) item inside
 a fruits object or array.

 x = JSON :GV "fruits.@10" will attempt to find a key named "10" inside a
 fruits object and return its value.

 Example:
 Given the following JSON, here are example commands and what they return.
 {
 "name": {
 "first": "Tom",
 "last": "Anderson"
 },
 "age": 37,
 "children": ["Sara", "Alex", "Jack"],
 "fav.movie": "Deer Hunter"
 }

 Then: JSON :RO "/tmp/myfile.json" ' open the JSON file for reading
 Then: x=JSON :GV "name.first" ' x contains "Tom"
 Then: x=JSON :GV "name.1.@" ' x contains "first"
 Then: x=JSON :GV "age" ' x contains "37"
 Then: x=JSON :GV "children.#" ' x contains "3"
 Then: x=JSON :GV "children.1" ' x contains "Sara"
 Then: x=JSON :GV "fav\.movie" ' x contains "Deer Hunter"
 Then: JSON :CL ' close the JSON file

Fill-In-The-Blank PDFs
 filePro now has the ability to place fill-in-the-blank PDF objects on output
 formats and also retrieve values from PDF documents that have
 fill-in-the-blank fields to be used in Processing.

 There are four types of PDF Form Objects that can be used:
 • Textbox
 • Dropdown
 • Checkbox
 • Radio

 When a PDF output is generated, placed objects will be interactive in any
 supporting PDF viewer/editor. These PDF files can be saved after filling in
 fields, and processing can be written to retrieve values from these fields.

 Note: Using the new generation features in a report can lead to unintended
 results. Fields are shared across records and pages. Updating one field
 updates all matching instances of that field throughout the document. It is
 recommended to use output forms over output report

 Please See Fill In PDFs in the manual for more information on document
 creation.

Manual Link

 If the PDF was created with filePro, field names will be either the
 real-field or dummy field used to create the PDF object.
 e.g. "1", "42", "aa", "ab".

 Use these commands to read filled-in PDF documents:

 handle = PDF_OPEN(pdf_path)
 Returns a handle value (10,.0) that points to a PDF document with
 pdf_path as the filename. Returns a negative value on error.

 error_value = PDF_CLOSE(handle)
 Frees all values and memory associated with a PDF handle and closes the
 document. Returns a non-zero number on error.

 num_fields = PDF_GETNUMFIELDS(handle)
 Returns the number of fields in the PDF document.

 name = PDF_GETFIELDNAME(handle, index)
 Returns the full name of a field in a PDF document, given its index. The
 index is a number between "1" and the num_fields value returned by
 PDF_GETNUMFIELDS.

 type = PDF_FIELDTYPE(handle, fieldname)
 Returns the field type name of the specified field fieldname, which is
 one of:
 • NONE
 • BUTTON
 • RADIO
 • CHECKBOX
 • TEXT
 • RICHTEXT
 • CHOICE
 • UNKNOWN

https://fptech.com/fptech/fpmanual/index.htm#t=pages%2Fpdf%2FFill_In_PDFs.htm&sx=t

 type = PDF_FIELDTYPE2(handle, index)
 Returns the field type name of the specified field index, which is one
 of:
 • NONE
 • BUTTON
 • RADIO
 • CHECKBOX
 • TEXT
 • RICHTEXT
 • CHOICE
 • UNKNOWN

 The index is a number between "1" and the num_fields value returned by
 PDF_GETNUMFIELDS.

 value = PDF_GETVALUE(handle, fieldname [, richtext])
 Returns the field value, e.g. the text in the field, checkbox status,
 combo box index, etc. for the given field name fieldname. Optionally,
 richtext can be set to "1" to return rich text data if it exists.

 value = PDF_GETVALUE2(handle, index [, richtext])
 Returns the field value, e.g. the text in the field, checkbox status,
 combo box index, etc. for the given field index index. Optionally,
 richtext can be set to "1" to return rich text data if it exists. The
 index is a number between "1" and the num_fields value returned by
 PDF_GETNUMFIELDS.

QRCODE Command
 ret = QRCODE(str, dest [, size [, logo [, fg [, bg]]]])
 Create a QR Code from a text string.

 str is the text to store in the QR code.

 dest is the full name and path to the QR code to be generated.

 size is the size of the QR code to be generated in pixels. Must be large
 enough to store the full QR code.

 logo is an optional logo to place in the center of the QR code.

 fg is the foreground color of the QR code in hexadecimal.

 bg is the background color of the QR code in hexadecimal.

 Returns the size of the generated QR code, or -1 on error.

 Example:
 Then: ret=QRCODE("fptech.com","/tmp/website.png")

QRCODE print code
 <QRCODE TEXT="qr text" [SIZE="size"] [COLOR="color"] [FILL="bg color"]
 [X="x-pos"] [Y="y-pos"]>

 Adds a QR code with the specified text to the PDF document.

 All attributes, except for "TEXT", are optional.

 TEXT is the text to add to the QR code when generating the image.

 SIZE is the width and height of the QR code, must be large enough to fit the
 entire generated image.

 COLOR is the foreground color of the QR code (in hexadecimal).

 FILL is the background color of the QR code (in hexadecimal).

 X X position. (Default: current X position.)

 Y Y position. (Default: current Y position.)

FPML Print Code Enhancements
 FPML print codes can now use field names for any attribute.

 Any attribute inside of an FPML print code can now reference a real field or
 variable inside of processing. Use "@" to reference a field.

 e.g.
 <IMAGE FILE="@1"> ' reference a real field
 <IMAGE FILE="@im"> ' reference a dummy field
 <IMAGE FILE="@image_path"> ' reference a long name variable

 Note: Print codes can also be stored in a print code table and do not need
 to be placed directly on the output to work.

Array Commands and Enhancements
 Added initial support for multi-dimensional arrays.

 DIM array[n1,n2,...,n8](l,e)
 Multi-Dimensional array of fields with length "l" & edit "e". Array edit is
 optional.

 Example:
 dim array(2,2)
 array["1","1"]="John"
 array["1","2"]="Smith"
 array["2","1"]="Sarah"
 array["2","2"]="Jane"

 Existing array functions can also use multi-dimensional arrays by
 referencing one of an array's sub arrays.

 Example:
 CLEAR array["1"]

subscript = INDEXOF(array, value)
 Find the subscript of some value in an array.

 Example:
 array["1"]="cat"
 array["2"]="dog"
 array["3"]="bird"

 subscript = INDEXOF(array, "dog") ' subscript will contain "2"

value = A_MAX(array [, array2 [, array3 [, ... [, arrayN]]]])
 Find the maximum value between the passed in arrays.

 Example:
 array1["1"]="5"
 array1["2"]="7"
 array2["1"]="30"
 value = A_MAX(array1, array2) ' value will contain "30"

 Note: This method supports multi-dimensional arrays.

value = A_MIN(array [, array2 [, array3 [, ... [, arrayN]]]])
 Find the minimum value between the passed in arrays.

 Example:
 array1["1"]="5"
 array1["2"]="7"
 array2["1"]="30"
 value = A_MIN(array1, array2) ' value will contain "5"

 Note: This method supports multi-dimensional arrays.

value = A_TOT(array [, array2 [, array3 [, ... [, arrayN]]]])>
 Total all of the values in the passed in arrays.

 Example:
 array1["1"]="5"
 array1["2"]="7"
 array2["1"]="30"
 value = A_TOT(array1, array2) ' value will contain "42"

 Note: This method supports multi-dimensional arrays.

value = A_AVG(array [, array2 [, array3 [, ... [, arrayN]]]])
 Find the avereage of all of the values in the passed in arrays.

 Example:
 array1["1"]="5"
 array1["2"]="7"
 array2["1"]="30"
 value = A_AVG(array1, array2) ' value will contain "14"

 Note: This method supports multi-dimensional arrays.

DECLARE Enhancement
 Added the ability to assign directly to a longvar when creating it.

 Example:
 DECLARE my_var(32,*)="Hello, World!"

Runtime Engine
 Reworked tokenization engine to no longer require setting PFTOKSIZE or related
 variables. Variable will now be silently ignored.

Define Processing
 Added a new F5 shortcut in Define Processing for calls. F5 will now open a
 call for editing, or, will prompt you to create the call if it does not
 exist.

Debugging
 New stacktrace option.

 Added a new option T to the debugger to display a stacktrace.

